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Abstract: In this paper, we explore a novel model for pricing Chinese convertible bonds that seam-
lessly integrates machine learning techniques with traditional models. The least squares Monte
Carlo (LSM) method is effective in handling multiple state variables and complex path dependencies
through simple regression analysis. In our approach, we incorporate machine learning techniques,
specifically support vector regression (SVR) and random forest (RF). By employing Bayesian optimiza-
tion to fine-tune the random forest, we achieve improved predictive performance. This integration is
designed to enhance the precision and predictive capabilities of convertible bond pricing. Through
the use of simulated data and real data from the Chinese convertible bond market, the results demon-
strate the superiority of our proposed model over the classic LSM, confirming its effectiveness. The
development of a pricing model incorporating machine learning techniques proves particularly effec-
tive in addressing the complex pricing system of Chinese convertible bonds. Our study contributes to
the body of knowledge on convertible bond pricing and further deepens the application of machine
learning in the field in an integrated and supportive manner.

Keywords: convertible bonds; machine learning; Monte Carlo simulation

MSC: 91G60; 91-10

1. Introduction

Convertible bonds are complex financial instruments that have grown in popularity
in recent years due to their unique features, such as path dependence and an embedded
call option on the issuer’s stock. Despite the growth of the convertible bond market in
China, pricing these instruments remains an ongoing challenge. The least squares Monte
Carlo (LSM) method proposed by Longstaff and Schwartz [1] has gained popularity for
its effectiveness in handling multiple state variables and complex path dependencies
through simple regression analysis, particularly in the context of convertible bond pricing.
Researchers have frequently attempted to adapt conventional convertible bond pricing
models with factor adjustments, but directly applying these established methods to the
pricing of domestic convertible bonds in the Chinese market would not always produce
good results. This misalignment has led to a substantial discrepancy between the theoretical
price and the actual closing price of convertible bonds, underscoring the need for innovation
in pricing models [2]. The distinctions between domestic and foreign market environments
have further complicated the application of international research results to the Chinese
convertible bond market [3]. The existing pricing system for convertible bonds in China
is incomplete, resulting in frequent discounting and market instability [4]. Establishing
a healthy and stable convertible bond market in China necessitates the development of
a standardized pricing system that enables issuers to optimize financing methods and
various terms while providing investors with accurate convertible bond price estimates and
optimal investment portfolios. This underlines the importance of research on convertible
bond pricing within China’s financial market.
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Recently, machine learning has been widely applied in research across various financial
sectors, demonstrating the potential for achieving superior results [5]. By combining
traditional pricing methods with advanced machine learning techniques, it is expected to
improve the accuracy and efficiency of convertible bond pricing, thereby contributing to
the development of a healthy and stable convertible bond market in China. This study
aims to extend the least squares Monte Carlo method by replacing linear regression with
machine learning regression techniques. In this way, nonlinear relationships among state
variables would be able to be captured and therefore more insights from simulated paths
would be gained. Empirical findings substantiate the efficacy of machine-learning-driven
convertible bond pricing across diverse circumstances, thus implying the viability of our
method as a credible alternative to conventional OLS-based pricing methodologies.

2. Literature Review

The convertible bond has attracted the attention of many scholars because of its unique
characteristics as a hybrid of bonds and options. As a member of the contingent claim asset,
that is, a security whose expected value depends on the performance of the underlying
asset, the research on the pricing theory of the convertible bond can be roughly categorized
into two ways: the analytical method, such as the B–S option pricing method, and the
numerical method including the finite difference method, binary tree method, and least
square Monte Carlo simulation method. As follows, we briefly review the history of
the development of the pricing methods with an emphasis on research achievements on
Chinese convertible bond valuation.

2.1. Brief History for Pricing Convertible Bonds

The B–S option pricing method proposed by Black and Scholes [6] and Merton [7] is the
pioneering work for pricing the contingent claim asset. Subsequently, Merton [8] derived
partial differential equations (PDEs), subject to boundary conditions, to estimate the value
of securities and treated firm value as the dynamic underlying asset, which is called the
structural form approach. But the closed-form solutions to the PDEs could be hard to find
without restrictive assumptions according to Ingersoll [9]. Brennan and Schwartz [10,11]
first applied the finite difference method to solve the structural model that incorporated fea-
tures that fit the real market, such as discrete coupon and dividend payments, redemption,
and early conversion. McConnell and Schwartz [12] initiated the reduced-form approach,
which regarded the convertible bond as a contingent claim asset on the stock price. Under
this method, the value of convertible bonds is considered as the maximum of the bond
face value and the conversion value of stock price rather than the firm value influenced by
the capital structure in the structural approach. In the reduced-form approach assuming
stock price as the underlying asset, various improvements focus on the volatility of stock
price movement (see e.g., [13–15]). Cox et al. [16] first established the binary tree pricing
model and it was further developed by Hung and Wang [17] and Das and Sundaram [18]
in convertible bond pricing by incorporating effects from different underlying stochastic
factors. When more factors and assets are taken into account, the computation time it takes
by using the classical binary tree model increases exponentially as the number of nodes
grows over time [19]. The LSM method has extensive applications in the financial field
and can be employed for pricing various financial instruments, such as pricing commodity
options. The value of commodity options is dependent on the price fluctuations of physical
commodities (such as energy, agricultural products, etc.). Similar to the American option
valuation process, the LSM method can be used to estimate the continuation value func-
tion through regression analysis [20]. It is also applicable to capability investments and
inventory/production management issues involving updating demand/supply forecasts
in operations and hydroelectric power plant management [21]. The LSM methodology can
also be used for portfolio management, especially when estimating the future cash flows
of portfolios. The risk of portfolios can be better predicted and managed by regression
analysis on simulated paths [22]. By simulating share prices and estimating the conditional
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expected value, the LSM methodology can help to determine the optimal conversion time
as well [23].

