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Abstract: In this paper, we first establish an evaluation formula to calculate Wiener integrals of
functionals on Wiener space. We then apply our evaluation formula to carry out easy an calculation
for the analytic Fourier–Feynman transform of the functionals. Some examples are furnished to
illustrate the usefulness of the evaluation formula. Finally, using the evaluation formula, we establish
the series approximation for the analytic Fourier–Feynman transform.

Keywords: evaluation formula; unbounded functionals; analytic Fourier–Feynman transform; series
approximation

MSC: 42B10; 28C20; 34B16; 34C25

1. Introduction

For T > 0, let (C0[0, T],M, m) denote the classical Wiener space, where M is the
class of all Wiener measurable subsets of C0[0, T] and m is the Wiener measure. Then,
(C0[0, T],M, m) is a complete measure space. For an integrable functional F on C0[0, T],
the Wiener integral of F is denoted by∫

C0[0,T]
F(x)m(dx).

Some works and theories for the analytic Fourier–Feynman transform (FFT) on the
Wiener space, initiated by Brue [1], have been developed in the various studies. Since
it became known that Wiener integrals explain the movement of particles in quantum
mechanics, many studies on Wiener integrals have been published. In particular, the
Fourier–Feynman transform makes it possible to better explain the behavior of particles
and thus make them more predictable. In addition, research is being conducted on a new
form of Fourier–Feynman transformation. The analytic FFT and its properties are similar
in many respects to the ordinary Fourier transform. For an elementary introduction to the
analytic FFT [1,2] and the references cited therein, see [3–10]. Many mathematicians have
been studied the analytic FFT of various functionals on Wiener space.

One of the many topics within the theory of the analytic FFT is concerned with the
classes of all polynomial functionals [11,12]. These classes have been used to explain certain
physical phenomena. However, there are some difficulties in evaluating analytic FFT for
high-order polynomial functionals as follows: let ⟨v, x⟩ denote the Paley–Wiener–Zygmund
(PWZ) stochastic integral. For each n = 1, 2, . . ., let Gn(x) = ⟨v, x⟩n with ∥v∥2 = 1. To
calculate the analytic FFT of Gn, we have to consider following Wiener integral:∫

C0[0,T]
[⟨v, x⟩+ ⟨v, y⟩]nm(dx). (1)
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One can see that it is not easy to calculate of the Wiener integral (1) because the
Lebesgue integral (

1
2π

) 1
2 ∫

R
(u + ⟨v, y⟩)n exp

{
−u2

2

}
du (2)

appears in the calculation of the Wiener integral (1) whenever we apply the change of
the variable theorem. In order to evaluate the Lebesgue integral (2), we have to use the
integration by parts formulas repeatedly. However it is very difficult and complicated.

In this paper, we establish a new evaluation formula to figure out these difficulties
and complications. Using the evaluation formula, we obtain various examples involving
the analytic FFTs very easily. Finally, we give a series approximation for the analytic FFT.

2. Definitions and Preliminaries

We first list key some definitions and preliminaries that are needed to understand
this paper.

A subset B of C0[0, T] is said to be scale-invariant measurable provided ρB ∈ M for
all ρ > 0, and a scale-invariant measurable set N is said to be scale-invariant null provided
m(ρN) = 0 for all ρ > 0. A property that holds except on a scale-invariant null set is said
to be hold scale-invariant almost everywhere (s-a.e.). If two functionals F and G are equal
s-a.e., we write F ≈ G.

For v ∈ L2[0, T] and x ∈ C0[0, T], let ⟨v, x⟩ denote the PWZ stochastic integral. Then,
we have the following assertions.

