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Abstract: In this paper, we compare the performances of two Butcher-based block hybrid methods
for the numerical integration of initial value problems. We compare the condition numbers of the
linear system of equations arising from both methods and the absolute errors of the solution obtained.
The results of the numerical experiments illustrate that the better conditioned method outperformed
its less conditioned counterpart based on the absolute errors. In addition, after applying our method
on some examples, it was discovered that the absolute errors in this work were better than those of a
recent study in the literature. Hence, we recommend this method for the numerical solution of stiff
and non-stiff initial value problems.
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1. Introduction

Differential equations play crucial roles in ecology, modeling, chemical kinetics, engi-
neering, population dynamics and medicine. Some of them do not have exact or closed-form
solutions and it is imperative to find new numerical methods on the one hand or improve
upon already existing methods on the other. More precisely, this paper considers finding
numerical approximations to first-order initial valued systems of ordinary differential
equations of the form;

y(x)=f(xy), x€R, ©)

on the interval [a,b] subject to the initial condition y(a) = 1y, with
f:R" — R,r € N—{0}. One of the numerical methods for solving systems of dif-
ferential equations is linear multi-step methods which though powerful but most times
suffers the disadvantage that matrices arising from its use are often ill-conditioned accord-
ing to Shampine [1]. As a result of this and according to Trefethen and Bau [2] p. 95, if
a system is ill-conditioned, then one may lose the logarithm to base 10 of the condition
number of the matrix’s significant digits. However, there is paucity of literature on this
topic of overcoming ill-conditioning as it relates to linear multi-step methods, though the
subject of ill-conditioning, as it pertains to linear systems of equations, is well-studied.

In addition to this, block hybrid methods which incorporate interpolating and collo-
cating at both grid and off grid points multiplies the size of the linear system to be solved,
thereby increasing the propensity of the linear multi-step-based method to ill-conditioning.
While Runge-Kutta methods, on the other hand, suffer the inherent problem of requiring
much more cputime time than their linear multi-step methods counterpart. Hence, a linear
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multi-step method that is computationally cheap, stable and well-conditioned is often
sought. That is why, in this study, we improve upon the two-step Butcher’s block hybrid
method which is numerically better conditioned with the exception of outperforming those
in the literature for non-linear systems of differential equations.

The two-step Butcher’s hybrid scheme has been derived by several authors [3-8] using
different off-grid points. The two-step Butcher’s block hybrid method is a linear multi-step
of order five for the numerical solution of one- and high-dimensional systems of ordinary
differential equations which is the crux of the matter in this article. In an earlier work,
we showed that, for one-dimensional stiff and non-stiff, linear and nonlinear differential
equations, the performance of the Butcher-based block hybrid method obtained at the
points {1, %, 42,2} with those obtained at {1, %,2, %} were at par, though the latter was
better conditioned than the former. In order to avoid abuse of notation, for the purpose
of this study, we will refer toy, 7as the block hybrid method obtained at the following

combination of grid and off-grid points: {1, %, %,2} and y, +3 the block hybrid method

obtained at the latter points {1, %, 2, %} in line with [7].

In fact, this work is an extension of the works of Akinola et al. [7], where both methods
were shown to be of order five and convergent. Nevertheless, we did not compare their
regions of absolute stability nor their error constants because the goal in that study was
to provide a brief solution to Shampine’s [1] claim about the ill-conditioning of matrices
obtained from linear multi-step methods (see also [9-16]) and solving first order differential
equations. No Jacobian was presented in that paper nor any proof of the non-singularity of
the corresponding Jacobians, neither did we provide any algorithms.

In [6] we gave a proof of the non-singularity of the D matrix used when deriving the
two-step Butcher’s hybrid scheme for the solution of initial value problems. However,
the test problems were one-dimensional. In addition to our discussion in the second to
the last paragraph above, the focus in [7] was to discuss with numerical examples how
ill-conditioning arising from using linear multi-step methods in approximating the solution
of initial value problems could be reduced, albeit for one-dimensional ODEs, which is
also an improvement from the works in [8]. Similarly, Adee and Atabo [17] presented a
two point linear multi-step method for solving similar problems as the ones considered
in [7] and the present work, except that their method is non starting and they used a fourth
order Runge-Kutta method in obtaining the starting values. In this work, our method is
self-starting and does not rely on other methods to start (see also [18-25].)

In this work, we extend the idea in [7] to numerical examples of two, three, four and
six-dimensional systems of differential equations to confirm the earlier claim that y, 5 is
better well-conditioned than those of y, 7- We compared their respective absolute errors

and cputime to see which performs better between the two. The plan of this study is as
follows: in Section 1, we give an overview of the content of this article, which is followed
in Section 2, where we present the continuous form of the block hybrid method and state
important results and in Section 3 we examine the convergence and give the appropriate
algorithms of the methods. Finally, we conclude by presenting the results of the numerical
experiments which validate and confirm the theory in Section 4 .

2. Methodology

The emphasis in this section is two folds: we re-present the continuous formulation
from which the two block hybrid methods y, , 7 and y, , 5 are derived at various grid and
4 2

off grid points. Secondly, we show that the respective Jacobians (to be defined shortly) are
non-singular at the root.

Derivation of Multi-Step Collocation Methods

Following in the footsteps of Onumanyi et al. [26], we present the re-derivation of our
method, where a 2-step multi-step method having m collocation points is
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t—1 m—1
y(x) =Y aj(x)y(xnrj) + 1 Y Bi(x)f(xj,y(x))), )
j=0 j=0
where «;(x) and B;(x)
t+m—1 ) t+m—1 )
aj(x) = 2 wjiy1x',  hBj(x) =h 2 Bji+1x', (©)
j=0 j=0

are the continuous coefficients for j = 0,1,--- ,t — 1. The #(0 < t < k) in (2) are inter-
polation points taken from {xo,x1, -+ ,x,«} and xj for j = 0,1,2,--- ,m — 1 are the m
collocation points belonging to {xo, x1,- - -, X, 1k }. To obtain &;(x), ;(x), Onumanyi [26]
used at a matrix equation of the form DC = I, where I is an identity matrix of size (f 4+ m),
and D and C are matrices defined by

1 xp X2 x> xlrm=1
2 3 tm—1
LoXnr X X o Tnt1
_ 2 3 tm—1
D=1 xppi1 X040 X Yntt—1 : (4)

0 1 2xy 3x2 (t4m—1)xl 1
0 1 245 322, (t+m—1)xttm1)

The matrix in (4) is the collocation matrix of size (t + m) x (t +m) as C. The matrix C
whose first row gives the continuous coefficients is defined as

[ apa ®1,1 Ceelp_1 hBoa hBm—-11 T
®0.2 a1 S 1) hBo2 hBy—1,
C= (5)
L&0tem Klprm Kt ppm MPBot+m hBm—1,t4m

Let y, be an approximation to the theoretical solution at x,, that is, y, ~ y(x,) and let
fn = f(xn,yn), Yn+j = y(xn+j) = y(xn + jh) and fn+j = f(xn+j/3/n+j) = f(xn+ jh,y(xn +
jh)), forj € {1,3,2},x; = xo +ih,i=0,1,2,--- ,N —1,h = 1.

