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Abstract: This article is concerned with the Durrmeyer-type generalization of Szasz operators,
including confluent Appell polynomials and their approximation properties. Also, the rate of
convergence of the confluent Durrmeyer operators is found by using the modulus of continuity and
Peetre’s K-functional. Then, we show that, under special choices of A(t), the newly constructed
operators reduce confluent Hermite polynomials and confluent Bernoulli polynomials, respectively.
Finally, we present a comparison of newly constructed operators with the Durrmeyer-type Szész
operators graphically.
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1. Introduction

As a polynomial set, an Appell set [1] satisfies the following criteria: the determining
function that enables us to have

0 tk
At)e™ =) Pe(x) 5 (1)
k=0 ’
is an official power series as follows:
00 tk
AW = Db, (A0 £0)

For some r > 0, it is presumed that the series in (1) convergent in |f| < r. Another way

to describe the Appell polynomials is the P;c(x) = kPy_1(x) recurrence formulas, where
k=1,2,...

Theorem 1. Consider the polynomial sequence {P,S”’b)(x)}bo, withb ¢ {...,—1,0}. Conse-

quently, the ensuing statements are interchangeable.

(i) {P,E”’b) (x) }k>0 is a confluent sequence of Appell polynomials.

(ii) {P,E”’b) (x) }kzo’s generating function is granted by

%) a tk
Y B () = AW Fi(asbi ), @
k=0 '
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ii.

where {6y} is unrelated to n with 6y # 0, an analytic function, A(t) has an extension of
power series

oo tk
At = X O, @)
k=0 "
and is an analytical function, and
1F1(a;b;z) = i ﬂi 4)
=5 (b); k!

is a confluent hypergeometric function. For all finite z, this function converges, assuming
b¢{...,—1,0} [2]. Then,

(a)y=a(a+1)...(a+k-1); k>1
(@) =1, 1

gives the definition of the Pocchammer symbol [2].

Jakimovski and Leviatan [3] construct the operators as follows

Ty(fix) = ;(’f;épkwx)f(’;).

Mazhar and Totik [4] define Durrmeyer-type Szasz operators as follows:

Zy(fix) = W}i”xw /ooo em(zct!)kf<f’;)'

Recently, Ozarslan and Cekim [5] define confluent Jakimovski-Leviatan operators as

oo (a,b)

1 P (x) < k >
L,(f;x) = k =), b>a>0
RO ATIT Y P U
n€Nand x > 0.

Furthermore, it is expected that these operators fulfill the following requirements:

)
0< Tkl)’ k=0,1,..,and A(1) # 0.

The series at (2) and (3) converge for |t| < r(r > 1).

Recently, they have remarkable studies in operator theory [6-9], analytic function

theory [10], and other fields [11,12].

Now, we define the Durrmeyer-type generalization of Szdsz operators involving

confluent Appell polynomials

e (a,b) X 00 k
Sy(fix) = A(l)lFlﬂ ) Be” () /0 e‘”t%f(t)dt, b>a>0

(a;b;17x) = k!

Péa’b) isgivenin (2),and x >0, 7 € N.

2. Approximation Properties

In this section, we give moments and central moments for our operator including

confluent Appell polynomials.
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Lemma 1. Forany x € [0,00), we obtain

Sy(Lx) = 1,
. _ (@11A@+Lb+1Lyx) A1) 1
69 = o R@hm T rAQ T
2.} - (a)y 1F(@a+2b+2x) 5 (a); 1 2A'(1) 1F1(a+1;b+1;77x)x
> (t ' ) - (b), 1R(@binx) (5)1’7( A1) +3> 1F1(a; b;77x)

A"(1) +34(1) 2
n?A(1) n?

Proof. One way to illustrate the proof is to use it as given in (2)

_|_

Y = AlhR(@bix),

£ A (a)

A'(1)1F(a;b;x) + 1 nxA(1)1F(a+ 1,0+ 1;1x),

(b)1
© Py () (a),
Z Hk' = A"(1)1F(a;b;nx) + A'(1)1F(a; b; ;7x)+2(b) nxA'(1)1F(a+ 1,0+ 1;7x)
k=0 :
(a),

+@(qx)2A(1)1F1(a +2;b+2;x).