(i) For each v ∈ L2[0, T], ⟨v, x⟩ exists for a.e. x ∈ C0[0, T].
(ii) If v ∈ L2[0, T] is a function of bounded variation, ⟨v, x⟩ equals the Riemann–Stieltjes

integral
∫ T

0 v(t)dx(t) for s-a.e. x ∈ C0[0, T].
(iii) The ⟨v, x⟩ has the expected linearity property.
(iv) The ⟨v, x⟩ is a Gaussian random variable with mean 0 and variance ∥v∥2

2.

For a more detailed study of the PWZ stochastic integral, see [2,6,8,13–17].
We are ready to recall the definitions of analytic Feynman integral and analytic FFT on

Wiener space [1–3].
Let C, C+, and C̃+ denote the set of complex numbers, complex numbers with a

positive real part, and nonzero complex numbers with a nonnegative real part, respectively.
For each λ ∈ C, λ1/2 denotes the principal square root of λ, i.e., λ1/2 is always chosen
to have positive real part, so that λ−1/2 = (λ−1)1/2 is in C+ for all λ ∈ C̃+. Let F be a
C-valued scale-invariant measurable functional on C0[0, T] such that

J(λ) ≡
∫

C0[0,T]
F(λ−1/2x)m(dx)

exists as a finite number for all λ > 0. If a function J∗(λ) analytic on C+ exists such that
J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the analytic Wiener integral of F over
C0[0, T] with parameter λ, and for λ ∈ C+ we write

J∗(λ) =
∫ anwλ

C0[0,T]
F(x)m(dx).

Let q be a nonzero real number, and let F be a functional such that
∫ anwλ

C0[0,T] F(x)m(dx)
exists for all λ ∈ C+. If the following limit exists, we call it the analytic Feynman integral
of F with parameter q and we write

∫ anfq

C0[0,T]
F(x)m(dx) = lim

λ→−iq
λ∈C+

∫ anwλ

C0[0,T]
F(x)m(dx).
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From the fact above with some notations in [4,7], we state the definition of the ana-
lytic FFT.

Definition 1. For λ ∈ C+ and y ∈ C0[0, T], let

Tλ(F)(y) =
∫ anwλ

C0[0,T]
F(y + x)m(dx).

We define the L1 analytic Fourier–Feynman transform, T(1)
q (F) of F, by the formula

T(1)
q (F)(y) = lim

λ→−iq
λ∈C+

Tλ(F)(y)

for s-a.e. y ∈ C0[0, T] and a nonzero real number q.

We note that T(1)
q (F) is defined only s-a.e. We also note that if T(1)

q (F) exists and if

F ≈ G, then T(1)
q (G) exists and T(1)

q (G) ≈ T(1)
q (F).

The following Wiener integration formula is used several times in this paper. Let
{α1, α2, . . . , αn} be any complete orthonormal set of functions in L2[0, T], and let h : Rn → R
be Lebesgue measurable. Then,∫

C0[0,T]
h(⟨α1, x⟩, · · · , ⟨αn, x⟩)m(dx)

=

(
1√
2π

)n ∫
Rn

h(u⃗) exp
{
−

n

∑
j=1

u2
j

2

}
du⃗

(3)

in the sense that if either side of (3) exists, both sides exist and equality holds.
We finish this section by giving the functionals on Wiener space, which are used in this

paper. Let {α1, . . . , αn} be a complete orthonormal set in L2[0, T], and let F be a functional
defined by the formula

F(x) = ⟨α1, x⟩2p1 × · · · × ⟨α1, x⟩2pn =
n

∏
j=1

⟨αj, x⟩2pj (4)

where p1, p2, . . . , pn−1 and pn are nonnegative integers. Then, one can see that the function-
als defined in Equation (4) are unbounded functionals used in [11,12].

Remark 1. Let P be the set of all functionals of the form

H(x) = h(⟨α1, x⟩, . . . , ⟨αn, x⟩)

where h is a continuous function on Rn. By the Bolzano–Weierstrass theorem, there is a sequence
{ fn} of polynomial functions such that ∥h − fn∥∞ = supu⃗∈Rn |h(u⃗)− fn(u⃗)| → 0 as n → ∞.
Thus, the polynomial functionals such as Equation (4) are meaningful objects to study the FFT. The
usefulness of the functionals (4) will be explained in Section 5 below.