We substituted + = 2, m = 4 and § € {1,3/2,2} into (2) to obtain the continuous
formulation of the two-step Butcher’s block hybrid method:

y(x) = a0(x)yn + a1 (X)yur1 + [Bo(x) fu + P1(x) fur1 + B3 (%) fy 3 + B2(¥) fur2],  (6)
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and D from (4) reduces to

r 2 3 4 5 7
1 x4 x5 x;, Xy x;
2 3 4 5
Loxnpr X000 Y Yy X
2 3 4
0 1 2xy 3xy; 4x;, 5x;,;
b= 2 3 4 @
0 1 2xp41 3x,q 4Ax,q 0 5xp
2
0 1 2xp42 3x3,., 4x,., 5x;.,
2 3 4
_0 1 2x”+% 3xn+% 4xn+% 5xn+%_

= Xp41+ % and x,, 12 = x;,,11 + h, the determinant of

Replacing x, = x,41 — h, X013
Dis "
detD = 9h . 8)
4
The following continuous scheme was discussed in [6] with y = x;, 11 — x:
1 —24p5 — 15hp* + 40h%p3 + 30K3 12 24p% + 15hu* — 40K2u3 — 30K3 2 + 311°
v = | 3115 Jon+ | 3115 [y
—961° — 91hy* + 98h? 3 + 8913 > —28u° — 2hyut + 57h% 3 + 43 u? — 31hty
9
+| 3721 [+ 31ht [frsn ©)
481° — 32hu* — 80K? > + 64h° 2 —16p° + 21hp* + 6h2p® — 11132
- [ 9314 }f nt3 [ 12414 }f L
Differentiate the continuous formulation with respect to y, evaluating the derivative
aty = — % and making v, 41 the subject results in (10). The differentiation is important in

this context because we want to obtain a square system of four equations in four unknowns.
In addition to this, without the differentiation and subsequent substitution, an under-
determined system of three equations in four unknowns will suffice and this has been
shown in [7] not to give accurate approximations to the exact solution. Moreover, it allows
us to add an extra function evaluation point f, L7 thereby improving the accuracy. In

the same vein, evaluating (9) at the following points y = {—%, — %, —h}. That is, when
U= —34—”, using 4 = Xp41 — X, —% =Xp41 — X, X = Xp41 + % = xn+%. Hence,
y(x) = y(xn+%) = yn+%
h h
Whenpy = —5, —5 = xy41 — %, X = X341 + % = xn+%. Thus,
y(x) = y(x,43) = Vyys-
Finally, when y = —h, —h = x,41 — %, x = x,11 + h = x,4». Thus,

y(x) = y(xni2) = Ynro2-
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Therefore, we have explained the link between y and the left-hand sides. Hence, after

the same substitutions have been made to the right-hand sides, we obtained the remaining
schemes (11)-(13):

h

Yot = Yot g { 179f, — 1169f,.41 +2156f,,, 3 — 1984f,, .7 + 546fy,+2} ) (10)
37 459 h

yn+% = &yn + @ynﬂ + 1984 39fn + 648fn+1 + 480fn+% — 27fn+2 , 1y
243 7693 h

Ynt = sgmclnt sosYni1+ g {231 fok 7644, o1 + 16464, 5 + 441 fn+2], (12)

1 32 h
Y2 = —7ln + 37Ynt + %3 —fu+12fp 1+ 64fn+g +15fu42]. (13)

The above schemes (10)—(13) is what makes up the block hybrid method which we denote by
Yny? for ease of reference. It can be expressed as the following nonlinear system:

h
Ynit = Yn = ga5 [ = 179fn = 1169f,.1 +2156f, 3 — 1984f, 7 +546fu12] =0,

37 459 h
Yn+d ~ 20gY" T 20gY"+1 ~ Toga [39fn + 648f 11 +480f, 2 — 27fni2] =0,
243 7693 h

Yn+? ~ 703e¥" ~ 793¢YnH T 317aa [231f, + 7644f, 11 + 16464f, s +441f,4,] =0,

1 32 h
Yns2F 37Yn = 37Yn1~ o3 [ = fa+12fng1 + 64f, 5 + 15fy42] = 0.

For r = 1, the Jacobian of the above nonlinear system is

1671 Afwer _ 4 154K fn+z 021 s 13k Ofurz |
90 IYur1 45 9y, 3 5 ay, +7 15 OYnia
of,
_81h 9fur1 _ 459 15K Y43 0 27h Ofn+2
248 3y, 496 62 ay”+3 1984 3Y,+2
J7 = . (14)
_ 1911k 9fus1 _ 7693  _ 1029h fn+z 1 4410 Ofus2
7936 Oy, 7936 1984 3y, T 31744 3y, 12
af,
_4hOfur1 _ 32 64h _Ints 0 1 — 5h fns2
i 31 9y, 31 93 ayw% 31 3yuy2 |

Lemma 1. The Jacobian [; in (14) is nonsingular at the root.

Proof. After carrying out elementary row operations, we obtained

_ o, ;
120&1174% Yyan
";2 0 31/n+2
+1 +1
1621 av" 411459 z4hay"+1 +68
af, a, af, o,
0 . 0 27p2 et S (81 3002 16 L 450
~ g Tnrd i3 af ,
9612 g1 e 2+ 1925 2+64 L ) 512
n
0 0 1 v
0 0 0 1 |
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where

of, of, . 3

336 fn+2 oo i} afm s amndfan i ]2
441k Y41 9Y, 3 Wiz + [(10293 w3 ;T 17655 ) Wni2 35283y»1+1 3?,,+% h
V=

fn
614412 51 o 4y (12288

fn
Gt + 409631 )h +32768

afn+2 _ f”Jr 2
(4508 e
H ale
61442 gt w2 L+ (12288 e

- 76443/’"—“) h— 30772
Yn+1

+

+4096 3f i1 )h 132768

nty

Its determinant which is the product of the diagonal elements is one. Hence, J7 is nonsingular.
O

An alternative proof of the above result using Keller’s ABCD Lemma [27] is given below, but
before then, we give a brief synopsis on the ABCD Lemma. The implicit determinant method of
Spence and Poulton [28] is an application of Newton’s method in finding the zeros of certain bordered
matrices arising from finding a photonic band structure in periodic materials such as photonic crystals.
Nevertheless, at the heart of the implicit determinant method is Keller’'s ABCD Lemma [27], whereby
a partitioned matrix is shown to be nonsingular under certain conditions. The “ABCD” Lemma
has been used in [29-31] in different ways to show that certain parameter-dependent matrices are
nonsingular and Newton’s method is applied accordingly. The Lemma, as the name implies, relies on
splitting a matrix into its partitioned ABCD components, and after certain conditions which must
have been satisfied, the matrix under consideration is described as non-singular or as maybe not the
case. These references and others form our motivation for using the ABCD Lemma to show that the
Jacobians in this work are non-singular, as shown below.