2.2. Research on Pricing Chinese Convertible Bonds

In the context of research on pricing Chinese convertible bonds, domestic scholars have
conducted a lot of improvement studies based on international theoretical achievements.
Considering that the convertible bond market is still an emerging market in China, the
bond contract is normally designed with some complex and special clauses. Many attempts
have been made to solve such specialized pricing problems that involve certain clauses
for convertible bonds, for example, downward revision clauses [24], reset clauses [25],
sell-back clauses, and redemption clauses [26,27]. In addition, more efforts are spent on the
construction of new pricing models which challenge the standard B–S approach to valuing
derivatives by using innovative statistical methods to describe the dynamic underlying
asset price or risk factors [28,29].

2.3. Machine Learning Method for Pricing Convertible Bonds

In recent years, more and more scholars have embarked on analyzing financial data
using machine learning models because these models are relatively easy to implement
in empirical experiments and are adept at capturing unique statistical characteristics of
financial series [30,31]. In the field of convertible bond pricing, Zhou et al. [32] made a
comparison analysis of the B-S model, binary tree model, and artificial neural network
model on convertible bond pricing, noting that the artificial neural network model yielded
superior estimation results. Recently, Niu and Ba [33] conducted a convertible bond pricing
project, specifying 31 factors as input variables to predict convertible bond prices. They
found that the support vector regression model effectively completed the prediction task.
While numerous scholars have embraced the wave of machine learning models, there has
been limited work carried out on integrating machine learning techniques with traditional
models [34]. Therefore, we try to bridge the gap by using machine learning models to
replace the regression analysis of the standard LSM.

2.4. Motivation and Overview

Although the least squares Monte Carlo simulation has been widely used, the least
squares regression method has drawbacks such as overfitting and the curse of dimension-
ality. For example, Fabozzi et al. [35] proved that the assumption of the OLS method—
homoscedasticity of errors—does not hold in the LSM model and the resulting OLS estima-
tion is not unbiased, it is actually more prone to overfitting the continuation value curve.
So, necessary improvement can be made in the way of replacement of OLS with different
regression methods such as weighted least square regression [15] and the FAST model [36].
However, the theoretical methods to correct the estimation bias of OLS still lack support
from the real market data [37,38].

In this study, we refer to the idea from Ling and Almeida [39], using machine learning
techniques to replace the OLS part in LSM to enhance the performance of the bond pricing
model, with experiments on both simulated data and real market data.

To sum up, focusing on the Monte Carlo simulation method to price Chinese convert-
ible bonds, given the drawbacks of least squares regression, and inspired by the powerful
performance of machine learning models, we are going to use SVR and RF to replace least
squares regression to improve the accuracy of valuation.

3. Methods
3.1. Fundamental Framework for Pricing Convertible Bonds via Regression-Based Monte
Carlo Approaches

In the pricing of convertible bonds, it is important to take into account the various
embedded options along with the debt component. A thorough comparison of the value of
these options is essential for determining the appropriate pricing of convertible bonds. At
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maturity, the final boundary condition can be expressed as VT = max(nTST , F) where the
maximum value between the conversion value nTST and redemption value F is explained in
Table 1. Throughout the convertible bond’s lifetime, investors engage in strategic decision
making to choose conversion or continue holding the bond, i.e., the continuation value Yt,
and more detailed rules on exercise decisions are presented in Table 2.

Table 1. The meanings of each letter in the discounted cash flow model.

Name Meaning

ntSt
The conversion value equals the payoff in terms of the corresponding number

of shares
nt The conversion ratio
St The underlying stock price at time t
F The final redemption value of the convertible bond

Table 2. Rules of optimal exercise decision in convertible bonds.

Payoff Condition Decision

nTST F < nTST Forced conversion

ntSt Yt < ntSt Voluntary conversion

F nTST < F Redemption at maturity

0 Otherwise Continuation

3.2. The Standard Procedure of Basic LSM with OLS

The fundamental framework for pricing convertible bonds using the least squares
Monte Carlo (LSM) method, assuming static credit risk, is as follows.