By using these equalities in the operator, we obtain the desired results.

Theorem 2. For f € C[0,00),
lim S, (f;x) = f(x)

n—oo

uniformly converges in every compact subset of [0, c0).
Proof. From (4) and Lemma 1, we obtain

lim Sy (e;;x) = e;j(x), i=0,1,2.

1—00

So, from the well-known Korovkin theorem [13] the proof is completed.
O

Lemma 2. The first and second central moments for Sy are given as follows:

' _ ((a)y1F(a+1Lb+1;nx) A1) 1

Syt =) = ((b)il ~R(wbn 1)” 7AQ) T’
o2 ((a)yR(a+204+2mx)  (a)y 1 Fi(a+1b+1nx) 2
S”<(t *) ,x) N ((b)2 1F1(a; b; 7x) 2(b)1 1F1(a;b; 7x) +1)x

((Z<2A’(1) +3> Ri(a+Lb+ Lyx) 2(A’(1) +1>>x
A

A1) 1F1(a;b;17x) 7\ A(1)
"()+3A'(1) | 2
n?A(1) n?

Proof. From the linearity of the operator and Lemma 1,

_l’_

S,7(t —xx) = Sq(el;x) — xSq(eo,‘X),
Sy ((t —x)% x) = Sy(ex;x) —2xSy(er; x) + xZS”(eo;x).
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By using these equalities, the proof is completed. O

3. Rate of Convergence
In this section, we give the rate of convergence by the modulus of continuity, Peetre’s-X
functional, and the second modulus of continuity, respectively. The modulus of continuity
is given by
w(f,8) = sup sup [f(t)—f(x)], 6>0,

|t—x| <6 x€[0,00)

where f € C[0, ). It is due to the following feature of the modulus of continuity

|t — x|

0= s < (145 wrr 0,

Theorem 3. For every x € [0,00) and f € C[0, c0),

1S, (fix) — f(x)] < 2w(f, ),

where
(@), 1F1(a+2b+2yx) ,(a);1F(a+1b+1nx) ) 2
0 = -2 +1)x
0 = { (G R 0 Amh
(a); 1 <2A’(1) )1F1(a+1;b+1;17x) 2 (A’(l) >)
+| 7 +3 - = +1) |x
((b)1’7 A1) 1F1(a;b;17x) 7\ A1)
A1) +3A'(1) | 2\ -
72A(1) 7)o
Proof. Using the operators S;’s linearity and from Lemma 2, we obtain
o plab) k
7 B () /°° e (178)
< neirs —
= A(1)1F1(a;b;;7x)k§ w o ¢ TR O flat
o plab) k
7 B () /°° e (178) |t — x|
< U
= A(1)1P1(a;b;;7x),§) m o ¢ e M Jelfot
o plab) k
7 1> B (px) /°° e (18)
< - nt 1)y ‘
_{1+A(1)1F1(a;b;17x)5k;) N A~ |t — x|dt pw(f,0) (6)

For integral by using the Cauchy-Schwarz inequality, it follows that

| ; L P ) (o0
[Su(fix) = f] - = {(A(1)1F1<a;b;nx>+1)52km(/0 e

k=0
</ooo ”t(ﬁ)k@ - x>2dt> i }w(ﬁé)

Examining Cauchy-Schwarz disparity in summation, one can easily obtain
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S i - 7 = ) o )
Sitfim) =] < "5 A(l)lFl(ﬂ;b;Wx)kg(:) k! / ¢ TR
) (ab) k %
U (nx) e _..(nt)
X (A(1)1F1(ﬂ;b;77x) k—g) : k! A € ﬂtk!(t—x)zdt> (U(f,é)/
— {1+;(sna;x))%(s,,((t—x)z;x))z}w(f,a),
= {14560 el

where d; (x) is given by (5).