We state without proof the one-dimensional version of Keller’s [27] ABCD Lemma. The aim is
to use it in proving the non-singularity of the one-dimensional version of ;.

Lemma 2. “ABCD” Lemma.
Let A€ R"™™" b,c e R",d € Rand

I = { :\ 1; } € RO )x(nt1). (15)

Assume that A is non-singular; then, J7 has the following decomposition:

A b | 0 A b
|:CT d}:{cTA*1 1]{OT d—cTA-1p | (16)

The matrix J; is non-singular if d — cfA-1b £0.

Proof. Following [27], we split J7; thus,

i 167 af,,ﬂh 1 7@8')(?#% ﬁafrﬁr%
90 ynt1 45 Jy 43 315 9y 47
n 7 n K
Af 3
_ | _ 81 Ofusry 459 _ 15 Jn+3 3x3
A= Moy W6 T8 W, 3 h 0 € R,
1911 3fas1y 7693 _ 1029 s 1
T 7936 0y, 11 7936 1984 3y, 5
n z -
_ 13 9fut2
15 ayn+2
i 27 afn+2 3x1
b= | wKgg,," | R
441 Ofur2
31744 3y, 12
of,. 3 50
T _ 4 9fun 32 64 Jnty 1x3 fni2
¢ = _ﬁay,,ﬂh_:ﬂ %y h 0l eR™, and d= 1—— heR.

n+% 31 8y,,+2
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Before we apply the above Lemma, we need to show that A is non-singular. Hence, using
elementary row operations, it reduces to

i afn+z ]

120,22 —496
yn+i O
1625724 -+459
~ 10368 3741 1+29376
’ ! 73528%’“ f”*z w2+ (7791 f*f 7644 2nt1 ) 11130772
Wil ¥, 3 * Yt %+ ir |1
0 0 1 |

Since the pivots are three, A is indeed nonsingular.
Now, we give a condition under which d — cTA 1p # 0. The scalard — ¢T A~1b will be non-zero
if and only if the terms in /1 in the numerator do not add up to —1440 as shown below:

of, .3 9f, of, of .7 of, . 3 of, .3 of,
iy i3 Tnrd s g4 s 9fnt1 "*1 _ Ofus1 nt3 ) Ofyusa 4 i1 nt3 Tnrd Vs
d—cTA-? O35yt 3y T st (((1473y,,+7 + 1685, ) %, 15651 W13 > e M Wied Wil )h
A T Yt g 7. s \ ek o atans Yer] 7. . 0.
50430t - gaj Zh3+ 113574 +3 Ll )t -n 568;,3 e L)+ 43963y & 26720 i 1440

of . of .. 5 of, of, f
A " 7 fui1 ) Ofnsa 3o 3fn 1 ntg fui1 Intd \p2
((644ay e 2%“) Yne2 < 135 - 109230 > C e el >h

f, f o, 7 of, f of,
Bf,, n+ n+ n+ afn n+ Bfn n+ n+ n+ af”
Byu:: aV z ay Z h3 + ((1113ﬁ +1092 aynﬁ ) By ; — 2256 a%:j By j >h2 + (43963y 7 — 4212 n+f + 2672 o )h — 1440
2
of, fn+ fn+ Bf
1056 ay"i — 4396 7‘ + 4212 7 — 267251 ”“ h + 1440

of .3 9f, of, af f of,
a1 T3 Tt d g nt3 fut1 A fus1 143 \jo "y
4G 3,3 3,2 ((11139y y P12 ) T I T TR )h + (43963y,,+z

afw

L + 2672501 )h — 1440

— 4212

Alternatively, as I tends to zero, all terms in 1 tends to zero and the above expression be-

comes d — ¢ A~'b = —1. Hence, the one-dimensional Jacobian matrix J; is non-singular using the
ABCD Lemma. O

For higher-dimensional systems, i.e., ¥ > 2 of differential equations, the analogous Jacobian is

167h a1 _y 154K fn+2 9921 7 135 Ofurz |
90 s R 315 3y, 15 0Yuia
_81h0fin _ 4591 _ 15k i} o 27h Ofusa
T 248 9yu 496 62 dy, .3 1984 9y,,42
J7 = , (17)
_1911h fur1 _ 76937 1029 o, n+2 I _ 441§ Ofus2
7936 9y,1 7936 1984 3y, 31744 3y,
af 3
_4h 9fun _32q __64h “mt> o I_ 5k Ifn+2
T 3T ay,n 31 93 3,3 31 Y2 |

where I is the identity matrix of size r and O € R™*". For r = 2, substituting

Ofns1 _ {m ﬂz}. i3 _ {51 bz}.

ayn+1 as ay ayn+% b3 b4 !
and
fury _ {cl 02} Ufuta _ {dl dz}
Wz L3 cal’ 2 s da)’
into the above Jacobian yields the partitioned form of J;

p=|& p)er 18)
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T l67amh 4 167as h _154bih _ 154byh 992cih 992c kT
90 90 15 45 315 315
167&3}1 167u4h _ 1 _ 154b3h _154b4 h 99203]’! 992C4h
90 90 15 45 315 315
8lah 459 _8lah 1_ 150k _15byh 0 0
248 19 248 62 62 656
A= € R®%°,
248 248 196 62 62
_191arh 7693 _1911ayh 102961k 1029by h 1 0
7936 7936 7936 1984 1984
_ 1911azh _191lagh _ 7693  _ 1029bsh  _ 1029b4 1t 0 1
L 79360 7936 7936 1984 1984 d
'713d‘1h 713d2h'
15 15
_13dsh _13d4h
15 15
27d1 h 27dy h
1984 1984 6x2
B= € R%%,
27dsh 27dyh
1984 1984
_4dih _44doh
31744 31744
_ 441dyh_ 441d4h
L™ 31744 31744
_4ﬂ1h_g _4!12]’! _64b1h _64h2h 0 0
31 31 31 93 93
CT — c R2X6,
_4113]1 _4a4h_32 _64b3h _64b4h O 0
31 31 31 93 93
and
1_5dhh  _5dh
31 31 .
D= € Re%4,
_5dyh g _ 5dygh
31 31
Lemma 3. Two-dimensional version of the “ABCD” Lemma.
Let J7 be as defined in (18). Assume that A is nonsingular; then, J; has the following decomposition:
A B I (0] A B
= = . 19
Iz [ c’ D } [ cTa! 1 || OoT D-CTA !B (19)

Proof. We first need to show that A is non-singular as a requirement for using the ABCD Lemma.

