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Abstract

:

In this paper, the concepts of Wardowski-type set-valued contractions and Işik-type set-valued contractions are introduced and fixed point theorems for such contractions are established. A positive answer to the open Question is given. Examples to support main theorems and an application to integral inclusion are given.
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1. Introduction and Preliminaries


Wardowski [1] introduced the notion of F-contraction mappings and the generalized Banach contraction principle by proving that every F-contractions on complete metric spaces have only one fixed point, where F:   ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function such that




	(F1)

	
F is strictly increasing;




	(F2)

	
for all sequence    {  s n  }  ⊂  ( 0 , ∞ )   ,


   lim  n → ∞    s n  = 0 ⟺  lim  n → ∞   F   s n   = − ∞ ;  












	(F3)

	
there exists a point   q ∈  ( 0 , 1 )  :  lim  t →  0 +     t q  F  t  = 0  .









Among several results ([2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]) generalizing Wardowski’s result, Piri and Kumam [19] introduced the concept of Suzuki-type F-contractions and obtained related fixed point results in complete metric spaces, where   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a strictly increasing function such that




	(F4)

	
  inf F = − ∞  ;




	(F5)

	
F is continuous on   ( 0 , ∞ )  .









Nazam [20] generalized Wardowski’s result to four maps defined on b-metric spaces and proved the existence of a common fixed point by using conditions (F2), (F3) and



	(F6)

	
  τ + F  r  s n   ≤ F   s n   ⟹ τ + F   r n   s n   ≤ F   r  n − 1    s  n − 1      for each   r > 0 , n ∈ N  , where   τ > 0  .







Younis et al. [18] generalized Nazam’s result in b-metric spaces using only condition (F1). That is, they only used the strictly growth of   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   and distinguished two cases:   s = 1   and   s > 1  , where s is the coefficient of b-metric spaces. Younis et al. [21] introduced the notion of Suzuki–Geraghty-type generalized (  F , ψ  )-contractions and generalized the result of [14] in partial b-metric spaces along with Geraghty-type contraction with conditions (F1), (F4) and (F5), and they gave applications to graph the theory and solution of some integral equations. Younis and Singh [22] extended Wardowski’s result to b-metric-like spaces and obtained the sufficient conditions for the existence of solutions of some class of Hammerstein integral equations and fractional differential equations.



On the other hand, Abbas et al. [23] and Abbas et al. [24] extended and generalized Wadorski’s result to two self mappings on partially ordered metric space and fuzzy mappings on metric spaces, respectively, and proved the existence of a fixed point using conditions (F1), (F2) and (F3).



Note that for a function   F : ( 0 , ∞ ) → ( − ∞ , ∞ )  , the following are equivalent:




	(1)

	
(F2) is satisfied;




	(2)

	
(F4) is satisfied;




	(3)

	
   lim  t →  0 +    F  t  = − ∞  .









Hence, we have that


   lim  n → ∞    s n  = 0 ⇒  lim  n → ∞   F   s n   = − ∞  








whenever (F4) holds.



Very recently, Fabiano et al. [25] gave a generalization of Wardowski’s result [1] by reducing the condition on function   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   and by using the right limit of function   F : ( 0 , ∞ ) → ( − ∞ , ∞ )  . They proved the following Theorem 1.



Theorem 1 

([25]). Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → E   is a map such that for all   x , y ∈ E  with  ρ ( T x , T y ) > 0  ,


  τ + F  ρ ( T x , T y )  ≤ F  ρ ( x , y )   








where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function. If   ( F 1 )   is satisfied, then T possesses only one fixed point.





In [25], Fabiano et al. asked the following question:




	
Question ([25]). Can conditions for the function F be reduced to (  F 1  ) and (  F 2  ), and can the proof be made simpler in some results for multivalued mappings in the same way as it was presented in [25] for single-valued mappings?








In this paper, we give a positive answer to the above question by extending the above theorem to set-valued maps and obtain a fixed point result for Işik-type set-valued contractions. We give examples to interpret main results and an application to integral inclusion.



Let   ( E , ρ )   be a metric space. We denote by   C L ( E )   the family of all nonempty closed subsets of E, and by   C B ( E )   the set of all nonempty closed and bounded subsets of E.