50073 = £ < {1+ /o () foo(,0)

can be obtained by considering this inequality in (6). If we choose § =
obtain the desired result. [

dy(x), we can

Lemma 3. For x € [0,00) and f € Cp[0,00), we have

Sy (f;0)] < IIfII
Proof. For S;, we obtain
1 S P(a'b) s , k
1S,(f:x)] = A(1)1F1(a;b;17x)k§) " k!(HX) /0 - %M,ﬁ

1 = B )| (o (rt)

= A(l)lFl(a;b;iyx)k;O ‘ k! /0 e k! f(t)dt
1 00 P(a'h)(ﬂx) o t(’ﬂ)k

= A(1)1Fl(a;b;17x)k§0 : Kl /0 e P If()at

< |If1ISy(1;x)

< fl-

O

C2[0,0) is the space of the functions f, for which f, f/, and f” are continuous on
[0, %0). The norm on the space C3[0, o) is given by [14]

||8Hc23[0,oo) = [I8llcyp0,00) + ||8/Hc3[0,oo) + Hg//HCB[O,oo)'
Now, we define classical Peetre’s-/C functional as follows:

KA = b =gl + A"}

gEC%3 [0,00
where A > 0.
Theorem 4. Let x € [0,00) and f € Cp[0,00). Then, we have for all y € N,

[Sy(fix) = f()] < 2K(fi Ay (x),
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where A1)+ A'(1)(B+2y)  3n+2
_ + + 27 N+
M) = ( 27 A(1) TP )
Proof. For a given function ¢ € C3[0, o), we have the following Taylor expansion
t
§(0) = g(x) + (t =g () + [ (1=9)g"(5)ds. @)

Applying S, operator to Equation (7), we obtain

t
Sy(gix) =gl = 18360 (0)0)] + sy ([ (¢ =) s)asix
/ " f
< 18 leomm St = 55| + 118"y Sy ([ = s )|
1
< 118 llepto) 1S5 (= %) + 5 118" ey 0.0y Sy ( (¢ = 1)% ).

So,
‘Sn(g,‘x) —g(x)| < )‘11||g||c§[o,oo)-

Using the above inequality and Lemma 3, we obtain

|Sy(fix) = f()] = [Sy(fsx) = f(x) + Sy(g5x) = Sy(g;x) +8(x) — g(x)]
1f = 8llcsfo.00) [Sn (L) | + 1If = 8llcy o) + [Sn(85%) — 8(x)]

2(11f — &llesioe) + Allglicaioe))
2K (f3 Ay)-

As a result,

IN A

IN

1Sy (f3x) = f(x)| < 2K(f; Ay)- ®)
Thus, the proof is completed. [

For f € Cg[0, 00), the second modulus of continuity is explained by

wy(f,0) = sup [[f(-+2t) =2f (. + 1) + f()lcypoe0)-

0<t<d

The relationship between Peetre’s-X functional and the second modulus of continuity
is given as follows:

K(f36) < A(wa (£,v8) +min(L,8) £l cyfo00) )- ©)

where the constant A is unaffected by the values of f and J from [15]. From (8) and (9),

189(f3%) = F()] < 24wz (£,/A9) +min(LA) [ fllcy o, )

4. Special Cases

In this section, we define Durrmeyer—Szdasz operators including confluent Bernoulli
polynomials S,[]” and Durrmeyer-Szasz operators including confluent Hermite polynomials

2
SWH by selecting A(t) = e‘%l and A(t) = e 7 in (2), respectively.
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4.1. Approximation Properties for SB

Choosing A(t) = += in (2) we obtain B," (@) The confluent Bernoulli polynomials
have

1F1abxt ZBab}

!, |t| <7

as their generating function, where b ¢ {...,—1,0}.

The Szdsz-Durrmeyer operators including confluent Bernoulli polynomials are pre-
sented as

o plab
Br. _ ’7(6_1) B 17X Ut —nt
S”(f’x)_ll:l(ﬂ;b;ﬂx>k;0 / f 0 € dt

Now, we give moments, central moments, and modulus of continuity for our operator
including confluent Bernoulli polynomials.