3. An Evaluation Formula

In this section, we give an evaluation formula for the Wiener integrals. To do this, we
shall start by giving two lemmas. The first lemma is the formula for the Lebesgue integral.

Lemma 1. Let s be a nonnegative integer. Then, we have

∫
R

us exp
{
−u2

2

}
du = 2

s−1
2 (1 + (−1)s)Γ

(
1 + s

2

)
(5)
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where Γ denotes the gamma function defined by the formula

Γ(r) =
∫ ∞

0
tr−1e−rdt

for a complex number r with Re(r) > 0, see [15,16].

We now state some properties of the Gamma function Γ. For any positive integer n, let
n! = n × (n − 1)× (n − 2)× · · · × 1, and let (2n − 1)!! = (2n − 1)× (2n − 3)× (2n − 5)×
· · · × 3 × 1 and set (−1)!! = 1. Then,

(i) Γ(n) = (n − 1)! for all positive integers n.
(ii) Γ(s + 1) = sΓ(1) for all positive real numbers s.

(iii) Γ(n + 1
2 ) =

(2n−1)!!
2n

√
π for all positive integers n.

In our next lemma, we establish an Wiener integration formula.

Lemma 2. Let p be a nonnegative integer, and let α be an element of L2[0, T] with ∥α∥2 = 1. Then,
for all nonzero real numbers γ and β, we have∫

C0 [0,T]
[γ⟨α, x⟩+ β⟨α, y⟩]2pm(dx)

=
p

∑
s=0

2pC2s(2s − 1)!!γ2sβ2p−2s⟨α, y⟩2p−2s
(6)

for y ∈ C0[0, T], where nCk =
n!

k!(n−k)! for nonnegative integers n and k with n ≥ k.

Proof. For y ∈ C0[0, T], let v = ⟨α, y⟩. Then, using Equation (3) for all nonzero real numbers
γ and β and y ∈ C0[0, T], we have

∫
C0[0,T]

[γ⟨α, x⟩+ β⟨α, y⟩]2pm(dx) =
(

1
2π

) 1
2 ∫

R
[γu + βv]2p exp

{
−u2

2

}
du.

Using the binomial formula

(au + bv)n =
n

∑
k=0

nCk(au)k(bv)n−k =
n

∑
k=0

nCkakbn−kukvn−k,

Equation (5), and some properties of the Gamma function, we have∫
C0[0,T]

[γ⟨α, x⟩+ β⟨α, y⟩]2pm(dx)

=

(
1

2π

) 1
2 2p

∑
k=0

2pCkγkβ2p−kv2p−k
∫
R

uk exp
{
−u2

2

}
du

=

(
1

2π

) 1
2 2p

∑
k=0

2pCkγkβ2p−kv2p−k2
k−1

2 (1 + (−1)k)Γ
(

1 + k
2

)

=

(
1

2π

) 1
2 p

∑
s=0

2pC2sγ2sβ2p−2sv2p−2s2
2s−1

2 (1 + (−1)2s)Γ
(

1 + 2s
2

)

=

(
1

2π

) 1
2 p

∑
s=0

2pC2sγ2sβ2p−2sv2p−2s2s+ 1
2 Γ

(
s +

1
2

)

=

(
1
π

) 1
2 p

∑
s=0

2pC2sγ2sβ2p−2sv2p−2s2s (2s − 1)!!
2s

√
π

=
p

∑
s=0

2pC2s(2s − 1)!!γ2sβ2p−2sv2p−2s,

(7)
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which completes the proof of the lemma as desired.

Using Equation (6) in Lemma 2, we can establish the evaluation formula for the
Wiener integral.