Let   H ( · , · )   be the generalized Pompeiu–Hausdorff distance [26] on   C L ( E )  , i.e., for all   A , B ∈ C L ( E )  ,


  H  ( A , B )  =      max {  sup  a ∈ A   ρ  ( a , B )  ,  sup  b ∈ B   ρ  ( b , A )  } ,     if  the  maximum  exists ,       ∞ ,       otherwise ,        








where   ρ ( a , B ) = inf { ρ ( a , b ) : b ∈ B }   is the distance from the point a to the subset B.



Let   δ ( A , B ) = sup { ρ ( a , b ) : a ∈ A , b ∈ B }  . When   A = { x }  , we denote   δ ( A , B )   by   δ ( x , B )  .



For   A , B ∈ C L ( E )  , let   D  ( A , B )  =  sup  x ∈ A   d  ( x , B )  =  sup  x ∈ A    inf  y ∈ B   d  ( x , y )  .  



Then, we have that for all   A , B ∈ C L ( E )  


  D ( A , B ) ≤ H ( A , B ) ≤ δ ( A , B ) .  











Note that the following Lemma 1 can be obtained by applying the assumptions of Lemma 1 to Theorem 4.29 of [27]. In fact, let   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   be monotonically increasing (  x < y   implies   F ( x ) ≤ F ( y )  ) and   {  p n  }   be a given sequence of   ( 0 , ∞ )   such that


   lim  n → ∞    p n  = l ,  where  l > 0 .  











Then, it follows from Theorem 4.28 of [27] that we obtain the conclusion of Lemma 1. Here, we give another proof of Lemma 1.



Lemma 1. 

Let   l > 0  , and let    {  t n  }  ,  {  s n  }  ⊂  ( l , ∞ )    be non-increasing sequences such that


    t n  <  s n  , ∀ n = 1 , 2 , 3 , ⋯  and   lim  n → ∞    t n  =  lim  n → ∞    s n  = l .   











If   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is strictly increasing, then we have


    lim  n → ∞   F   t n   =  lim  n → ∞   F   s n   = F   l +   ≥ F  l  .   








where   F   l +     denotes    lim  t →  l +    F  t   .





Proof. 

As F is strictly increasing, the function    F *  :  ( 0 , ∞ )  → F  (  ( 0 , ∞ )  )    defined by    F *   ( t )  = F  ( t )   ∀ t ∈  ( 0 , ∞ )   , is bijective and continuous on   ( 0 , ∞ )  . We infer that


   lim  t →  l +     F *   t  ≥  F *   l  ,  lim  n → ∞    F *    t n   =  lim  t →  l +     F *   t   and   lim  n → ∞    F *    s n   =  lim  t →  l +     F *   t  .  











Since   {  t n  }   and   {  s n  }   are non-increasing, it follows from the strict increasingness of F that


   F *   (  t  n + 1   )  ≤  F *    t n   <  F *    s n   ≤  F *    s  n − 1    .  











Hence, we obtain that


   lim  t →  l +     F *   t  =  lim  n → ∞    F *    t  n + 1    ≤  lim  n → ∞    F *    t n   ≤  lim  n → ∞    F *    s n   ≤  lim  n → ∞    F *    s  n − 1    ≤  lim  t →  l +     F *   t  ,  








which implies


   lim  n → ∞    F *    t n   =  lim  n → ∞    F *    s n   =  F *    l +   .  











Since    F *   ( t )  = F  ( t )   ∀ t ∈  ( 0 , ∞ )   , we have the desired result. □





Lemma 2 

([28]). Let   ( E , ρ )   be a metric space. If   {  x n  }   is not a Cauchy sequence, then there exists   ϵ > 0   for which we can find subsequences   {  x  m ( k )   }   and   {  x  n ( k )   }   of   {  x n  }   such that   m ( k )   is the smallest index for which


  m  ( k )  > n  ( k )  > k ,  ρ  (  x  m ( k )   ,  x  n ( k )   )  ≥ ϵ  and  ρ  (  x  m ( k ) − 1   ,  x  n ( k )   )  < ϵ .  