After some elementary row operations, we obtained six pivots from the echelon form of A. Thus, A
is non-singular.

Since A has been shown to be non-singular, then

AT 41 00
D-CTA B#{OO.

Since D — CTA-1B # {8 8] by the two-dimensional version of the ABCD Lemma, J7 is

non-singular whether at the root or not. [

The next corollary further enforces the above result.

Corollary 1. In the worst case scenario, where the Jacobian of the function to be integrated is singular, that is
when a; = b; = ¢; = d; = 0 for i = 1(1)4; then, the Jacobian J; is non-singular.
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Proof. Sincea; = b; = ¢; = d; = 0 fori = 1(1)4, then

-1 0 0 0 0 0]
0 -1 00 0 0
459
- 0 1000
A= ,
459
0 - 010 0

7693
%0 0010

7693
Lo %2 00 0 1

A is nonsingular; hence, it satisfies the first condition of the ABCD Lemma; thus,

r_1.7 154 992 13 7
0 0 90 45 315 15
00 ) 81 15 27
0o 2 0 0000 R
B= 0 O,CT: ,and D =
2 1911 1029 441
0 0 0 -5 0000 7% w8 0 3@
0 0 4 64 0 5
L 31 3 31
Hence,

1 0 0 0
_cTa-1p _
D—-C'A™'B {0 1}#{0 O}'
Therefore, the partitioned Jacobian J7 is also nonsingular using the two-dimensional version of

the ABCD Lemma. O

Differentiating the continuous formulation (9) with respect to # and evaluating the derivative at
U=- % results in (20). As explained earlier, the differentiation is important in this context because
we want to obtain a square system of four equations in four unknowns. Moreover, this allows us
to add an extra function evaluation point f, .y thereby improving the accuracy and leading to a
reduction in the condition number.

In the same vein, evaluating (9) at the following points y = {— %, — %, —h} gives the respective
remaining schemes (21)—(23):

h
Yol = Unt oo [269f, + 1360f,.+1 — 1220f, 43 —124f, s 1615 fut2], (20)
37 459
Yni: = oYt gog¥n 1t 1oz [39fu + 648,41 +480f, 2 — 27 fus2), (21)
1 32 h
Ynt2 = —ay¥ntgp¥neit g [ = fo+12fui1 + 64fn+g +15fu42], (22)
2484 500

ToaV" ~ Toga¥nt1 t Togg [735fn +4200fu i1 —2400f, 5 +2925fi0].  (23)

The above schemes (20)—(23) is what makes up the block hybrid method which we denote by
Ynys for ease of reference. The Jacobian of the above non-linear system of equations is

5
yn“ri

poendfn e ey amofue a1 Y]
45 st 15h 3y, o0 ywa 22539, 5
CSwfn 49 g 15 el o7 s 0
248 y,: 49 62 3y, 3 1984 Y2
J5 =
Cwdhn @ _emPei g she
31 dypn 31 B 9, 3 31 ynea
125 5250 Ofast 750 s 3  2905) Afu2 1
196 ~ 248 dypn 23y, 3 1984 yuen
I : ]
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After performing a series of row operations on J5, we obtained the following echelon form:

_ of
120 y"*z h—496 i ),
"+7 Wni2
F, aF, 0
162 741114459 o4 S ht68

Wy

n+1 fnia 12 ( 3fn+2 3fn+1)
27 el 2 124 (8130222 —162 h—459

~|° ! 96 Jnt1 af”*z 1+ (192, f"*z 64af”“ h+512
W1 By + +» + +
0 0 1 1
L0 0 0 1]
where
6 Of i1 f”*z h2 192 f"*z + 64afn+1 h+512
Yny1 9Y,,
Vl = — 4
225 afn+1 f”*z afn+2 h3 + 375 f“*% _ 75 afn+1 afn+2 _45oafn+l f“*% hz + U — 125
W1 ay,ﬁs W2 9J wid Wui1 | Wus2 Wut1 ayw%
and
) 9f, )
7752012 _5p5 0ntd 0509 fmet |y,
Yn+2 ayn+g Ynt1

This shows that the Jacobian has four pivots. Hence, it is non-singular at the root. For r = 2, the

Jacobian |5 becomes

I— 68h 9fus1 61h af"*% __41n Ofn+2 31h f"+2 i
45 i 5%, 60 Oyua 225 W,
af,
81h Ofut1 _ 4397 15k In+3 27h Ofut2 fo)
T 248 3y, 496 62 3,3 1984 3y,
J5 =
_wndfn _ 2y _emPd [ sndfe o
31 dynsq 31 95 9,3 31 Inia
1251 _ 525h 9fus 75h o, 3 _2925h Ofut2 I
| 396"~ 248 yum1 62 3y, 3 1984 9y, 12
3 i

and the proof of its non-singularity is analagous to the proof of Lemma 3.

3. Convergence Analysis

In this section, we summarize the order, error constant, zero stability, consistency and conver-
gence of the two block hybrid methods under discussion. We also plotted the regions of absolute
stability of the two methods which were hitherto missing in the earlier papers. In fact, as will be
discovered in the numerical experiments in the next section, the clear distinction in their regions
of absolute stability accounts for the disparity in their numerical accuracy. In addition to these,
we present their corresponding Newton-based algorithms premised on the non-singularity of the
Jacobians which were proved in the last section.

We begin by defining the order and error constant of a linear multi-step method. In a linear
difference operator L associated with the linear multi-step method [32],

k
Z oj(x yn-&-]—hZﬁ] )fuyj, for j=0,1,---,k

j=0
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the coefficients ag and By are both nonzero which is defined by
k /
Lly(x);h] = )} |ajy(x + jh) = hBjy' (x + jh) (24)
j=0

= Coy(x) + CrhyM (x) + -+ - + thqy(q) (x)+---,

where the C;’s are real constants and y(x) is an arbitrary function, continuously differentiable on the
interval [a, b].