(1) Define a complete probability space (Ω, F, P) within the bounded time horizon [0, T].
Ω is the whole set containing all possible outcomes ω of the state variable St and Q is
an equivalent martingale measure under the assumption of no arbitrage opportunities.
Divide [0, T] into a set of finite number of stopping times [0 = t0, t1, t2, . . . , tN = T].
Considering a series of cash flows from a convertible bond C

(
ω, tj

)
along the ω path

at discrete time point tj, with risk-neutral pricing measure Q, the continuation value at
a given time ti can be expressed as the expectation of the future cash flows discounted
by risk-free interest rate r(ω, s),

Y(ω; ti) = EQ

[
∑N

j=i+1 exp
(
−
∫ tj

ti

r(ω, s)ds
)

C
(
ω, tj

)
| Fti

]
(1)

(2) Facing the difficulty of the computation of the above conditional expectation Formula (1),
Longstaff and Schwartz (2001) proposed an approach of a least squares regression
on some basis functions of the state variables to make the estimation. Usually, the
first few Laguerre polynomials are chosen to be the basis functions. The estimated
conditional expectation value would be derived in the form of a linear combination of
the state variable Sti :

Ŷ(ω; ti) = a + bSti + cSti
2.

The coefficients a, b, c can be found through the OLS regression.

(3) For each path, when Ŷ(ω; ti) is greater than the conversion value nti Sti
, a rational

investor would continue holding the convertible bond, so the optimal stopping value
remains unchanged. Otherwise, the optimal stopping time point ti and stopping time
value Mti are updated.

(4) By Monte Carlo simulation, K stock price paths are generated based on the Heston
model. Once the optimal exercise decisions and corresponding payoffs are determined
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for each path, the time-0 price of the convertible bond is calculated by averaging the
discounted each Mti back to the time t0 over all K simulated paths.

V0 =
1
K

K

∑
k=1

exp
(
−
∫ ti

0
r(ω, s)ds

)
Mk

ti
.

(5) To provide a more intuitive illustration of the pricing process in the LSM model,
Figure 1 depicts the simulated price paths in different scenarios. Path 1 represents
the path of the convertible bond when early redemption is triggered. Path 2 and
Path 3 represent the paths of the convertible bond in the money and out of the money,
respectively.
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3.3. Foundations of Convertible Bond Valuation through Machine Learning Methodology

While commonplace in regression analysis, the ordinary least squares (OLS) method
is subject to limitations such as overfitting and the misspecification of polynomial degrees
of foundational functions and interactions between variables. Furthermore, performing
OLS requires a sufficiently large data sample size, thus resulting in a considerable computa-
tional burden. To overcome limitations in linear regression within the Longstaff–Schwartz
algorithm, some efforts have been spent on the improvement of the OLS under the LSM
framework like matching projection pursuit, Gaussian process regression, and an enhanced
GPR-MC framework. Details about approaches can be found in the work led by Tompaidis
and Yang [40], Mu et al. [41], and Goudenège et al. [42]. Here, we also attempt to explore
sensible alternatives to traditional linear regression. In this paper we follow the same
framework of the basic LSM algorithm; only the continuation value is estimated by support
vector regression or random forests instead of OLS.

3.3.1. Support Vector Regression

Unlike linear regression aiming to minimize the sum of squared errors, the objective
function of support vector regression (SVR) is to find the minimum coefficients under the
condition that the error term is set at an acceptable level. Therefore, using SVR in the model
will give us more flexibility to control error to a certain degree and reduce the features used
to avoid potential overfit.

The formulation of SVR is given by the following equations:

f (x, β) = βtx + c.



Axioms 2024, 13, 218 6 of 15

Define a specified margin ε that satisfies the equation:

|Z − f (x, β)|ε =


0, i f |Z − f (x, β)| ≤ ε

|Z − f (x, β)| − ε, otherwise
.

The SVR aims to minimize the value of margin ε and the coefficient vector ∥ β ∥2 in
Equation (2).

R( f ) = d
n
∑

i=1
|Zi − fi(x, β)|ε + 1

2 ∥ β ∥2 (2)

Equation (2) reduces to Equation (3) under the conditions defined in Equations (4) and (5).

R( f ) = d
n
∑

i=1

(
ζi + ζ∗i

)
+ 1

2 ∥ β ∥2 (3)

(
βtxi + c

)
− Zi ≤ ε + ζi (4)

Zi −
(

βtxi + c
)
≤ ε + ζ∗i (5)

where ζi and ζ*
i are defined as slack variables to tolerate deviation from the margin ε.

As an alternative to OLS in the LSM pricing model, we are allowed to decide how
tolerant we are of errors by selecting an acceptable error margin and the tolerance value
to deviate from the acceptable error rate. It is expected that SVR can attain a similarly
satisfactory fitting result when the sample size is not sufficiently large.

Further, kernel functions can be used in SVR. The common forms of kernel functions
include linear, radial basis function (RBF), and polynomial. In our empirical experiment, the

radial basis function K
(

xi, xj
)
= eδ∥xi−xj∥2

is chosen as the kernel and the hyperparameter
δ > 0 is tuned to gain the desired accuracy of the model.

