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Abstract: The homotopy perturbation method (HPM) is one of the recent fundamental methods for
solving differential equations. However, checking the accuracy of this method has been ignored by
some authors in the literature. This paper reanalyzes the nonlinear system of ordinary differential
equations (ODEs) describing the SIR epidemic model, which has been solved in the literature utilizing
the HPM. The main objective of this work is to obtain a highly accurate analytical solution for this
model via a direct technique. The proposed technique is mainly based on reducing the given system
to a single nonlinear ODE that can be easily solved. Numerical results are conducted to compare our
approach with the previous HPM, where the Runge–Kutta numerical method is chosen as a reference
solution. The obtained results reveal that the current technique exhibits better accuracy over HPM in
the literature. Moreover, some physical properties are introduced and discussed in detail regarding
the influence of the transmission rate on the behavior of the SIR model.
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1. Introduction

Modeling the outbreak and spread of diseases has a long history. John Graunt [1] may
have been the first to quantify causes of death systematically. However, the first mathemat-
ical model describing an infectious disease was proposed by Daniel Bernoulli [2] in 1760.
Moreover, McKendrick and Kermack introduced a simple deterministic (compartmental)
model describing the behavior of epidemic outbreaks in 1927 [3], known as the Susceptible–
Infected–Recovered (SIR) model. Based on these works, a number of mathematical models
have been developed and established under various conditions and situations [4,5]. In addi-
tion, some authors used the basic idea of the SIR model to formulate several mathematical
models [6–9] to predict the behavior of COVID-19, which is an infectious disease caused
by the SARS-CoV-2 virus. Various ISR models have been implemented to investigate the
progress of COVID-19 in different countries [10–14], while other mathematical models have
been developed to include different factors [15,16].

As usual, the proposed models in the literature are governed by systems of lin-
ear/nonlinear ordinary differential equations. There is no doubt that obtaining accurate
solutions for such mathematical models leads to better interpretation and prediction of
the pandemic future. However, checking the accuracy of the obtained solution has been
ignored in some studies in the literature. For example, the authors of [7] considered the
following nonlinear SIR/COVID-19 model:

dR
dτ

= I(τ), (1)

dI
dτ

= σ[1 − R(τ)− I(τ)]I(τ)− I(τ), (2)
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where τ = t/T (t represents the time in days and T is the time of transmission of the virus,
which changes from 2–4 weeks). I(t) denotes the infected individuals who are carrying
the virus, R(t) represents the recovered individuals, S(t) stands for susceptible individuals
with S(t) = 1 − R(t)− I(t), and σ is the physical contact number between susceptible and
infected individuals.

At the initial time t = 0 of the outbreak, the initial number of infected people and
the initial recovered people are regularly zero. However, these initial numbers of infected
and the recovered people may be assumed in the general forms R(0) = A and I(0) = B,
respectively, where A and B are the real constants. Hence, the current model is solved
under the initial conditions (ICs):

R(0) = A, I(0) = B. (3)

There are numerous analytical methods that can be effectively used to deal with nonlin-
ear models (1)–(3), such as the differential transform method (DTM) [17], the homotopy anal-
ysis method (HAM) [18,19], the homotopy perturbation method
(HPM) [20,21], and the Adomian decomposition method (ADM) [22].

However, each of these methods has its own difficulties when applied to solve nonlin-
ear systems. So, the main incentive of this work is to introduce a simple analytical approach
that directly obtains the desired accurate approximate solution. Although the authors of
[7] applied HPM to solve nonlinear models (1–2) under ICs (3), there are some remarks on
the accuracy of their approximate solution.

The main objective of this work is to obtain accurate approximate solution of the
present nonlinear COVID-19 model. The proposed approach suggests combining the
governing Equations (1) and (2) to formulate a new single nonlinear equation in R(τ). The
new single equation in R(τ) will be solved using two degrees or orders of approximations.
The first-order and the second-order approximate analytical solutions are denoted as FOAS
and SOAS, respectively. It will be proven that the FOAS and SOAS exhibit a better accuracy
when compared with the homotopy perturbation method (HPM) [7]. The present results
will be validated via performing various comparisons with the numerical results using
the Runge–Kutta method. In addition, the effectiveness and efficiency of the present
approach over the HPM in the literature will be discussed. Furthermore, the impact of the
contact number σ (transmission rate of the virus) on the number of infected individuals
and recovered individuals will be explained and interpreted. Moreover, the features and
advantages of the current analysis will be addressed.