Definition 1. A linear multi-step method and the associated difference operator (24) is said to be of order p if,

Co=C=-=C=0,Cppq # 0, where Cp1 is the error constant of the method.
Furthermore,
k
CO = Z IJ(]',
j=0
k .
C1 =) (jwj = Bj),
j=1
k ]'2
]:

ojiag )
G=L (7]_ (q*1§!>’

=

forg > 2.
In line with [6,7] and from [33], we present a summary of the basic convergence properties of
the two block hybrid methods in Tables 1 and 2 below.

Table 1. Properties of the block method y, 7.

Yut+i Order Error Constants Consistency? Zero Convergence?
P Cp+1 #0 Stability?
Ynt1 5 —9.0962x10~% Yes Yes Yes
il 5 1.3230x10% Yes Yes Yes
v 5 1.4471x107% Yes Yes Yes
4
Yni2 5 —1.7921x10~% Yes Yes Yes

The * symbol is to avoid confusion with either of the methods.

Table 2. Properties of the block method y,, Ty

Ynti Order Error Constants Consistency? Zero Convergence?
P Cp+1 #0 Stability?
Vil 5 3.2510%x 1092 Yes Yes Yes
—04
Yus3 5 1.3230x10 Yes Yes Yes
vis 5 5.1663x10~% Yes Yes Yes
2
Ynio 5 —1.7921 x10~04 Yes Yes Yes

The * symbol is to avoid confusion with either of the methods.

From both Tables 1 and 2, the order 5 and error constants have been shown in [6]
(Lemma 2.1, pp. 3184-3185) and [7] (Theorem 2, pp. 4-5).
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Definition 2 ([32]). The local truncation error (LTE) T, at x,,x of a linear multi-step method is defined to
be the expression L[y(x); h] given by (24), when y(x) is the theoretical solution of the initial value problem (1).
The local truncation error of order p can be expressed in the form

Ty = Cputh? 1y () + O(1PF2),
and Cp+1h7”+1y(7"+1) (xn) is the principal local truncation error.

With the above definition and the error constants from Table 1 and Table 2, respectively, the
LTEs for the methods are given by

Tyin = [—9.0962 x 1074,1.3230 x 107%,1.4471 x 1072, —1.7921 x 10~ 4]Th®y(®) (x,,) + O(I7),
and
Tyin = [3.2510 x 1072,1.3230 x 10~4,5.1663 x 1073, —1.7921 x 10~4|Thy®) (x,,) + O(K7).

The following definition of A(«)-stability is necessary to describe the nature of the region of
absolute stability of the methods.

Definition 3. A numerical method is A()-stable [34], where « € [0, % |, if its region of absolute stability
contains the wedge
Wy={z=AeC|-—a<argz—m <a}.

In plotting the region of absolute stability of the first block hybrid method, we start by re-
writting (10)—(13) in the following linear multi-step form:

1 0 0 O] [¥nt1] 00 1 0 7 [yn2 00 -3 [fus
01 0 0f|¥ns2 00 2Z 2|y 00 91 | | fuz2
= +h
243 7693 231
00 1 0¥z 0 0 73 736 || Yn 00 si7aa | | fo1
0 0 0 1]y, nl [0 0 —4 £ ] |¥url 0 0 5L fr]
r 167 154 992 13 71T T
—90 45 315 15 fut1
81 15 27
% & 00— | |fus2
Jl_h 7
1911 1029 441
7936 1984 0 31744 fn+§
4 64 5
L 3T 93 0 31 U -fn+2_
where _ ~ _
1 0 0 0 00 1 0
0100 00 Z B
P: 7 Q =
243 7693
0010 0 0 =5 o
0 0 0 1] 0 0 —5 2
1797 r_ 167 154 992 13 7
00 0 —gp —9 45 35 15
39 81 15 27
0 0 0 qo8 %8 & 0 —1o8
R = , and S =
231 1911 1029 441
0 0 0 5 7986 198 O 3vm
1 4 64 5
00 0 —og5] L 31 % 0 T

We used the matrices above to find the determinant
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167wz 154wz 92wz 179z Bwz
0 TW —g5 35 1 B0 15
_8lwz w— 15wz _ 37 27wz _ 39z _ 459
248 62 496 1984 1984 496
|Pw — Q — Rz — Szw| = ,
1911wz _ 1029wz, 243  Mlwz 231z 7693
7936 1984 7936 31744 31744 7936
4wz 64wz 1 Swz z 32
—31 —o3 31 —31 TWHgs T3

where ¥/ = Ay,z = Ah is the usual test equation, w = exp(if),i = v/—1 and 6 € [0,27]. This results
in the following stability polynomial:

—5249664z* + 409973762° — 14051788822 + 1742684162 + 119992320) w*
119992320
(249984z* — 208003523 — 5484209922 — 313812240z — 127537200) w®
+ 119992320
(—1584812% + 339268722 + 29999424z + 7544880) w?
+ 119992320 ’

|Pw — Q — Rz — Szw| = (

By collecting terms like in z, the stability polynomial reduces to

—5249664w* + 249984w>)z*
Pw— Q- Rz — Sz = (—5249664w* + 249984w3)z

119992320
+(40997376w4=—»2080035w3 — 158481w?)z°
119992320
+(--140517888w4--54842099w3 + 3392687w?)z>
119992320
(174268416w* — 313812240w> + 2999942412 )z
* 119992320
(119992320w* — 127537200w> + 7544880w?)
+ 119992320
(21wt —wd)zt | (4555264w — 2311150° — 17609w?) 2
T 480 * 13332480
(—140517888w* — 54842099w> + 3392687w?)z2
+ 119992320
(518656w* — 9339651 + 89284w?)z  7936w* — 8435w> + 499102
+ 357120 + 7936

We used the above stability polynomial to plot the region of absolute stability of y,, 7 in octave
and this results in Figure 1, which is A(«)-stable.

|
i
i
\
0 2 4 6 8

Figure 1. Region of absolute stability of the block hybrid method v, , 7.
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Next, we describe how to plot the region of absolute stability of the second block hybrid method
Yurs: We begin by re-writting (20)—-(23) in the following linear multi-step form:

(1 0 0 O] [¥nt1] [O O 1 0 7 [yn_s] 0 0 0 257 [fus]
01 0 0f|Yur2 00 22 22| v 00 0 24| |fiz
= +h
00 1 0||yp2 00 —% 2 Yn 00 0 —d5||fu