3.3.2. Random Forest

Breiman [43] introduced the random forest technique, an ensemble tree-based algo-
rithm wherein a regression tree serves as the foundational regressor. In the classical least
squares approach, the expected continuation values can be approximated by a linear re-
gression on a countable set of basis functions of random variable X. In our study, a depth-p
regression tree Tp(X) is used to estimate the continuation values. The basic idea is to write
the conditional expectation of X as a piecewise constant function of X.

Consider a partition A of [0, 1]d with 2p elements obtained in the regression tree Tp.

For
(

αn
p

)
1≤n≤2p

∈ R2p
, Pp is defined as the piecewise constant function on the parti-

tion A with values αn
p. For x ∈ [0, 1]d,

Pp

(
x,
(

an−1
p

)
0≤n≤2p

,
(

αn
p

)
1≤n≤2p

)
=

2p

∑
n=1

αn
p1{x∈[an−1

p ,an
p)}

If we choose αn
p = E

[
Y | X ∈

[
an−1

p , an
p

)]
, then the regression tree T p(X) can be

written in this form:

T p(X) = Pp

(
X,

(
an−1

p

)
0≤i≤2p

,
(

αn
p

)
1≤i≤2p

)
.

When exercised at time ti, we denote the discounted payoff of the convertible bond:

Ztj =
N

∑
j=i+1

exp
(
−
∫ tj

ti

r(ω, s)ds
)

C
(
ω, tj

)
.
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Then, the continuation value at a given time ti is

Y(ω; ti) = EQ

[
Ztj | Fti

]
.

τi is the smallest optimal stopping time after ti, that is,

τi = ti1{nti S
ti
≥EQ[Zτi+1 |

|Fti ]}
+ τi+11{nti S

ti
<EQ[Zτi+1 |Fti ]}

The main task is to find the continuation value EQ
[
Zτi+1 | Fti

]
by the regression tree.

Let ([an−1(p), an(p)))1≤n≤2p be the partition generated by T p
i (Sti ). We define

T p
i (Sti ) =

2p

∑
n=1

E
[
Zτi+1 | Sti ∈ [an−1(p), an(p))

]
1{Sti∈[an−1(p),an(p))}

Then, we use T p
i (Sti ) to approximate the continuation value EQ

[
Zτi+1 | Fti

]
. The

smallest optimal stopping time after ti is expressed as:

τ
p
i = ti1{nti S

ti
≥τ

p
i (Sti )}

+ τi+11{nti S
ti
<τ

p
i (Sti )}

The results for convergence of the expected continuation value have been given by the
following theorem [44]:

Theorem 4.1.

lim
p→∞

E
[

Zτ
p
i
| Fti

]
= E[Zτi | Fti ] in L2(Ω) for 1 ≤ i ≤ N

Next, we proceed to present the result for convergence of the LSM algorithm with
regression trees. For the fixed regression tree depth p, we simulate K stock price paths
S(k)

t0
, . . . , S(k)

tK
along with the corresponding payoff paths Z(k)

t0
, . . . , Z(k)

tN
, k = 1, . . . , K. For

each time point ti, i = 1, . . . , N − 1 we approximate the conditional expectations
EQ

[
Zτi+1 | F(ω; ti)

]
on the path k using the regression tree T̂ i,K

p

(
S(k)

ti

)
. Finally, the present

value of the convertible bond at t0 is approximated by

Vp,K
t0

=
1
K

K

∑
k=1

Z(k)

τ̂
p,(k)
i

,

where τ̂
p,(k)
i = ti1{Z(k)

ti
≥T̂ i,K

p (X(k)
ti

)}
+ τ̂

(k)
i+11

{Z(k)
i <T̂ i,K

p (X(k)
ti

)}
.

It remains to show the convergent behavior of the estimated price as the number of
sampled paths K goes to infinity for a fixed depth. The convergence result is summarized
in the following theorem.

Theorem 4.2. Assume that for all p ∈ N∗, and all 1 ≤ i ≤ N − 1,P
(

Zti = T i
p (Xti )

)
= 0. Then,

for α = 1, 2 and for every i = 1, . . . , N,

lim
K→∞

1
K

K

∑
k=1

(
Z(k)

τ
p,(k)
i

)α

= E
[(

Zτ
p
i

)α]
a.s.

The detailed proof can be seen in Ech-Chafiq et al. [44].
Note that Theorem 4.2 only proves the a.s. convergence of the estimated value for

any fixed p when K goes to infinity. The limiting behavior is still not clear when both K
and p go to infinity. In the empirical experiment, we will study the effect of increasing the
number of simulated paths on pricing accuracy.
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3.3.3. Bayesian Optimization

The computational time of the random forest method directly depends on the number
of trees, the depth of the tree, and the number of samples in each node (leaf) inside the forest.
The splitting strategy and input feature selection also affect the accuracy and robustness of
the learning-based approach. Setting appropriate values for the parameters is crucial to cut
down the computational cost to a manageable size and avoid the overfitting problem [45].
Bayesian optimization is a method of finding the minimum value of a function, which has
been applied to the parameter value search in machine learning [46].