Theorem 1. Let F be as in Equation (4) above. Then, for all nonzero real numbers γ and β, we have

∫
C0[0,T]

F(γx + βy)m(dx) =
n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!γ2sβ2pj−2s⟨αj, y⟩2pj−2s
]

(8)

for y ∈ C0[0, T].

Proof. We first note that for each j = 1, 2, . . . , n, let Xj(y) = ⟨αj, y⟩. Then, Xj’s are in-
dependent Gaussian random variables. Thus, for any Lebesgue measurable function h
on R, h(Xj)’s are also independent Gaussian random variables. Then, for all nonzero real
numbers γ and β, and y ∈ C0[0, T],∫

C0[0,T]
F(γx + βy)m(dx)

=
∫

C0[0,T]

n

∏
j=1

[γ⟨αj, x⟩+ β⟨αj, y⟩]2pj m(dx)

=
n

∏
j=1

[∫
C0[0,T]

[γ⟨αj, x⟩+ β⟨αj, y⟩]2pj m(dx)
]

.

Finally, using Equation (6) n-times repeatedly, we can establish Equation (8)
as desired.

4. Some Formulas for the Analytic FFT via the Evaluation Formula

In this section, we give an application of our evaluation formula. Theorem 2 is one of
the main results in this paper.

Theorem 2. Let F be as in Theorem 1 above, and let q be a nonzero real number. Then, the analytic
FFT T(1)

q (F) of F exists and is given by the formula

T(1)
q (F)(y) =

n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!
(

i
q

)s

⟨αj, y⟩2pj−2s
]

(9)

for s-a.e. y ∈ C0[0, T].

Proof. In Equation (8), set γ = λ− 1
2 and β = 1 for λ > 0. Then, it follows that for all λ > 0

and s-a.e. y ∈ C0[0, T], we have

Tλ(F)(y) =
n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!λ−s⟨αj, y⟩2pj−2s
]

. (10)

From this, we observe that Tλ(F)(y) of F exists for all λ > 0. We will show that the
analytic FFT T(1)

q (F)(y) of F exists. To do this, for λ ∈ C+, let

J∗(λ) =
n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!λ−s⟨αj, y⟩2pj−2s
]

.
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Then, J(λ) = J∗(λ) for all λ. Let Λ be any simple closed contour in C+. Then, using
the Cauchy theorem, we have

∫
Λ

J∗(λ)dλ =
∫

Λ

n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!λ−s⟨αj, y⟩2pj−2s
]

dλ = 0

because the function
pj

∑
s=0

2pj C2s(2s − 1)!!λ−s⟨αj, y⟩2pj−2s is an analytic function of λ in C+.

Hence, using Morera’s theorem, we conclude that J∗(λ) is analytic on C+. It remains to
show that

lim
λ→−iq
λ∈C+

J∗(λ) =
n

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!
(

i
q

)s

⟨αj, y⟩2pj−2s
]

.

However, it is an immediate consequence of the fact that the functions λs,
s = 1, 2, . . . are continuous and analytic on C+. Thus, we complete the proof of Theorem 2
as desired.

We now give some formulas for the analytic FFT via the evaluation formula obtained
by Equation (9). We first give several formulas for the 1-dimensional functionals in Table 1.

Table 1. Formulas for the 1-dimensional functionals.

n = 1, pj = j analytic FFT of Fj, j = 1, 2, 3, 4

F1(x) = ⟨α1, x⟩2 ⟨α1, y⟩2 + i
q

F2(x) = ⟨α1, x⟩4 ⟨α1, y⟩4 + 6i
q ⟨α1, y⟩2 − 3

q2

F3(x) = ⟨α1, x⟩6 ⟨α1, y⟩6 + 15i
q ⟨α1, y⟩4 − 45

q2 ⟨α1, y⟩2 − 15i
q3

F4(x) = ⟨α1, x⟩8 ⟨α1, y⟩8 + 28i
q ⟨α1, y⟩6 − 210

q2 ⟨α1, y⟩4 − 320i
q3 ⟨α1, y⟩2 + 105

q4

From now on, we next give a formula for the analytic FFT with the multi-dimensional
functionals.