2. Reduced Model

This section indicates that models (1–3) can be reduced to a new form with a single
unknown. The proposed approach is based on combining the two ordinary differential
equations (ODEs) (1) and (2). This approach leads to a single 2nd-order ODE in only R(τ),
which can be easily converted to a 1st-order nonlinear ODE in R(τ). Before continuing to
the main target of this section, we rewrite systems (1–2) as follows

R′(τ) = I(τ), (4)

I′(τ) = σ[1 − R(τ)− I(τ)]I(τ)− I(τ). (5)

The primes denote the derivative with respect to τ. Differentiating Equation (4) once
with respect to τ yields

R′′(τ) = I′(τ). (6)

Substituting Equations (4) and (6) into Equation (5) provides

R′′(τ) = σ
[
1 − R(τ)− R′(τ)

]
R′(τ)− R′(τ). (7)
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which is a 2nd-order nonlinear ODE and it is subjected to the ICs:

R(0) = A, R′(0) = B. (8)

Assume that
ψ(τ) = R(τ) + R′(τ). (9)

Then, Equation (7) becomes

ψ′(τ)

1 − ψ(τ)
= σR′(τ). (10)

Integrating both sides with respect to τ implies

ψ(τ) = 1 + ce−σR(τ), (11)

where c is a constant of integration to be determined later. From Equations (9) and (11),
we obtain

R′(τ) = 1 − R(τ) + ce−σR(τ). (12)

Applying ICs (8) to (12) provides

c = eσA(B + A − 1). (13)

In the next section, the 1st-order nonlinear ODE (12) will be solved to derive the
solution for R(τ) via two different analytical approximations.

3. Analytical Approximations

In this section, two different approximate solutions are determined for the reduced
model. Once the solution of the reduced model is evaluated for R(τ), the approximate
solution of the original systems (1)–(3) is established. In addition, the accuracy of such ap-
proximations will be validated in a subsequent section by performing several comparisons
with the Runge–Kutta numerical method.

3.1. First-Order Approximate Solution (FOAS)

Expanding e−σR and using its first-order approximation leads to

R′(τ) + (1 + cσ)R(τ) = c + 1. (14)

It should be noted that the constant c in Equation (14) does not have the same value
in Equation (13). In addition, the constant c in Equation (14) can be directly determined
through applying the ICs (8) and this provides

c =
B + A − 1

1 − Aσ
. (15)

The exact solution of the 1st-order linear ODE (14) can be obtained as

R(τ) = Ae−(1+cσ)τ +
c + 1

cσ + 1

[
1 − e−(1+cσ)τ

]
. (16)

Hence, we have
I(τ) = (c + 1 − A(cσ + 1))e−(1+cσ)τ , (17)

by taking the derivative of Equation (16). By inserting the value of c in the expressions
above and simplifying, we obtain

R(τ) = Ae−
(

σ(B−1)+1
1−Aσ

)
τ
+

B + (1 − σ)A
σ(B − 1) + 1

[
1 − e−

(
σ(B−1)+1

1−Aσ

)
τ
]

, (18)
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and

I(τ) = Be−
(

σ(B−1)+1
1−Aσ

)
τ . (19)

3.2. Second-Order Approximate Solution (SOAS)

Extracting the second-order approximation from the expansion of e−σR and substitut-
ing it into Equation (12), we obtain

R′(τ) = c + 1 − (1 + cσ)R(τ) +
cσ2

2
R2. (20)

Applying ICs (8) to Equation (20) provides c as

c =
R′(0) + R(0)− 1

1 − σR(0) + σ2

2 R2(0)
, (21)

or

c =
2(B + A − 1)
1 + (1 − σA)2 . (22)