In this study, with the aid of Bayesian optimization, we select the values for the
number of trees (n_estimators), the depth of the tree (max_depth), the maximum number
of input features (max_features), the minimum number of samples of the split threshold
(min_samples_split), and the minimum number of samples in each node (min_samples_leaf)
as recorded in Table 3. Since the parameter value in the model must be an integer, the
nearest integer value for each parameter is selected as the optimal value.

Table 3. Parameter Optimization Information.

Name Value Range Optimum Value
(Simulation)

Optimum Value
(Real Case)

max_depth (5,20) 17.807 16.305
max_features (0,20) 17 16
n_estimators (10,150) 103.516 101.498

min_samples_split (1,5) 3 2
min_samples_leaf (1,5) 2 1

4. Empirical Studies

Our study uses numerical experiments to assess the effectiveness of our novel learning-
based LSM algorithm. We start with simulated data analysis, adjusting simulation paths,
and time increments for pricing accuracy. Then, we compare predicted prices for both
methods with real-market valuations, focusing on the China Securities Convertible Bond
as a key case study for pricing. Moreover, for the call option characteristics embedded in
the convertible bond, we classified at-the-money (ATM) options as those with moneyness
ranging from 0.95 to 1.05. In-the-money (ITM) options were defined as those with mon-
eyness between 1.05 and 1.3, while out-of-the-money (OTM) options were identified as
having moneyness values between 0.7 and 0.95. It is important to note that, in the context
of convertible bond pricing, moneyness is determined by the ratio of the stock price to the
conversion price.

4.1. Data Description

In China, banks typically dominate the convertible bond market in terms of the
largest issuance volume, and convertible bonds issued by banks tend to carry higher credit
ratings [34]. Therefore, our sample primarily chooses existing convertible bonds issued by
China Everbright Bank (CEB) as of 1 January 2023. Descriptive statistics of the sample bond
price are presented in Table 4, where we computed the maximum value, minimum value,
median, standard deviation, mean, and three quartiles. The sample period ranges from 1
January 2022 to 31 December 2022 with price predicted every day as a time step. We utilized
daily trading data of Everbright Bank’s convertible bonds, containing transaction prices,
trading volumes, transaction dates, risk-free interest rates, and price volatility, among other
factors. These real trading data reflect the market demand and trading behavior of investors
in the convertible bond market. Our objective is to conduct pricing analysis to compare the
accuracy of different models, namely, basic LSM with OLS, LSM with SVR, and LSM with
RF. The deviation between predicted and observed values is measured by root mean square
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error (RMSE). As an indicator of model goodness-of-fit to check the degree of mispricing,
RMSE indicates the average level of prediction error and is calculated as:

RSME =

√
∑(yi − ŷi)

2

N − P
,

where yi is the actual value for the ith observation, ŷi is the predicted value for the ith
observation, N is the number of observations, P is the number of parameter estimates.

Table 4. Descriptive statistics of sample data.

Name Mean Median Max Min

CEB 107.09 105.61 115.95 104.358
CB Price STD Q1 Q2 Q3

2.18 105.04 105.61 106.82

4.2. Model Description

At first, a large number of stock price paths are generated through Monte Carlo
simulation. For each path, three different regression techniques are used to estimate the
value of continuation at each time step. The estimated continuation value is compared with
the conversion value to determine whether immediate exercising is optimal. If immediate
exercising is optimal based on the exercise rules, the exercise decision is revisited at the next
exercise time step. This process iterates backward from the last time step until reaching the
beginning. Finally, the mean of the exercise values across all paths is computed to derive
the final price of the convertible, marking the conclusion of the algorithm.

Table 5 records the specific values for input parameters that are needed in the LSM
pricing model. In the simulated data experiment, an initial stock price S0 was set at 100
and for the real market data experiment, the closing stock price on the first day of the year
2022 was 112.97. The selection of volatility σs refers to the long-term mean volatility of the
underlying stock before the issuing date. As for the risk-free rate r0, we choose the 6-year
risk-free interest rate at the issuing date.

Table 5. Parameters of underlying assets of two studies.

S0 σs r0

Simulated data 100.00 0.2672 0.03158

CEB 112.97 0.2672 0.03158

4.3. Simulated Data Study

Table 6 presents the results of various convertible bond pricing techniques, with
initial stock price (S0) set at 100, time to maturity (T) spanning from 1 month to 2 years,
and conversion prices ranging from 70 to 130. The bond price obtained via the finite
difference with a sufficiently large number of grids method serves as the benchmark for
the comparison purpose. The root mean square error (RMSE) is computed as a metric
for evaluating pricing accuracy from different models. A higher RMSE indicates a higher
degree of mispricing and vice versa.

Table 6. RMSE results with 1000 simulated paths and 100 time steps.