(1)







Further, if


    lim  n → ∞   ρ  (  x n  ,  x  n + 1   )  = 0 ,   








then we have that


       lim  k → ∞   ρ  (  x  n ( k )   ,  x  m ( k )   )  =  lim  k → ∞   ρ  (  x  n ( k ) + 1   ,  x  m ( k )   )        =  lim  k → ∞   ρ  (  x  n ( k )   ,  x  m ( k ) + 1   )  =  lim  k → ∞   ρ  (  x  n ( k ) + 1   ,  x  m ( k ) + 1   )  = ϵ .      



(2)









Lemma 3. 

Let   ( E , ρ )   be a metric space, and let   A , B ∈ C L ( E )  . If   a ∈ A   and   ρ ( a , B ) < c  , then there exists   b ∈ B   such that   ρ ( a , b ) < c  .





Proof. 

Let   ϵ = c − ρ ( a , B )  . It follows from the definition of infimum that there exists   b ∈ B   such that   ρ ( a , b ) < ρ ( a , B ) + ϵ  . Hence,   ρ ( a , b ) < c  . □





Lemma 4. 

Let   ( E , ρ )   be a metric space, and let   A , B ∈ C L ( E )   and   ϕ : [ 0 , ∞ ) → [ 0 , ∞ )   be a strictly increasing function. If   a ∈ A   and   ρ ( a , B ) + ϕ ( ρ ( a , B ) ) < c  , then there exists   b ∈ B   such that   ρ  ( a , b )  + ϕ  ρ ( a , b )  < c  .





Proof. 

Since  ϕ  is strictly increasing,


  ρ  ( a , B )  <  ϕ  − 1    ( c − ρ  ( a , B )  )  .  











By Lemma 3, there exists    b ′  ∈ B   such that


  ρ  ( a ,  b ′  )  <  ϕ  − 1    ( c − ρ  ( a , B )  )   








which yields


  ρ  ( a , B )  < c − ϕ  ρ ( a ,  b ′  )  .  











Again, by applying Lemma 3, there exists    b  ′ ′   ∈ B   such that


  ρ  ( a ,  b  ′ ′   )  < c − ϕ  ρ ( a ,  b ′  )  .  











Let   min  { ρ  ( a ,  b ′  )  , ρ  ( a ,  b  ′ ′   )  }  = ρ  ( a , b )  .   Then, we have that


  ρ  ( a , b )  + ϕ  ρ ( a , b )  < c .  











□





Lemma 5. 

If   ( E , ρ )   is a metric space, then   K ( E ) ⊂ C L ( E )  , where   K ( E )   is the family of nonempty compact subsets of E.






2. Fixed Point Results


Let   ( E , ρ )   be a metric space, and let   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   be a strictly increasing function. A set-valued map   T : E → C L ( E )   is called a Wardowski-type contraction if the following condition holds:



There exists a constant   τ > 0   such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


  τ + F ( H ( T x , T y ) ) ≤ F ( m ( x , y ) ) ,  



(3)




where   m  ( x , y )  = max { ρ  ( x , y )  , ρ  ( x , T x )  , ρ  ( y , T y )  ,  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  } .  



We now prove our main result.



Theorem 2. 

Let   ( E , ρ )   be a complete metric space. If   T : E → C L ( E )   is a Wardowski-type set-valued contraction, then T possesses a fixed point.





Proof. 

Let    x 0  ∈ E   be a point, and let    x 1  ∈ T  x 0   .



If    x 1  ∈ T  x 1   , then the proof is completed.



Assume that    x 1  ∉ T  x 1   . Then,   ρ (  x 1  , T  x 1  ) > 0  , because   T  x 1  ∈ C L  ( X )   . Hence,   H  ( T  x 0  , T  x 1  )  ≥ d  (  x 1  , T  x 1  )  > 0 .   From (3) we have that


  τ + F  ( H  ( T  x 0  , T  x 1  )  )  ≤ F  ( m  (  x 0  ,  x 1  )  )  .  