Equation (20) can be written as

R′(τ) =
cσ2

2

[
R2 − 2(1 + cσ)

cσ2 R +
2(1 + c)

cσ2

]
, (23)

or

R′(τ) =
cσ2

2

[(
R − 1 + cσ

cσ2

)2
+

2(1 + c)
cσ2 −

(
1 + cσ

cσ2

)2
]

, (24)

i.e.,

R′(τ) =
cσ2

2

[
(R(τ)− β)2 − ρ2

]
, (25)

where

β =
1 + cσ

cσ2 , ρ2 = β2 − 2(1 + c)
cσ2 . (26)

Using the separation of the variable method, Equation (25) can be rewritten as

dR(τ)

(R(τ)− β)2 − ρ2
=

cσ2

2
dτ. (27)

Integrating both sides, we obtain

−1
ρ

tan h−1
(

R(τ)− β

ρ

)
+

1
ρ

tan h−1
(

R(0)− β

ρ

)
=

cσ2

2
τ. (28)

i.e.,

−1
ρ

tan h−1
(

R(τ)− β

ρ

)
+

1
ρ

tan h−1
(

A − β

ρ

)
=

cσ2

2
τ, (29)

which can be written as

R(τ) = β + ρ tan h
(

tan h−1
(

A − β

ρ

)
− cρσ2

2
τ

)
. (30)

Expanding the right side of the last equation provides

R(τ) = β + ρ

 A − β − ρ tan h
(

cρσ2

2 τ
)

ρ − (A − β) tan h
(

cρσ2

2 τ
)
. (31)



Axioms 2024, 13, 167 5 of 16

It can be seen from this solution that it satisfies IC R(0) = A. Further, solution (31) can
be verified by direct substitution into Equation (20). In addition, the solution of the infected
cases can be evaluated by differentiating R(τ), thus

I(τ) =
cρ2σ2((A − β)2 − ρ2)sec h2

(
cρσ2

2 τ
)

2
(

ρ − (A − β) tan h
(

cρσ2

2 τ
))2 . (32)

This expression can be simplified by employing the relation:

cσ2

2

[
(A − β)2 − ρ2

]
= B, (33)

which can be obtained from (25) through inserting ICs R(0) = A and R′(0) = B. Hence,
the soultion of the infected cases is provided in the final form:

I(τ) =
Bρ2sec h2

(
cρσ2

2 τ
)

(
ρ − (A − β) tan h

(
cρσ2

2 τ
))2 , (34)

where c is already provided in (22). At first glance of the solution, one can see that it satisfies
the IC I(0) = B. Moreover, it should be noted that the above expressions for R(τ) and I(τ)
are valid when ρ is real.

4. Features and Behaviors

Normally, it is expected that the value of the infected individuals reduces over time,
while the number of recovered individuals reaches a certain constant value at a prescribed
interval of time, which may be large or short depending on the nature or data of each
country. Equation (12) can be used directly to obtain an accurate prediction of the recovered
individuals after a relatively or sufficiently large amount of time τ∞ (say). After this
time, i.e., τ > τ∞, no variation is expected in the number of the recovered individuals,
i.e., R′(τ) = 0 for all τ > τ∞. Mathematically, one can consider R′(τ) → 0 as τ → ∞.
Accordingly, the number of recovered individuals, τ → ∞, denoted by R∞, can be predicted
through solving the transcendental equation:

1 − R∞ + ce−σR∞ = 0, (35)

where c is already provided in Equation (13) in terms of σ, A, and B. The above transcen-
dental equation can be solved numerically using software. Moreover, approximate values
of R∞ can be estimated from the solutions obtained in the previous section. In this regard,
FOAS (18) estimates R∞ as

R∞ = lim
τ→∞

R(τ) =
B + (1 − σ)A

σB + 1 − σ
. (36)

It must be noted that the value R∞ in the last equation is restricted by

σ(B − 1) + 1
1 − σA

> 0, (37)

so that solution I(τ) in (19) of the infected individuals satisfies the condition:

lim
τ→∞

I(τ) = 0. (38)

The possible ranges of initial values for A and B, provided that condition (37) is
satisfied, are shown in Figures 1 and 2 at σ = 0.9 and σ = 1, respectively. Figure 1 indicates
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that FOAS is valid in the entire ranges of A and B when σ = 0.9. However, Figure 2 reveals
that FOAS is valid in certain domains of A and B when σ = 1.