Moneyness Total ITM ATM OTM

Bys-RF 0.4922 0.6001 0.6122 0.3673
SVR 0.5324 0.6326 0.6426 0.3987
LSM 0.7295 0.9355 0.8126 0.6532

Note: Bys-RF refers to the random forest model with hyperparameter tuning by Bayesian optimization and the
parameter settings can be found in Table 2.
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As presented in Table 6, both learning-based approaches achieve better results than the
ordinary LSM model. Furthermore, the Bys-RF approach exhibits the best performance. As
follows, we start to investigate the impact of the number of simulated paths and the number
of time steps on the pricing accuracy. Detailed outcomes are displayed in Tables 7 and 8.

Table 7. RMSE results for the different number of paths with 100 time steps.

Number of Paths Moneyness Bys-RF SVR LSM

500

Total 0.6345 0.6789 1.0224
ITM 0.7536 0.7452 1.324
ATM 0.6948 0.6879 1.0321
OTM 0.4927 0.4523 0.7987

1000

Total 0.5011 0.5324 0.7295
ITM 0.6012 0.6326 0.9355
ATM 0.6023 0.6426 0.8126
OTM 0.3751 0.3987 0.6532

1500

Total 0.4029 0.5221 0.6254
ITM 0.5012 0.6178 0.7659
ATM 0.4564 0.5748 0.6588
OTM 0.2918 0.3889 0.5114

Table 8. RMSE results for the different numbers of time steps with 1000 simulated paths.

Number of Time Steps Moneyness Bys-RF SVR LSM

500

Total 0.5901 0.6144 0.6378
ITM 0.6984 0.7865 0.8569
ATM 0.6512 0.6978 0.7894
OT 0.4325 0.4556 0.5985

1000

Total 0.4897 0.5324 0.7295
ITM 0.6012 0.6326 0.9355
ATM 0.6215 0.6426 0.8126
OTM 0.3698 0.3987 0.6532

1500

Total 0.4215 0.5978 0.7015
ITM 0.5078 0.7145 0.8123
ATM 0.4598 0.6878 0.7564
OTM 0.3021 0.4589 0.6545

From Table 7, it is evident that the price prediction error reduces along with the
increasing number of simulation paths. Moreover, as the number of paths increases, the
two learning-based models consistently yield more precise outcomes and the Bys-RF
approach outperforms the other two algorithms given the same time steps. This particular
outcome is consistent with Table 5, highlighting the advantage of the Bys-RF method used
in LSM pricing analysis.

Table 8 reveals a similar result: under the impact of varying numbers of time steps, the
Bys-RF model performs best among all different simulated scenarios. Interestingly, we can
observe that only the pricing accuracy achieved by the Bys-RF model steadily improves
with the increment in the number of time steps. The robust performance of the Bys-RF
model validates the convergence results previously discussed.

4.4. A Case Study of CEB Convertible Bond

To test the real-world applicability of our proposed methods, we now perform a case
study on the CEB convertible bond. There are two main reasons to select Everbright Bank’s
convertible bonds for our research. Firstly, from an empirical perspective, Everbright Bank’s
convertible bonds are a prominent and representative product, with significant issuance
and trading activity that influences the Chinese financial market. Secondly, in terms of
data availability, as a publicly listed company, Everbright Bank’s convertible bonds offer
abundant and easily accessible data, including issuance announcements, financial reports,
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and market trading data. This rich dataset provides a robust foundation for our research,
enhancing the reliability and validity of our empirical study. All of these make the CEB
convertible bond an ideal subject for studying convertible bond pricing, exploring pricing
mechanisms and investor behavior in the convertible bond market, and contributing to the
research in finance and investment. Our study collected daily trading price data for this
bond from 1 January 2022 to 1 December 2022 (see Table 9) and we simulated convertible
bond pricing for the three models using 10,000 paths and 240 time steps (one year).

Table 9. CEB Convertible Bond Basic Terms.

Issue Date 2017.3.31

Time horizon 6
Face value 100

Coupon (%) 0.2, 0.5, 1.0, 1.5, 1.8, 2.0
Call value till maturity 105

The first conversion price 4.36
Change of conversion price 2017.7.5, adjusted to 4.26

Reset clause In 30 consecutive trading days, the closing stock price is
lower than 80% of the conversion price in 15 trading days

Call on condition
In 30 consecutive trading days, the

closing stock price is not less than 130%
of the conversion price in 15 trading days

Call value Face value plus the accrued interest
Put on condition When the use of the capital is changed

Put value Face value plus the accrued interest

σs
The long-term mean volatility of the underlying stock

before the issuing date
r The 6-year risk-free interest rate at the issuing date

Table 10 provides a summary of the performance of the three models. Similar to the
results computed with simulated data, it is not surprising to see the RF model outperforms
both SVR and LSM models. Nonetheless, the performance of the SVR method is not
impressive as its prediction accuracy falls below that of the original LSM method. This
observation also confirms our previous discussion that SVR might be more efficient when
handling relatively small datasets, i.e., with fewer Monte Carlo pricing paths.

Table 10. RMSE results of CEB convertible bond valuation without tuning hyperparameters.

Moneyness Total ITM ATM OTM

RF 0.6589 0.7748 0.6897 0.5987
SVR 0.8945 1.0586 0.9465 0.7946
LSM 0.7365 1.0568 0.8654 0.7145

Note: RF represents the random forest model without hyperparameter tuning.