621 125 735
00 0 1] [y, 10 0 35 —a5e) LWn+1] 0 0 0 ool fr |
M 68 61 41 3111 T
15 45 60 — 5 fn+1
1 15 27
W 6 a0 ||fes
+h 7
4 64 5
31 93 31 0 fn+2
525 75 2925
(558 & o4 0 ] [fussl
where ~ _ ~ _
100 0 00 1 0
37 459
0100 00 2Z 49
Pl_ 7 le 1 - 7
0010 00 —5% 2
621 125
0 0 0 1] 0 o gl 12|
M 269 7 [ 68 61 41 31 7
00 0 355 5 455 0 %5
39 81 15 27
0 00 1984 248 62 1984 0
Ry = , and S1 =
1 4 64 5
00 0 —g I 9% 31 0
735 525 75 2925
0 0 0 qogz] 1258 —& o84 U

Using the above matrices, one obtains the stability polynomial |Pjw — Q1 — Ryz — S1zw|. An
application of Newton’s method in solving the corresponding stability polynomial equation and
subsequent plot gives Figure 2, which is A(a)-stable.

|
\
\
\
[
\
\
0 2 4 6 8 10
Figure 2. Region of absolute stability of the block hybrid method y,, ey

Figures 1 and 2 show the regions of absolute stability of the two hybrid methods and they
are A(a)-stable, albeit one has a larger region of absolute stability than the other. In both figures,
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the regions outside the contours represent the stable region while the region inside the contour
correspond to the unstable region.

In the discussions underneath, we present Newton-based algorithms for the solution of systems
of initial value problems since we have shown that the Jacobians are non-singular. We state clearly
that both algorithms are self-starting and do not rely on predictors or correctors to start. The starting
values are the initial values of the differential equations.

3.1. Algorithm for Yny?

Input: h, tol, system of differential equations to be solved, their initial values and
corresponding Jacobians.
Fork=1,2,3,- -, until convergence

yn+1
v
Form vk = n,j)% ’
Yo
Y Y
n+%
and
Yis1 = Yn — a5 [ = 179fn — 1169f, 11 + 2156, 3 — 1984f, 7 +546f, ]
I I 296Yn — 196Yn+1 — 1osz [39fn + 6481 +480f, 5 —27fuo]
Y = A Y — 56311 — o [281fn + 7644, 0 + 16464f, , 3 + 441 2]
Ynt2 + 31*1%1 - %yn+l - % [ — fn+12f 1 + 64fn+% + 15fn+2}
Compute J7(v(K).
Find the PLU factorization of J;(v(¥)), i.e., PJ;(v()) = LU, P is a permutation matrix.
Solve Lw(®) = —PE(v(%)) for w(k).

Solve for Av%) in UAvV(F) = wlk),

Increment vkt = v(K) 4 Ay(K),

Output: yﬁlk:ll).

We now present the second y,, 43 algorithm below.

3.2. Algorithm for Ynis

Input: h, tol, system of differential equations to be solved, their initial values and
corresponding Jacobians.
Fork=1,2,3, -, until convergence

Ypra
s
Form vk = nt3
k) |’
yn+2
k)
yn+%
and
Yat1 = Y — 505 [269fn + 1360f 41 — 1220f, 5 — 124, 5 + 615f,.2)]
37 459 h
F(v) = Yn+d — d9gYn — 96Yn+1 — 1oz [39fn + 648fur1 +480f, 3 —27fu 2]
Yotz + 31Yn = Rne1 = 95 [ = fu+ 12fi1 + 64f, 3 + 15f40)]
Vors — T988Yn + 1985 Yn+1 — 1gz (735fn +4200fu 1 — 2400f, 3 + 2925 2]
Compute J5(v(k)).

Find the PLU factorization of J5(v(K)), i.e., PJs(v(X)) = LU, P is a permutation matrix.
Solve Lw(®) = —PF(v(%)) for w(k).

Solve UAv(K) = w(k) for Av(k),

Increment v(*t1) = v(K) 4 Ay(®),
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(k+1)

Output: y, ;.

The stopping criterion for both algorithms is
1AV || < to1(1 + [[v0)).

When the size of the matrix is rather large, the use of iterative solvers like GMRES is highly
recommended. Next, we support our theoretical results with some numerical examples in the
next section.

4. Numerical Experiments

In this section, we compare the performance of the two methods to see which is better. We
compare the absolute errors of the exact solution with the numerical approximations as well as their
respective cputimes. We used a 64-bit DELL Latitude laptop running on Intel(R) Core(TM) i5-5200U
CPU @ 2.20GHz, manufactured in the USA, in all numerical computations. The first and last test
problems were drawn from [35] with the sole aim of comparing the results of our method with theirs.
The second test problem was from Chemistry. Throughout this section, we used a constant step
size of h = 0.1 on the same integration interval of [0, 50], as shown in Tables 3-7 and their respective
figures. However, for the purpose of comparison with the work in [35], we extended the interval to
[0,500], as shown in Tables 4 and 8.

Example 1. The non-linear stiff Kaps problem [36]

[y&(x)] [—1002y1(x) — 10003 (x)
= such that  y1(0) =1, y»(0) = 1.

Ya(x) y1(x) = 12(x) — ¥3(x)

The analytic solution is y; (x) = exp(—2x) and yp(x) = exp(—x).

The results of the numerical experiments for this example are presented in Tables 3 and 4 and
Figure 3. Table 3 showed that the block hybrid method y,, 43 performed better than y, 7 using the
same initial conditions, especially for x = 50. Nevertheless, both methods, though of order five,
outperformed Yakubu et al.’s [35] fourteenth-order method, as summarized in Table 4. Figure 3,
which is a log-log plot of the errors and step sizes, showed that, while both methods performed at
par for y1(x), the same was not the case for y,(x) because y,, 7 performed better than y, _ 5.

Table 3. Absolute error of the block hybrid methods y,, | 7 andy, 5 on Example 1.

X oy Absolute Error fory, 7 Absolute Error fory, 5
5 4.5935115213239299 x 1007 4.4495405902951008 x 10~07
Yo 4.8050326706232382 %1008 4.6460347875344754 x 1008
10y 2.0855112094424000 x 1011 2.0201772875313122x 10~ 11
Yo 3.1704212170890252 x 1010 3.0313075502139391 x 1010
20 i 4.2987802361462157 x 10~20 4.1642371192651194x10—20
Yo 1.3851474630459919x 10~ 14 1.2925765285153073 x 10~ 14
30 1 8.8609023013571046 x 102 8.5838358912098099 x 10~%
Yo 6.0424991742526876 x 10~ 12 5.4886853366277116x 10~
40 1y 1.8264620443729859 x 1037 1.7694054396306910x 1037
Yo 2.6315790821435655x 1023 2.3195198529150539 x 1023
50 y; 3.7648125181410106x 1046 3.6473152891560397 x 1046

Y2

1.1440182168782429x 10~%7

9.7481843383636344 x 1028
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Table 4. Absolute error of the block hybrid methods, Yakubu etal. [35], y,, +7 andy, Lson Example 1.