The FOAS is valid for all possible 

     values of A and B at Σ = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A

B

Domain of applicability of the FOAS at Σ=0.9

Figure 1. Applicable domain for the validity of FOAS at σ = 0.9.

Applicable domains of the FOAS at Σ = 1

Inapplicable domains of the FOAS at Σ = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A

B

Domain of applicability of the FOAS at Σ=1

Figure 2. Applicable and inapplicable domains for the validity of FOAS at σ = 1.
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On the other hand, SOAS determines R∞ as

R∞ = β + ρ lim
τ→∞

 A − β − ρ tan h
(

cρσ2

2 τ
)

ρ − (A − β) tan h
(

cρσ2

2 τ
)
 = β + ρ

=
1 + cσ

cσ2 −

√(
1 + cσ

cσ2

)2
− 2(1 + c)

cσ2 , (39)

where c = 2(B+A−1)
1+(1−σA)2 < 0 for all A and B, such that 0 < A + B < 1. Note that expression

(39) for R∞ is valid when ρ is real. This requires discussing the domain of applicability
for the involved parameters. From Equation (26), we note that ρ is real if the following
condition is satisfied: (

1 + cσ

cσ2

)2
− 2(1 + c)

cσ2 > 0. (40)

Inserting the constant c = 2(B+A−1)
1+(1−σA)2 into this condition and performing simplifica-

tions, then (
(2σB + 2(1 − σ) + σ2B2)

2σ2(1 − A − B)

)2

− 1 − 2(A + B)− (1 − σA)2

σ2(1 − A − B)
> 0. (41)

Figures 3 and 4 depict the applicable and inapplicable domains of A and B for the
validity of SOAS at σ = 0.9 and σ = 1, respectively.

Inapplicable

 domain

Applicable domain of the SOAS at Σ = 0.9

Strips of inapplicable values for A and B

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A

B

Domain of applicability of the SOAS at Σ=0.9

Figure 3. Applicable and inapplicable domains for the validity of SOAS at σ = 0.9.
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Applicable domain of the SOAS at Σ = 1

Inapplicable

 domain

Strips of inapplicable values for A and B

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

A

B

Domain of applicability of the SOAS at Σ=1

Figure 4. Applicable and inapplicable domains for the validity of SOAS at σ = 1.

Regarding the accuracy of the current approximate solutions, Table 1 shows several
comparisons between FOAS, SOAS, and the numerical solution using MATHEMATICA for
the values of R∞. It can be seen that the values of R∞ via FOAS are close to the numeric
ones when 0.1 ≤ σ ≤ 0.6. In addition, SOAS provides better estimations for R∞, as follows.
The results in the SOAS column are identical to the numerical results when σ = 0.1, σ = 0.2,
and σ = 0.3 (which can be viewed as exact answers at these cases of σ). Moreover, the
values of SOAS agree with the numerical results to six decimal places when σ = 0.4 and
σ = 0.5. For σ = 0.6, SOAS’s value agrees with the numerical result to five decimal places.
For σ = 0.7 and σ = 0.8, the present values agree with the numerical results to four decimal
places. For σ = 0.9 and σ = 1, the current results agree with the numerical ones to three
and two decimal places, respectively. It is important to note that if the exact solution of the
nonlinear SIR model is not available, the numerical solution is considered as an optimal
solution for the purpose of estimating the accuracy of the present results.

Table 1. Comparisons between the approximate values of R∞ (the expected final number of the
recovered cases) using the present FOAS and SOAS with the numerical results at different values of
contact number σ (transmission rate) for initial infected individuals A = 0.01 and initial recovered
individuals B = 0.001.