To explore the possibility of enhancing the model’s performance through the adjust-
ment of hyperparameters, we conducted tests on China Everbright Bank (CEB) convertible
bond data during the first quarter of the year 2022 by employing the Bayesian optimiza-
tion method previously described for tuning the hyperparameters of the random forest
(Table 2). Table 11 showcases the root mean square error (RMSE) for convertible bonds
traded in the first quarter of the year 2022, allowing for a comparison with and without
hyperparameter tuning.

Both SVR and Bys-RF methods yield better results, as presented in Table 11. The
performance of the Bys-RF method is superior to both SVR and LSM in both simulated data
experiments and real market data experiments, irrespective of whether the hyperparameters
were tuned or not.
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Table 11. RMSE results with and without hyperparameter tuning.

Moneyness Bys-RF SVR LSM

With
hyperparameter

Tuning

Total 0.5233 0.7 0.7643
ITM 0.5931 0.8235 0.8878
ATM 0.5278 0.7978 0.8235
OTM 0.4363 0.6912 0.6945

Without
hyperparameter

tuning

Total 0.6183 0.8141 0.7765
ITM 0.7238 1.0186 0.9568
ATM 0.6497 0.8451 0.8654
OTM 0.5895 0.7546 0.7145

In Figure 2, we compare the actual price and predicted price by using three models. It
can be seen that the trend of both prices is roughly the same, and inflection points occur
earlier than the real situation. The deviation of pricing results is mostly maintained within
a very narrow range, illustrating that pricing results are excellent.
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In addition to examining error rates, we also measured the computational time of each
model as shown in Table 12:

Table 12. Time Consumption Comparison.

Algorithm Computational Cost
Estimate

Estimated Computation
Time Reason for Difference

Traditional LSM Moderate About 10 min Simple regression model fitting, relatively low
computational complexity.

SVR replacing LSM High 15–20 min

Support vector regression (SVR) involves
solving a quadratic programming problem,

which can be computationally intensive,
especially for large datasets. It also requires
tuning hyperparameters which may require

additional computation.

RF replacing LSM High About 30 min

Random forest (RF) involves building
multiple decision trees, each of which requires

training on subsets of the data. For large
datasets or a large number of trees, this can
lead to significantly higher computational

costs compared to simple regression.
Additionally, tuning the RF hyperparameters

adds to the computation time.
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Table 12. Cont.

Algorithm Computational Cost
Estimate

Estimated Computation
Time Reason for Difference

Bys-RF replacing LSM Very high 30–40 min

Bayesian optimization iteratively explores the
hyperparameter space of the random forest
model to find optimal settings. While it can
improve model performance, this iterative
process requires additional computation,
resulting in higher computational costs

compared to standard random forest fitting.

As can be seen from the results in Table 12, the LSM model with Bys-RF produces the
best result at the cost of the longest computation time. There may exist a tradeoff between
pricing accuracy and computation cost. We concluded that for a comparable accuracy, a
simpler algorithm like the basic LSM is efficient enough to deal with low-dimensional
problems. However, for large datasets, it is interesting to consider using the improved
LSM algorithm.

5. Conclusions and Limitations

In conclusion, our study proposes a novel approach for developing financial pricing
models that integrate machine learning models. Specifically, we replace the OLS in the
LSM model with two machine learning models, SVR and random forest, to construct a
new model with improved pricing accuracy. Our simulation experiment demonstrates that
the LSM model with SVR outperforms the traditional LSM model in terms of regression
performance, particularly when the time step and simulated path quantity are increased.

Our study has significant implications for the financial industry, as integrating machine
learning models into traditional pricing models can substantially enhance pricing accuracy.
We suggest treading two new paths for future research: first, exploring the use of deep
learning in LSM to further improve the accuracy of random forest and, second, applying
the new model to more convertible bonds or investigating the usage of learning-based
methods in clearly defining the links between valuation and the underlying risk factors.

Overall, our study contributes to the literature on financial pricing models by pre-
senting a new approach that leverages machine learning models and by evaluating the
performance of this approach through both simulation and market data experiments.

Author Contributions: Conceptualization, R.L.; writing–original draft, J.Z.; writing–review and
editing, R.L.; supervision, C.W. and R.L.; project administration, C.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Longstaff, F.; Schwartz, E. Valuing American options by simulation: A simple least-squares approach. Rev. Financ. Stud. 2001, 14,

113–147. [CrossRef]
2. Luo, X.; Zhang, J. Pricing Chinese Convertible Bonds with Default Intensity by Monte Carlo Method. Discret. Dyn. Nat. Soc. 2019,