Example 1. Let F5(x) = ⟨α1, x⟩2⟨α2, x⟩4 (set n = 2; p1 = 1, p2 = 2 in Equation (4)). Then, for
s-a.e. y ∈ C0[0, T], we have

T(1)
q (F5)(y) =

2

∏
j=1

[ pj

∑
s=0

2pj C2s

(
i
q

)s

⟨αj, y⟩2pj−2s(2s − 1)!!
]

=

[ 1

∑
s=0

2C2s(2s − 1)!!
(

i
q

)s

⟨α1, y⟩2−2s
]

×
[ 2

∑
s=0

4C2s(2s − 1)!!
(

i
q

)s

⟨α2, y⟩4−2s
]

=

[
⟨α1, y⟩2 +

i
q

][
⟨α2, y⟩4 +

6i
q
⟨α2, y⟩2 − 3

q2

]
.
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Remark 2. From the definition of analytic FFT, one can observe that for λ > 0,

Tλ(F5)(y) =
∫

C0[0,T]
[λ− 1

2 ⟨α1, x⟩+ ⟨α1, y⟩]2[λ− 1
2 ⟨α2, x⟩+ ⟨α2, y⟩]4m(dx)

=
∫

C0[0,T]
[λ−1⟨α1, x⟩2 + 2λ− 1

2 ⟨α1, x⟩⟨α1, y⟩+ ⟨α1, y⟩2]

× [λ−2⟨α2, x⟩4 + 4λ− 3
2 ⟨α2, x⟩3⟨α2, y⟩+ 6λ−1⟨α2, x⟩2⟨α2, y⟩2

+ 4λ− 1
2 ⟨α2, x⟩⟨α2, y⟩3 + ⟨α2, y⟩4]m(dx)

=
∫

C0[0,T]
[λ−3⟨α1, x⟩2⟨α2, x⟩4 + 6λ−2⟨α1, x⟩2⟨α2, x⟩2⟨α2, y⟩2

+ λ−1⟨α1, x⟩2⟨α2, y⟩4 + λ−2⟨α2, x⟩4⟨α1, y⟩2

+ 6λ−1⟨α2, x⟩2⟨α1, y⟩2⟨α2, y⟩2 + ⟨α1, y⟩2⟨α2, y⟩4]m(dx)

= 3λ−3 + 6λ−2⟨α2, y⟩2 + λ−1⟨α2, y⟩4 + 3λ−2⟨α1, y⟩2

+ 6λ−1⟨α1, y⟩2⟨α2, y⟩2 + ⟨α1, y⟩2⟨α2, y⟩4.

It can be analytically continued on C+, and so letting λ → −iq, we have

T(1)
q (F5)(y) =

[
⟨α1, y⟩2 +

i
q

][
⟨α2, y⟩4 +

6i
q
⟨α2, y⟩2 − 3

q2

]
.

It is evident from the preceding discussion that the calculating process is a challenging task.
Therefore, the development of our evaluation formula holds significant value in addressing this
difficulty and providing a practical solution.

We give more explicit formulas for the analytic FFT with the multi-dimensional
functionals.