(4)







We infer that


         m  (  x 0  ,  x 1  )  = max  { ρ  (  x 0  ,  x 1  )  , ρ  (  x 0  , T  x 0  )  , ρ  (  x 1  , T  x 1  )  ,  1 2   [ ρ  (  x 0  , T  x 1  )  + ρ  (  x 1  , T  x 0  )  ]  }          =    max  { ρ  (  x 0  ,  x 1  )  , ρ  (  x 1  , T  x 1  )  }  ,  because  that  ρ  (  x 0  , T  x 0  )  ≤ ρ  (  x 0  ,  x 1  )    and            1 2   [ ρ  (  x 0  , T  x 1  )  + ρ  (  x 1  , T  x 0  )  ]  ≤  1 2   [ ρ  (  x 0  ,  x 1  )  + ρ  (  x 1  , T  x 1  )  ]  .      











If   m  (  x 0  ,  x 1  )  = ρ  (  x 1  , T  x 1  )   , then from (4) we obtain that


  F  ( ρ  (  x 1  , T  x 1  )  )  < τ + F  ( H  ( T  x 0  , T  x 1  )  )  ≤ F  ( ρ  (  x 1  , T  x 1  )  )  ,  








which is a contradiction. Thus,   m  (  x 0  ,  x 1  )  = ρ  (  x 0  ,  x 1  )   . It follows from (4) that


   1 2  τ + F  ( ρ  (  x 1  , T  x 1  )  )  < τ + F  ( H  ( T  x 0  , T  x 1  )  )  ≤ F  ( ρ  (  x 0  ,  x 1  )  )  .  



(5)







Since (F1) is satisfied, we obtain that


  ρ  (  x 1  , T  x 1  )  <  F  − 1    (  1 2  τ + F  ( H  ( T  x 0  , T  x 1  )  )  )  .  











Applying Lemma 3, there exists    x 2  ∈ T  x 1    such that


  ρ  (  x 1  ,  x 2  )  <  F  − 1    (  1 2  τ + F  ( H  ( T  x 0  , T  x 1  )  )  )  ,  








which implies


  F  ( ρ  (  x 1  ,  x 2  )  )  <  1 2  τ + F  ( H  ( T  x 0  , T  x 1  )  )  ≤ F  ( ρ  (  x 0  ,  x 1  )  )  −  1 2  τ .  



(6)







Again from (3) we have that


   1 2  τ + F  ( ρ  (  x 2  , T  x 2  )  )  < τ + F  ( H  ( T  x 1  , T  x 2  )  )  ≤ F  ( ρ  (  x 1  ,  x 2  )  )   



(7)




which implies


  ρ  (  x 2  , T  x 2  )  <  F  − 1    (  1 2  τ + F  ( H  ( T  x 1  , T  x 2  )  )  )  .  











By Lemma 3, there exists    x 3  ∈ T  x 2    such that


  ρ  (  x 2  ,  x 3  )  <  F  − 1    (  1 2  τ + F  ( H  ( T  x 1  , T  x 2  )  )  )  .  











Hence, we obtain that


  F  ( ρ  (  x 2  ,  x 3  )  )  <  1 2  τ + F  ( H  ( T  x 1  , T  x 2  )  )  ≤ F  ( ρ  (  x 1  ,  x 2  )  )  −  1 2  τ .  



(8)







Inductively, we have that for all   n ∈ N ,  


   x n  ∈ T  x  n − 1    








and


  F  ( ρ  (  x n  ,  x  n + 1   )  )  <  1 2  τ + F  ( H  ( T  x  n − 1   ,  x n  )  )  ≤ F  ( ρ  (  x  n − 1   ,  x n  )  )  −  1 2  τ .  



(9)







Because F is a strictly increasing function,


  ρ  (  x n  ,  x  n + 1   )  < ρ  (  x  n − 1   ,  x n  )  ,  ∀ n ∈ N .  











Hence, there exists   r ≥ 0   such that


   lim  n → ∞   ρ  (  x n  ,  x  n + 1   )  = r .  











Assume that   r > 0  . By Lemma 1, we have that


   lim  n → ∞   F  ( ρ  (  x n  ,  x  n + 1   )  )  =  lim  n → ∞   F  ( ρ  (  x  n − 1   ,  x n  )  )  =  lim  t →  r +    F  ( t )  = F  (  r +  )  ≥ F  ( r )  .  