2019, 8610126. [CrossRef]
3. Li, P.; Song, J. Pricing Chinese Convertible Bonds with Dynamic Credit Risk. Discret. Dyn. Nat. Soc. 2014, 2014, 492134. [CrossRef]
4. Liu, J.; Yan, L.; Ma, C. Valuing Convertible Bonds Based on LSRQM Method. Discret. Dyn. Nat. Soc. 2014, 2014, 301282. [CrossRef]
5. Nazemi, A.; Rauch, J.; Fabozzi, F.J. Interpretable Machine Learning for Creditor Recovery Rates. SSRN Electron. J. 2022. [CrossRef]
6. Black, F.; Scholes, M. The Pricing of Options and Corporate Liabilities. J. Political Econ. 1973, 81, 637–654. [CrossRef]
7. Merton, R.C. Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 1973, 4, 141. [CrossRef]
8. Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. J. Financ. 1974, 29, 449–470.
9. Ingersoll, J.E. A contingent-claims valuation of convertible securities. J. Financ. Econ. 1977, 4, 289–321. [CrossRef]

https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1155/2019/8610126
https://doi.org/10.1155/2014/492134
https://doi.org/10.1155/2014/301282
https://doi.org/10.2139/ssrn.4190345
https://doi.org/10.1086/260062
https://doi.org/10.2307/3003143
https://doi.org/10.1016/0304-405X(77)90004-6


Axioms 2024, 13, 218 14 of 15

10. Brennan, M.J.; Schwartz, E.S. Convertible bonds: Valuation and optimal strategies for call and conversion. J. Financ. 1977, 32,
1699–1715. [CrossRef]

11. Brennan, M.J.; Schwartz, E.S. Analyzing convertible bonds. J. Financ. Quant. Anal. 1980, 15, 907–929. [CrossRef]
12. McConnell, J.J.; Schwartz, E.S. LYON taming. J. Financ. 1986, 41, 561–576. [CrossRef]
13. Hull, J.; White, A. The Use of the Control Variate Technique in Option Pricing. J. Financ. Quant. Anal. 1988, 23, 237–251. [CrossRef]
14. Kalotay, A.J.; Williams, G.O.; Fabozzi, F.J. A Model for Valuing Bonds and Embedded Options. Financ. Anal. J. 1993, 49, 35–46.

[CrossRef]
15. Duan, J.-C. The GARCH Option Pricing Model. Math. Financ. 1995, 1, 13–32. [CrossRef]
16. Cox, J.C.; Ross, S.A.; Rubinstein, M. Option pricing: A simplified approach. J. Financ. Econ. 1979, 7, 229–263. [CrossRef]
17. Hung, M.-W.; Wang, Y., Jr. Pricing Convertible Bonds Subject to Default Risk. Derivations 2002, 10, 75–87. [CrossRef]
18. Das, S.R.; Sundaram, R.K. An Integrated Model for Hybrid Securities. Manag. Sci. 2007, 53, 1439–1451. [CrossRef]
19. Fu, M.C.; Laprise, S.B.; Madan, D.B.; Su, Y.; Wu, R. Pricing American options: A comparison of Monte Carlo simulation

approaches. J. Comput. Financ. 2001, 4, 39–88. [CrossRef]
20. Cortazar, G.; Gravet, M.; Urzua, J. The valuation of multidimensional American real options using the LSM simulation method.

Comput. Oper. Res. 2008, 35, 113–129. [CrossRef]
21. Nadarajah, S.; Margot, F.; Secomandi, N. Comparison of least squares Monte Carlo methods with applications to energy real

options. Eur. J. Oper. Res. 2017, 256, 196–204. [CrossRef]
22. Cecconi, F.; Khodabakhshian, A.; Rampini, L. Data-driven decision support system for building stocks energy retrofit policy.

J. Build. Eng. 2022, 54, 104633. [CrossRef]
23. Batten, J.A.; Khaw KL, H.; Young, M.R. Pricing convertible bonds. J. Bank. Financ. 2018, 92, 216–236. [CrossRef]
24. Zheng, Z.; Lin, H. Research on the Pricing of Convertible Bonds in China. J. Xiamen Univ. (Philos. Soc. Sci. Ed.) 2004, 162, 93–99.
25. Yang, J.; Choi, Y.; Li, S.; Yu, J. A note on “Monte Carlo analysis of convertible bonds with reset clause”. Eur. J. Oper. Res. 2010, 200,

924–925. [CrossRef]
26. Feng, J.; Zhou, X.; Duan, M. Design and Impact Analysis of Convertible Bond Option Terms. Manag. Rev. 2018, 30, 58–68.
27. Xie, Y. Research on Pricing of Convertible Bonds Based on Black-Scholes Model—Taking Oupai Convertible Bonds as an Example.

China Price 2021, 11, 53–55.
28. Yang, X.; Yu, J.; Xu, M.; Fan, W. Convertible bond pricing with partial integro-differential equation model. Math. Comput. Simul.

2018, 152, 35–50. [CrossRef]
29. Chang, J.; Wang, Y. Pricing of Convertible Bonds Based on Tsallis Entropy Distribution under Stochastic Interest Rate Model.

Oper. Res. Manag. 2020, 29, 189–197, 231.
30. Takahashi, S.; Chen, Y.; Tanaka-Ishii, K. Modeling financial time-series with generative adversarial networks. Phys. A Stat. Mech.

Appl. 2019, 527, 121261. [CrossRef]
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