σ R∞ (FOAS) R∞ (SOAS) R∞ (Numerical)

0.1 0.0120977 0.0120969 0.0120969

0.2 0.0134663 0.0134619 0.0134619

0.3 0.0152205 0.0152059 0.0152059

0.4 0.0175497 0.0175096 0.0175097

0.5 0.0207921 0.0206876 0.0206879
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Table 1. Cont.

σ R∞ (FOAS) R∞ (SOAS) R∞ (Numerical)

0.6 0.0256158 0.0253348 0.0253362

0.7 0.0335505 0.0327069 0.0327130

0.8 0.0490385 0.0458424 0.0458764

0.9 0.0926606 0.0730530 0.0733310

1.0 1.0000000 0.1324565 0.1352252

5. Numerical Results and Comparisons with Other Methods

In Ref. [7], the authors applied HPM to systems (1–3) to obtain the following approxi-
mate solutions:

R(t) = A − Be−τ + B + σB
[
−B

(
−τe−τ − e−τ

)
− 1

2
Be−2τ + Be−τ − τe−τ − e−τ

]
−

σB
(

3
2

B − 1
)

, (42)

I(t) = Be−τ + e−τ
[
−σB

(
Bτ − Be−τ − τ

)
− σB2

]
− 1

2
σBe−τ(4σB2 − 2σB + 2B)−

1
2

σBe−τ [4σB2τe−τ + 6σB2e−τ − 2σB2e−2τ − σB2τ2 − 2σB2τ−2σBe−τ + 2σBτ +

2σBτ2 − 4σBτe−τ + 2Bτ − 2Be−τ − στ2]. (43)

The comparisons between the present FOAS, HPM [7], and numerical solution (Runge–
Kutta) are displayed in Figures 5 and 6 for the instantaneous R(τ) and I(τ), respectively,
for the initial recovered individuals A = 0.001, initial infected individuals B = 0.01, and
transmission rate σ = 0.5. The results in these figures show the agreement of the present
FOAS with the numerical solution, while HPM [7] deviates; hence, it may need revision.
Figures 7 and 8 also indicate the superiority of the present FOAS over HPM [7]; however,
the accuracy of FOAS is slightly affected by the small increase in σ (σ = 0.7). Figures 9
and 10 confirm this conclusion that the increase in σ (σ = 0.8) leads to a slight deviation
between the present FOAS and the numerical solution; however, the accuracy of FOAS is
still better than HPM [7].

20 40 60 80 100
Τ

0.005

0.010

0.015

0.020

RHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 5. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta) at
A = 0.001, B = 0.01, and σ = 0.5 for R(τ).
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20 40 60 80 100
Τ

0.002

0.004

0.006

0.008

0.010

IHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 6. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta) at
A = 0.001, B = 0.01, and σ = 0.5 for I(τ).

20 40 60 80 100
Τ

0.005

0.010

0.015

0.020

0.025

0.030

RHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 7. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta) at
A = 0.001, B = 0.01, and σ = 0.7 for R(τ).

20 40 60 80 100
Τ

0.002

0.004

0.006

0.008

0.010

IHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 8. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta) at
A = 0.001, B = 0.01, and σ = 0.7 for I(τ).
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20 40 60 80 100
Τ

0.01

0.02

0.03

0.04

0.05

RHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 9. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta) at
A = 0.001, B = 0.01, and σ = 0.8 for R(τ).

20 40 60 80 100
Τ

0.002

0.004

0.006

0.008

0.010

IHΤL

Runge-Kutta

Present:FOAS

HPM @7D

Figure 10. Comparison between the present FOAS, HPM [7], and numerical solution (Runge–Kutta)
at A = 0.001, B = 0.01, and σ = 0.8 for I(τ).