(10)







Taking limit   n → ∞   in (9) and using (10), we obtain that


  F  (  r +  )  ≤ F  (  r +  )  −  1 2  τ ,  








which is a contradiction, because   τ > 0 .   Thus, we obtain that


   lim  n → ∞   ρ  (  x n  ,  x  n + 1   )  = 0 .  



(11)







Now, we show that   {  x n  }   is a Cauchy sequence. Assume that   {  x n  }   is not a Cauchy sequence. Then, there exists   ϵ > 0   for which we can find subsequences   {  x  m ( k )   }   and   {  x  n ( k )   }   of   {  x n  }   such that   m ( k )   is the smallest index for which (1) holds. That is, the following are satisfied:


  m  ( k )  > n  ( k )  > k ,  ρ  (  x  m ( k )   ,  x  n ( k )   )  ≥ ϵ  and  ρ  (  x  m ( k ) − 1   ,  x  n ( k )   )  < ϵ .  











It follows from (3) that


       F ( ρ   (  x  n ( k ) + 1   , T  x  m ( k )   )   < τ + F ( ρ   (  x  n ( k ) + 1   , T  x  m ( k )   )        ≤ τ + F ( H  ( T  x  n ( k )   , T  x  m ( k )   )  ≤ F  ( m  (  x  n ( k )   ,  x  m ( k )   )  )  .     



(12)







We infer that


        ϵ ≤ ρ  (  x  n ( k )   ,  x  m ( k )   )  ≤ m  (  x  n ( k )   ,  x  m ( k )   )       =    max { ρ  (  x  n ( k )   ,  x  m ( k )   )  , ρ  (  x  n ( k )   , T  x  n ( k )   )  , ρ  (  x  m ( k )   , T  x  m ( k )   )  ,           1 2   [ ρ  (  x  n ( k )   , T  x  m ( k )   )  + ρ  (  x  m ( k )   , T  x  n ( k )   )  ]   }       ≤    max { ρ  (  x  n ( k )   ,  x  m ( k )   )  , ρ  (  x  n ( k )   ,  x  n ( k ) + 1   )  , ρ  (  x  m ( k )   ,  x  m ( k ) + 1   )  ,           1 2   [ ρ  (  x  n ( k )   ,  x  m ( k ) + 1   )  + ρ  (  x  m ( k )   ,  x  n ( k ) + 1   )  ]   }      



(13)







Taking limit as   k → ∞   on both sides of (13) and using (2), we obtain that


   lim  k → ∞   m  (  x  n ( k )   ,  x  m ( k )   )  = ϵ .  



(14)







Since F is strictly increasing, from (12) we have that


  ρ  (  x  n ( k ) + 1   , T  x  m ( k )   )  <  F  − 1    ( τ + F   ( ρ  (  x  n ( k ) + 1   , T  x  m ( k )   )  )  .  











By applying Lemma 3, there exists    y  m ( k )   ∈ T  x  m ( k )     such that


  ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  <  F  − 1    ( τ + F   ( ρ  (  x  n ( k ) + 1   , T  x  m ( k )   )  )  .  











Hence,


  F  ( ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  )   < τ + F ( ρ   (  x  n ( k ) + 1   , T  x  m ( k )   )  .  











Thus, it follows from (12) that


        F ( ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  )      <    τ + F  ( ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  )   < τ + F ( ρ   (  x  n ( k ) + 1   , T  x  m ( k )   )       ≤    τ + F ( H  ( T  x  n ( k )   , T  x  m ( k )   )       ≤    F ( m  (  x  n ( k )   ,  x  m ( k )   )  )     



(15)




which leads to


  ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  < m  (  x  n ( k )   ,  x  m ( k )   )  ,  ∀ k = 1 , 2 , 3 , ⋯ .  



(16)







By taking   lim sup   as   k → ∞   in (16) and using (14), we have that


   lim  k → ∞   sup ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  ≤ ϵ .  