Example 2. Let F6(x) = ⟨α1, x⟩4⟨α2, x⟩2⟨α3, x⟩6 (set n = 3; p1 = 2, p2 = 1, p3 = 3 in
Equation (4)). Then, for s-a.e. y ∈ C0[0, T] we have

T(1)
q (F6)(y) =

3

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!
(

i
q

)s

⟨αj, y⟩2pj−2s
]

=

[ 2

∑
s=0

4C2s(2s − 1)!!
(

i
q

)s

⟨α1, y⟩4−2s
]

×
[ 1

∑
s=0

2C2s(2s − 1)!!
(

i
q

)s

⟨α2, y⟩2−2s
]

×
[ 3

∑
s=0

6C2s(2s − 1)!!
(

i
q

)s

⟨α3, y⟩6−2s
]

=

[
⟨α1, y⟩4 +

6i
q
⟨α1, y⟩2 − 3

q2

][
⟨α2, y⟩2 +

i
q

]
×

[
⟨α3, y⟩6 +

15i
q
⟨α3, y⟩4 − 45

q2 ⟨α3, y⟩2 − 15i
q3

]
.
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Example 3. Let F7(x) = ⟨α1, x⟩4⟨α3, x⟩2⟨α4, x⟩4 (set n = 4; p1 = 2, p2 = 0, p3 = 1, p4 = 3 in
Equation (4)). Then, for s-a.e. y ∈ C0[0, T], we have

T(1)
q (F7)(y) =

4

∏
j=1

[ pj

∑
s=0

2pj C2s(2s − 1)!!
(

i
q

)s

⟨αj, y⟩2pj−2s
]

=

[ 2

∑
s=0

4C2s(2s − 1)!!
(

i
q

)s

⟨α1, y⟩4−2s
]

×
[ 0

∑
s=0

0C2s(2s − 1)!!
(

i
q

)s

⟨α2, y⟩−2s
]

×
[ 1

∑
s=0

2C2s(2s − 1)!!
(

i
q

)s

⟨α3, y⟩2−2s
]

×
[ 2

∑
s=0

4C2s(2s − 1)!!
(

i
q

)s

⟨α4, y⟩6−2s
]

=

[
⟨α1, y⟩4 +

6i
q
⟨α1, y⟩2 − 3

q2

]
×

[
⟨α3, y⟩2 +

i
q

][
⟨α4, y⟩4 +

6i
q
⟨α1, y⟩2 − 3

q2

]
.

Remark 3. We considered only three functionals. But, we can obtain various functionals with
high dimensionals.

5. Series Approximation for the Analytic FFT

In this section, using Equation (9) we shall establish a series approximation for the
analytic FFT through several steps.

Step 1: Let h ∈ C∞(Rn) with

∫
Rn

|h(u⃗)| exp
{
−a

n

∑
j=1

u2
j

}
du⃗ < ∞ (11)

for all a > 0. Then, the Maclaurin series expansion of h is given by the formula

h(u⃗) = h(⃗0) +
∞

∑
k=1

1
k!

( n

∑
i1,··· ,ik=1

hui1
···uik

(⃗0)ui1 · · · uik

)
(12)

where hui1
···uik

is k-th the derivative of h. Assume that hui1
···uik

(⃗0) = 1 for all derivatives
of h (in fact, all of the processes of this development can be applied in the case that any
k-th order partial derivatives hui1

···uik
’s have the same value when 0⃗ is constant). Then,

Equation (12) can be written by

h(u⃗) = h(⃗0) +
∞

∑
k=1

1
k!
(u1 + · · ·+ un)

k

= lim
r→∞

hr(u⃗)
(13)

where hr(u⃗) = h(⃗0) +
r
∑

k=1

1
k! (u1 + · · ·+ un)k, r = 1, 2, . . .. Hence, we have |h(u⃗)− hr(u⃗)| →

0 as r → ∞.
Step 2: For each r = 1, 2, . . ., let Hr(x) = hr(⟨α1, x⟩, . . . , ⟨αn, x⟩) and let H(x) =

h(⟨α1, x⟩, . . . , ⟨αn, x⟩). Then, one can check that for all ρ > 0,∫
C0[0,T]

|H(ρx)− Hr(ρx)|m(dx) → 0
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as r → ∞ because for all ρ > 0, we see that

Lr ≡
∫

C0[0,T]
|H(ρx)− Hr(ρx)|m(dx)