Lemma 4. For x € [0, c0), we have the moments for Sf as follows:

S (Lx) = 1,
Fi(a+1,b+1;nx) e—2
SB(t;x) = (a) 1Fy X+
1 (%) (b)y  1h(abx) ’7(3 1)’
SB(t2~x> (@) 1F(a+2,0+2; 17x (a 3¢ -5 \1F(a+1b+1; ﬂx)x
T (b,  1R(abyx) (b n(e—1) 1F1(a; b;17x)
e —4de+5
t oL
n*(e—1)

Lemma 5. For every x € [0, 00) and by Lemma 4, the following identities verify
( )
)
2 )
t—x)%;x = _
(( ) ) ( b), 1h(abnx) (b)y  1FR(a;b;yx)
(
(

+< a), ( -5 >1F1(a+1;b+1;17x) 4 —2¢ ) e —4e+5
7(

b),
Theorem 5. For every x € [0,00) and f € C[0, ),

©n

—
-~

|

R
=

Na¥
Il

a); 1F(a+ 10+ 1;x) 1) i e—2
b)y  1R(abinx) n(e—1)
a), 1F1(a+2;b+2;1x) (a)11F1(11+1;b+1;17X)+1>x2

(
(
(
(

_|_
e—1) 1F1(a;b; nx) n(e—1)

[SE(fix) = F(x)] < 200(£, )

Here,

B (a)y 1F(a+2b+20x)  (a);1F(a+1b+1x) 2
v = (G R 20 R )

(a); [ 3e— 1Fi(a+Lb+1Lnx) 4-—2e e —4e+5 :
*((b) ( <e—1>) By (55 ) +77(e—1))x+ qz<e_1>2} | (10

Proof. Using linearity of the operators S5, we obtain
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_ 0 B(”/h)
Sj(fi) ~ 3] < f?gfz;b;ln)x)kzo : k!(WX)/o _m(”t) 7 = S

nle=1) & B0 o ot = a
1F1(a;b;17x),§) ‘ k! /O T (1+ 5 )w(frfs)df

_ 0 B(a'b) I k

By applying the Cauchy-Schwarz inequality to the last integral, we obtain

— 00 B(“rb) x 0 k %
‘Sf(f;x)—f(x)‘ < {(%+1)§Zkk|(’7)</o e—qt(’?}f!)dt>

k=0
o k 3
(/o ”tw;ffu—xfdt) }W(f,é).

Considering Cauchy-Schwarz inequality for summation and from Lemma 5, one can
easily obtain

IN

_ ) B(”'b) oS k %
SB(f3x) - (x)| 1+(1s<1£§§,-b;1,7)x) k; ) o dt)

1

B o p(ab) 2
X( n(e 1) kzo (nx)/o (t— x)e (77k|) dt) w(f,9),

|
—N
—_
_|_

|
/—’h\
_I_
—
~
=
\./
[T
H/—’
\vx
>,
~—

where A, (x) is given by (10).

5055~ £()] < {14 5y/Mal) feo(£,0)

can be obtained by considering this inequality in (11). If we choose 6 = /A, (x), we achieve
the desired result. [

4.2. Approximation Properties for 5,77"

2
Choosing A(t) = e~ T in (2), then we obtain H,(ca’b). The confluent Hermite polynomi-
als have

e 21P1abxt Z?—lkab —

'!

as their generating function, where b ¢ {...,—1,0}.
The Szédsz-Durrmeyer operators including confluent Hermite polynomials are shown as

1 00 (a,b)
Hir ) — ez Hk (Ux) et (Wt)
Sy (fix) = 1F1(a;b; x) kgé) k! /0 k! g Bt
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Now, we give moments, central moments, and modulus of continuity for our operator
including confluent Hermite polynomials.

Lemma 6. For x € [0, c0), we obtain the moments for S,}H as follows:

SHLx) = 1,
Fi(a+1,b+1;7x)
SH t,x — (a)l 11 X,
(%) ()1 1R(ab;nx)
Fi(a+2b+2;nx) (a); 11F(a+1;b+1;7x) 1
SH(Zx) = (a); 151 D R X — —.
1 ( ) (b),  1F(a;b;inx) (0)yn 1h(a;b;nx) n?