x y Absolute Error in [35] Absolute Error fory, | 7 Absolute Error fory, 5
5 yp  1.228938367083x10703 4.5935115213239x10~%7 4.4495405902951 x10~%7
y2  1.800318343625x107% 4.8050326706232x 10798 4.6460347875344 x10708
50 y;  3.325679258575x10~ % 3.7648125181410x 1046 3.6473152891560 x 1046
Yo 5.804723043345x 10797 1.1440182168782x 102 9.7481843383636 x 1028
250 1 3.622719245691 x 1012 0 0
ya  2.101212666995x10~10 0 0
500 1 7.173620185942 x 1021 0 0
2 9350493168888 x 107 1° 0 0

20 —

-30 —

logo( Error])

40 -

-50

-60

= y(X) using Yn,s/>
Y1 (X) USing Yn 714

logo( Error])
L
T

20 —

-25

-30

0.5 0 0.5 1 1.5
logio(h)
T T
B —— e -
m—Y5(X) USING Yn,5/2 |
— Yo (X) USING Y714
1 1 1 1
-0.5 0 0.5 1 15
log1o(h)

Figure 3. The log-log plots of the errors and the step size on Example 1.

Example 2. The Wu problem [37] arises from Chemistry

Ell (X)]
2(x)

499999 5y (x) — 500000y (x)

—500000y (x) 4 499999.5y5 (x)

with initial conditions y1(0) = 0,y,(0) = 2.

The analytic solution is y1 (x) = exp(—3) — exp(—999999.5x) and y, (x) = exp(—3) 4+ exp(—999999.5x).

The results of the numerical experiments for this example are presented in Table 5 and Figure 4.

Table 5 showed that the block hybrid method vy, +3 performed at par with y, +7 using the same
initial conditions. However, a plot of the log-log of the error and step size showed that y, 5

outperformed y, , 7.
4

Table 5. Absolute error of the block hybrid methods y, | 7 andy, 5 on Example 2.

X

y

Absolute Error fory, 7

Absolute Error fory, 5

5

Y1
Y2

1.8429201220637736 x 10~ 10
1.8429326120728007 x 1010

2.7234449417878892 x 1010
2.7233922061942195x 1010

10

Y1
Y2

2.8917541972095506 x 1011
2.8917645188142327x 1011

4.4907285355610949 x 1011
4.4906853409465430x 10~ 11

20

Y1
Y2

3.8537197115081148 x 10~ 13
3.8537266910596002 x 10~ 13

6.0765400957535354 x 1013
6.0765109578201498 x 10~ 13
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Table 5. Cont.

Absolute Error fory, 7

Absolute Error fory, 5

3.9031860015233805x 10~ 1°
3.9031907131441496 x 10~ 15

6.1072016762397691 x 10~ 15
6.1071820886028638 x 10~ 1°

3.5794145759740676 x 10~17
3.5794177192603953 x 10~ 17

5.4886823015453322x 1017
5.4886691080145620x 10~17

Xy
30 n
Y2
40
Y2
50 1
Y2

3.0204844833668178 x 1019
3.0204866159418346 x 10~ 19

4.6178900419926924 x 10~19
4.6178811401075847 x 10~ 19

g J
& ]
=]

g A5 | | (%) uSing Y52 1
-20 [ | m—yy(X) USING Yn,7/4 1
25 L L L L L

-1 0.5 0 0.5 1 1.5 2
log1o(h)

g J

& ]

=

(_CD” AS |y, (X) USING Yre52 1
-20 [ | m—y,(X) USING Yn,7/4 7
_25 1 1 1 1 1

-1 -0.5 0 0.5 1 1.5 2
log1o(h)

Figure 4. The log—log plots of the errors and the step size on Example 2.

Example 3. We consider the following three-dimensional linear problem:

vi(x) -10 21 0 y1(x)
vh(x)| =1]-21 -10 0 ya(x) |,
y3(x) 0 0 —10J lys(x)

with initial condition [y1(0),y2(0),y3(0)] = [1,1,1]. The analytic solution is

y1(x) exp(—10x) ( cos(21x) + sin(21x))
ya(x)| = |exp(—10x)(cos(21x) — sin(21x))
exp(—10x)

y3(x)

The results of the numerical experiments for this example are presented in Table 6 and Figure 5.
Table 6 showed that the block hybrid method y,, 7 performed at par with y,, +3 using the same initial
values. In addition, this is confirmed by the log-log plots of the error and step size in Figure 5.
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Table 6. Absolute error of the block hybrid methods y, | 7 andy,, 5 on Example 3.

X oy Absolute Error fory, 7 Absolute Error fory, 5
5 2.3285830553148310x 1022 2.2493291039341911 x 1022
Yo 1.3218783622033109 x 1022 1.4477085626385313x 1022
Y3 1.2354721309575536 x 1023 1.7115476217234377 x 1023
10 1.5438485820040401 x 1044 1.5546760679948769 x 1044
Y3 5.0309547106817356 x 1044 5.0285879396184281 x 1044
Yo 4.6131942308588293 x 1045 6.3093549042213966 x 1045
20 3.6580869562867370 x 1088 3.6581192736544930x 1088
¥2 1.9226360458970499 x 1087 1.9226360578422238 x 10~
Y3 3.2194709960708681 x 1088 4.2961763276024321 x 1088
30 0 0
Y2 0 0
Y3 0 0
40 0 0
Y2 0 0
y3 0 0
50 0 0
Y2 0 0
Y3 0 0
? 0 E— T T
g -10r : 1
W oq || === y1(X) using yn,s> ‘\\ A
§ 30 F| ™Y (x) using Yn,7/4 4
S 40 s x s
-1 0.5 0 0.5 1
log1o(h)
= O e —— T T
g -10r , 1
W o9 = Yo(X) USING Y, 5/2 \ i
éc_; 30| Y2(X) USiNg Y, 7/4 4
S 40 s . s
-1 0.5 0 0.5 1
log1o(h)
e 0 T T T
2 10t : 1
W og | | == Y3(x) using Yn.s2 \ |
C‘S,-Z’) 30 F | = Y3(X) USING Yn.7/4 4
9 40 . : x
-1 0.5 0 0.5 1
logso(h)
Figure 5. The log-log plots of the errors and the step size on Example 3.
Example 4. The linear stiff IVPs considered by Fatunla [38].
vy (x)] [—10 100 0 0 0 fy1 ()] [y1(0)]  [17
yh(x) -100 —-10 0 O 0 0 y2(x) ¥2(0) 1
() 0 0 -4 0 0 0 ||l |no|
v () 0 0 0 -1 0 0 ||lux| |wo|l |1
v5(x) 0 0 0 0 —05 0 ||| |kO] |1
lye(x)] L 0 0 0 0 0 -01ly(x)] Lye(0)] L1l
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using the same initial conditions. Nevertheless, both methods, though of order five, outperformed

The results of the numerical experiments for this example are presented in Table 7 and Figure 6.
Table 7 and Figure 6 showed that the block hybrid method y,, , 5 performed at par with those of y,, | 7

Yakubu et al.’s [35] fourteenth-order method, as shown in Table 8.