=
∫

C0[0,T]
|h(ρ⟨α1, x⟩, . . . , ρ⟨αn, x⟩)− hr(ρ⟨α1, x⟩, . . . , ρ⟨αn, x⟩)|m(dx)

=

(
1√

2πρ2

)n ∫
Rn

|h(u⃗)− hr(u⃗)| exp
{
−

n

∑
j=1

u2
j

2ρ2

}
du⃗

≤
(

1√
2πρ2

)n ∫
R
|h(u⃗)| exp

{
−

n

∑
j=1

u2
j

2ρ2

}
du⃗

+

(
1√

2πρ2

)n ∫
R
|hr(u⃗)| exp

{
−

n

∑
j=1

u2
j

2ρ2

}
du⃗ < ∞

for all r = 1, 2, · · · . Hence, we can conclude that Lr tends to zero as r → 0 from the
dominated convergence theorem.

Step 3: One can see that∫
C0[0,T]

H(x)m(dx)

= h(⃗0) +
∞

∑
l=1

1
(2l)!

∫
C0[0,T]

(⟨α1, x⟩+ · · ·+ ⟨αn, x⟩)2lm(dx)

= h(⃗0) +
∞

∑
l=1

I2l

for l = 1, 2, . . ., where

I2l = ∑
2p1+···+2pn=2l

1
(2p1)! · · · (2pn)!

∫
C0[0,T]

⟨α1, x⟩2p1 · · · ⟨αn, x⟩2pn m(dx)

= ∑
2p1+···+2pn=2l

1
(2p1)! · · · (2pn)!

∫
C0[0,T]

F(x)m(dx),

where F is given by Equation (4) above. This means that we can give the formula for
analytic FFT as the series approximation by using Equation (9) in Theorem 2.

Step 4: We can conclude that

T(1)
q (Hr) → T(1)

q (H) (14)

in the sense L1(C0[0, T]) as r → ∞. In fact, for each λ > 0, we have∫
C0[0,T]

|Tλ(H)(y)− Tλ(Hr)(y)|m(dy)

≤
∫

C0[0,T]

∫
C0[0,T]

|H(λ− 1
2 x + y)− Hr(λ

− 1
2 x + y)|m(dx)m(dy)

=
∫

C0[0,T]
|H(

√
λ−1 + 1z)− Hr(

√
λ−1 + 1z)|m(dz)

→ 0

as r → ∞. The equality is obtained from the condition (11) and the Fubini theorem for the
Wiener integrals. Also, by using the uniqueness of the analytic extension and the limit, we
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obtain Equation (14) as desired. Hence, the series approximation of the analytic FFT of
functional H is given by the formula

T(1)
q (H)(y) = lim

r→∞
T(1)

q (Hr)(y)

in the sense L1(C0[0, T]), where

T(1)
q (Hr)(y)

= h(⃗0) +
r

∑
l=1

(
∑

2p1+···+2pn=2l

1
(2p1)! · · · (2pn)!

×
l

∏
j=1

[ pj

∑
s=0

2pj C2s

(
i
q

)s

⟨αj, y⟩2pj−2s(2s − 1)!!
])

for s-a.e. y ∈ C0[0, T].

6. Conclusions

We finish this paper by giving Section 6 with a remark.

Remark 4. In order to establish the series approximation with respect to the analytic FFT, we
gave the condition as Equation (11) above. There are many functions that satisfy condition (11).

For example, all of the polynomial functions on Rn, the exponential functions exp{a
n
∑

j=1
uj} with

a > 0, and the trigonometric function sin(
n
∑

j=1
uj), cos(

n
∑

j=1
u2

j ). One can see that those functions

satisfy condition (11). Hence, we can establish many formulas for the analytic FFT as the series
approximation. Furthermore, these functionals can be used in various fields such as the finance,
engineering, or date anaysis. One can easily find the FFT of the conversion for all functions that are
highly applicable.
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