Lemma 7. For every x € [0, 00) and by Lemma 6, the following identities verify

Hep o B (a); 1F(a+1; b+1nx)
stt-xnn = (G a1
Fi(a+2;b+2;nx) (a); 1F1(a+ 1,0+ 1;7x)
SH((t—x)%x) = <(a)211 2 +1 )2
K <( ) ) (b), 1F1(a b;nx) (b), 1F1(a;b; nx)
(a); a+1,b+1;nx) . 1
(b), 1F1 a;b;nx) n?

Theorem 6. For every x € [0,00) and f € C[0, c0),

[SE (i) = f()] < 20(f,my),

where
B (a)y 1Fi(a+2;b+2;7x) (@) 1R(@+ 10+ 1x) 2
i = (G R 20 )
(a)y 11F(a+Lb+Lyx)\ 1
oy ) (12

Proof. From the linearity of the operators S}!, we obtain

) H(”rb)

R B TS )y L *’”(’7” £(8) = f ()t

1 . (a,b)
ez Hy " () e (g)f |t —x
1F1(a;b;17x)k§) ‘ k! /0 e Mg I <1+ > w(f,6)dt
(a, )

gt 1 Hk (1) ()"
< {1+1F1(ab17x) ZO /|t xle™ !dt}w(f,é). (13)

For integration, we apply the Cauchy-Schwarz inequality and obtain

3 0 (“ b) ™ k 3
’S#(f;x) _f(x)’ = {1 N 1F1(a€b 17x) % Z ’7x) (/o 6)m(’?lct!)dt)

(/0"" -t (’7];)](( - x)zdt> ’ }w(f,&).

Examining Cauchy-Schwarz disparity in summation and from Lemma 7, one can
easily obtain
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H
S'7

IN

. 1 et 2 e o :
(f’x)_f(x)’ 1+5<1P1(a;b;77x)k§) kk! /0 T

1

1 o ay(ab) L !
et e W) e
- <1F1(ﬂ;b;17X) L k! /0 ¢ Th (£ —x)%dt w(f,9),

k=0

= {1—1—;(5,7”(1;@)%(5,7%(@—95)2 ))%} w(f,9),

~ {143 et

where 7, (x) is given by (12).

i) = 0] < {1+ Gy Jatso

can be obtained by considering this inequality in (13). If we choose § = /7, (x), we obtain
the desired result. [

5. Graphical Analysis

In this section, we will examine the approximations of both Durrmeyer-type Szédsz
operators and the newly defined confluent Szdsz-Durrmeyer operators to a function f.
Let the function f be

f(x) = (0.5)exp (g)

Then, we plot the convergence of the newly constructed S; confluent Szdsz-Durrmeyer
operators and Z, Durrmeyer-type Szdsz operators [4] to the function f in Figure 1 for

A(t) = 1. In Figure 1, we give three different illustrations for selected values
{ =5,a=05b=15},{y =10,a =05,b =15}, and {y =12,a =1,b = 2}, respectively.
By choosing f(x) = %, we show the error estimation of confluent Szész—

Durrmeyer operators S, via the way of the modulus of continuity in Table 1.

Table 1. Error approximation for S, by using the modulus of continuity.

U) Sy (fix)
10 0.00204334
102 0.00138627
103 0.00089236
10* 0.00054954
105 0.00032734
100 0.00019062

107 0.00010942
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S %0 JR—y)
2,1 )
6 1(0=(0.5)e¥2 1 6 f(x)=(0.5)e"2

5,0
8r Z,(x)

1(x)=(0.5)e?

Figure 1. Illustration of approximation to the function f(x) = (0.5)exp(3) for selected values
{y=5a=05b=15},{y =10,a =05b=15},and {5 =12,a =1,b = 2}, respectively.
6. Conclusions

In this study, Durrmeyer-type generalization of confluent Szdsz operators is con-
structed. The central moments of the newly constructed operators S, are obtained. Fur-
thermore, the rate of convergence is investigated by using the modulus of continuity and
Peetre’s K-functional. The relationship between the newly constructed operators with
B,Ea’b) and ’H,((a’b) are given, respectively. Finally, the convergence of the confluent Szasz—
Durrmeyer operators S, and the classical Szasz—Durrmeyer operators Z,, to the selected
functions are illustrated. The comparison of convergence is given by numerical examples.
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