Table 7. Absolute error of the block hybrid methods y, . 7 andy, s on Example 4.

X

Y

Absolute Error fory, 7

Absolute Error fory, 5

5

1
Y2
Y3
Y4
Y5
Yo

2.6069389501515157 x 1022
8.0250935335644924 x 1023
8.6744998698744801 x 1013
8.8587245265087100x 10~ 10
1.7596617218895716x 1010
8.6153306710912148 x 10~ 14

2.6069389501515157 x 1022
8.0250935335644924 x 10~23
1.2898041482202381 x 1012
1.3666554329189173x 10~
2.7328000973270150x 1010
1.3411494137471891x 10~ 13

10

Y1
Y2
Y3
Y4
Y5
Ye

5.1681476049220830x 1044
9.8396182267041682 x 10~4°
3.5751428964356635x 102!
1.1937922479439249 x 10~ 11
2.8888368260038266x 1011
1.0447198661722723 x 10~ 13

5.1681476049220830x 1044
9.8396182267041682x 1045
5.3153053899417913x 102!
1.8416901846878692 x 10~ 11
4.4864376970432662 x 10~ 11
1.6314727346866675x 10~ 13

20

Y1
Y2
Y3
Y4
Ys
Yo

7.7855244617256059 x 1088
1.7956044336063368 x 1087
3.0364165427948283 x 1038
1.0839615410958194 x 10~ 15
3.8929657295103809 x 10~ 13
7.6882944455292090 x 10~ 14

7.7855244617256059 x 1088
1.7956044336063368 x 1087
4.5134348071673213x 10738
1.6722517595367738 x 10~ 15
6.0458761478102141x 1013
1.2007062011321068 x 10~ 13

30

Y1
Y2
Y3
Y4
Ys
Ye

0
0
1.9341519135769713 x 1052
7.3817656946758547 x 1020
3.9345892715868008 x 10~ 15
4.2445214010200516x 1014

0
0
2.8744015994507605 x 10~2°
1.1388014559059823 x 10~ ¢
6.1105188160798945x 10~ 15
6.6252558994506217 x 10~ 14

40

Y1
Y2
Y3
Y4
Y5
Ye

0
0
1.0951341397262779 x 10~ 72
4.4684213318548600%x10~24
3.5348071243628592x 1017
2.0799334476961917 x 10~ 14

0
0
1.6271787057567443 x 10~ 72
6.8935327550012643 x 102
5.4896470009347222 x 1017
3.2505248492853411 x 10~ 14

50

Y1
Y2
Y3
Ya
Y5
Ye

0

0
5.8132012201935056 x 100
2.5358248498385642 x 1028
2.9771677973414147x 1019
9.5591937143701955x 10~ 15

0
0
8.6356372622664460x 10~
3.9120729933952014 x 1028
4.6236187847225050x 1019
1.4946377469016170x 10~ 14
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Table 8. Absolute error of the block hybrid methods, Yakubu et al. [35], v, , 7 andy, . s on Example 4.

x y Absolute Error in [35] Absolute Error fory, | 7 Absolute Error fory, 5
5 yp  2.220446049250x 10716 2.6069389501515x 1022 2.6069389501515x 1022
yo  1.318389841742x10°1° 8.0250935335644 x 10~23 8.0250935335644 x 10~23
v3 0 8.6744998698744 x 10~ 13 1.2898041482202 x 10712
Y4 0 8.8587245265087 x 1010 1.3666554329189 x 107
50 3.330669073875x 10716 0 0
2 7.771561172376x 1016 0 0
ys  4.440892098500% 10716 5.8132012201935x 100 8.6356372622664 %100
ya  1.110223024625x 10710 2.5358248498385x 1028 3.9120729933952 x 1028
250 y;  6.591949208711x10~17 0 0
yv2  1.734723475976x 10718 0 0
ys  8.326672684688x 10717 0 0
ys  6.661338147750x 10710 0 0
500 1 6.810144895924 10~ 19 0 0
ya 2710505431213 x 10720 0 0
ys  4.857225732735x 1077 0 0
vy 3.330669073875x 1016 0 0
0
[ ] ol
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Figure 6. The log-log plots of the errors and the step size on Example 4. The red and blue lines

represents y, 5 andy, 7 respectively.

From Table 9, we observed that the Wu problem of Example 2 was ill-conditioned at 1,072,275.37
fory, 17 versus 652,920 for y,, 45 Upon inspection, it was discovered that the increase in the condition

number of the system was due to the ill-conditioning of the Jacobian matrix of the problem under
consideration with a condition number of 2 x 10°. The same table shows that, in Examples 1-3, the
condition numbers for y, | 7 are, respectively, 1.72, 3 and 2 times that for y, | 5.
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Table 9. Comparing the condition number and cputime for both block hybrid methods under
discussion. Here, x(J7) and «(J5) are the condition numbers of the Jacobians J; and J5 at the
root, respectively.

Example Size of System x(J7) x(J5) cputime(y, +%) cputime(y, +;)
Example 1 8 x8 1091.10 633.14 3.6000 x107° 3.6000 x107°
Example 2 8 x8 1,072,275.37  652,920.00  3.6000x107° 3.6666x107°
Example 3 12 x12 67.65 22.11 5.7000 x10~° 5.8000x 10~
Example 4 24 x24 137.34 68.07 3.9333 x10~° 3.9333 x107°

We remark that, in order to reduce the condition number and accuracy, we also tried at the
off-grid point % to derive a new block hybrid method. However, this resulted in a higher condition
number than both y, +7 and v, +3- On a final note, the results of both methods presented in this
study outperform the second-order and fourteenth-order second derivative method of [35] with less
function evaluations and computational time.

5. Conclusions

As shown in the numerical examples in this study, we have confirmed that, for higher-dimensional
systems of initial value, the problems y, 5 still have a lower condition number in agreement with
one-dimensional initial value problems. It was also observed that, for higher-dimensional systems,
the result of numerical experiments showed that y, | 5 performed favorably well in comparison to
the exact solution i, 41 Therefore, we recommend the block hybrid method y,, +3 for the numerical
integration of systems of linear, nonlinear, stiff and non-stiff differential equations due to its better
conditioning and accuracy.
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