Although the FOAS provides accurate solutions in a short range of the transmission
rate parameter σ, one can see in Figures 11–14 that SOAS is in full agreement with the
numerical solution, even for higher values of σ, σ = 0.9 (Figures 11 and 12) and σ = 1
(Figures 13 and 14). This leads to the conclusion that the present SOAS represents an
accurate solution for the current COVID-19 model for all values of σ in the range of
0 < σ ≤ 1 while HPM [7] does not. Finally, the variations in recovered individuals R(τ)
and infected individuals I(τ) are plotted in Figures 15 and 16 at various values of the
transmission rate σ.

As the main point is to compare the solution between different methods, the absolute
difference between the present approximations FOAS/SOAS and the Runge–Kutta method
is plotted in Figure 17 for the recovered individuals, while the absolute difference between
the HPM [7] and Runge-Kutta method is displayed in Figure 18. It can be seen from these
two figures that the accuracy of the approximation FOAS is slightly better than HPM
[7]. However, the approximation SOAS displayed a better accuracy than HPM [7]. This
conclusion can also be confirmed or observed in Figures 19 and 20.
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20 40 60 80 100
Τ

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RHΤL

Runge-Kutta

Present:SOAS

HPM @7D

Figure 11. Comparison between the present SOAS, HPM [7], and numerical solution (Runge–Kutta)
at A = 0.001, B = 0.01, and σ = 0.9 for R(τ).

20 40 60 80 100
Τ

0.002

0.004

0.006

0.008

0.010

IHΤL

Runge-Kutta

Present:SOAS

HPM @7D

Figure 12. Comparison between the present SOAS, HPM [7], and numerical solution (Runge–Kutta)
at A = 0.001, B = 0.01, and σ = 0.9 for I(τ).

20 40 60 80 100
Τ

0.02

0.04

0.06

0.08

0.10

0.12

RHΤL

Runge-Kutta

Present:SOAS

HPM @7D

Figure 13. Comparison between the present SOAS, HPM [7], and numerical solution (Runge–Kutta)
at A = 0.001, B = 0.01, and σ = 1 for R(τ).
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20 40 60 80 100
Τ

0.002

0.004

0.006

0.008

0.010

IHΤL

Runge-Kutta

Present:SOAS

HPM @7D

Figure 14. Comparison between the present SOAS, HPM [7], and numerical solution (Runge–Kutta)
at A = 0.001, B = 0.01, and σ = 1 for I(τ).

20 40 60 80 100
Τ

0.02

0.04

0.06

0.08

0.10

0.12

RHΤL

Σ=1.0

Σ=0.9

Σ=0.7

Σ=0.5

Σ=0.3

Σ=0.1

Figure 15. Variation in the present SOAS for recovered individuals R(τ) at different values of
transmission rate σ when A = 0.001 and B = 0.01.
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Figure 16. Variation in the present SOAS for infected individuals I(τ) at different values of transmis-
sion rate σ when A = 0.001 and B = 0.01.
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Figure 17. The absolute error of the present approximations of SOAS and SOAS for recovered
individuals R(τ) at σ = 0.9 when A = 0.001 and B = 0.01.
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Figure 18. The absolute error of HPM [7] for recovered individuals R(τ) at σ = 0.9 when A = 0.001
and B = 0.01.
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Figure 19. The absolute error of the present approximations for SOAS and SOAS for infected
individuals I(τ) at σ = 0.9 when A = 0.001 and B = 0.01.
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Figure 20. The absolute error of HPM [7] for infected individuals I(τ) at σ = 0.9 when A = 0.001
and B = 0.01.

6. Conclusions

In this paper, two different approximate solutions were obtained for a nonlinear
COVID-19 model. The obtained approximate solutions were expressed explicitly in terms
of exponential and hyperbolic functions. It was shown that the current two approximate
solutions displayed many advantages over the HPM solution in the literature [7]. The
numerical comparisons between our approximations and the Runge–Kutta method were
declared. Moreover, it was proven that the present approximations were more accurate
compared with HPM [7], where the Runge–Kutta numerical method was taken as a refer-
ence method. Furthermore, the values of the recovered individuals at a sufficiently large
time were derived analytically through the two approximations that were obtained. The
numerical results reveal that our approach is straightforward and efficient compared with
the previous study [7].
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