(17)







Since


  ρ  (  x  n ( k ) + 1   , T  x  m ( k )   )  ≤ ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  ,  










        ρ (  x  n ( k ) + 1   ,  x  m ( k )   )      ≤    ρ  (  x  n ( k ) + 1   , T  x  m ( k )   )  + ρ  ( T  x  m ( k )   ,  x  m ( k )   )       ≤    ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  + ρ  (  x  m ( k ) + 1   ,  x  m ( k )   )  .     



(18)







Taking   lim inf   as   k → ∞   in (18) and using (2), we obtain that


  ϵ ≤  lim  k → ∞   inf ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  .  



(19)







It follows from (17) and (19) that


   lim  k → ∞   ρ  (  x  n ( k ) + 1   ,  y  m ( k )   )  = ϵ .  



(20)







By applying Lemma 1 to (15) with (14), (16) and (20), we obtain that


  F  (  ϵ +  )  ≤ τ + F  (  ϵ +  )  ≤ F  (  ϵ +  )   








which leads to a contradiction. Hence,   {  x n  }   is a Cauchy sequence. From the completeness of E, there exists


   x *  =  lim  n → ∞    x n  ∈ E .  











It follows from (3) that


        F  ( ρ  (  x  n + 1   , T  x *  )  )  < τ + F  ( ρ  (  x  n + 1   , T  x *  )  )       ≤    τ + F  ( H  ( T  x n  , T  x *  )  )  ≤ F  ( m  (  x n  ,  x *  )  )  ,     



(21)




where   m  (  x n  ,  x *  )   = max { ρ   (  x n  ,  x *  )  , ρ  (  x n  ,  x  n + 1   )  , ρ  (  x *  , T  x *  )   ,    1 2   [ ρ  (  x *  ,  x  n + 1   )  + ρ  (  x n  , T  x *  )  ]   }   .



Since F is strictly increasing, from (21) we have that


  ρ  (  x  n + 1   , T  x *  )  < m  (  x n  ,  x *  )  ,  



(22)




and thus


   lim  n → ∞   ρ  (  x  n + 1   , T  x *  )  =  lim  n → ∞   m  (  x n  ,  x *  )  = ρ  (  x *  , T  x *  )  .  



(23)







Assume that   ρ (  x *  , T  x *  ) > 0  . By Lemma 1, we have that


         lim  n → ∞   F  ( ρ  (  x  n + 1   , T  x *  )  )  =  lim  n → ∞   F  ( m  (  x n  ,  x *  )  )       =     lim  t → ρ   (  x *  , T  x *  )  +    F  ( t )  = F  ( ρ   (  x *  , T  x *  )  +  )  .     



(24)







Applying (24) to (21), we obtain that


  F  ( ρ   (  x *  , T  x *  )  +  )  ≤ τ + F  ( ρ   (  x *  , T  x *  )  +  )  ≤ F  ( ρ   (  x *  , T  x *  )  +  )   








which leads to a contradiction. Hence,   ρ (  x *  , T  x *  ) = 0  , and    x *  ∈ T  x *  .   □





The following example interprets Theorem 2.



Example 1. 

Let   E = [ 0 , 1 ]   and   ρ ( x , y ) = | x − y | ,  ∀ x , y ∈ E  . Then   ( E , ρ )   is a complete metric space. Define a set-valued map   T : E → C L ( E )   by


   T x =      { 1 } ,     ( x = 0 )       {  2 5  ,  1 2  } ,     ( 0 < x ≤ 1 ) .        











Let   τ = ln   2.1  2    and   F  t  = ln t ,  ∀ t > 0  . We show that T is a Wardowski-type set-valued contraction. We now consider the following two cases.



First, let   x = 0  and  0 < y ≤ 1  .



Then,   H  ( T x . T y )  =  3 5   . We obtain that


         τ + F  H ( T x , T y )  − F  ρ ( x , T x )       =    τ + F   3 5   − F  1       =    ln   2.1  2  + ln  3 5  − ln 1      =    ln 6.3 − ln 10 ≈ − 0.46 < 0 .      











Thus,


   τ + F  H ( T x , T y )  < F  ρ ( x , T x )  ,   








which implies


   τ + F  H ( T x , T y )  < F  m ( x , y )  .   











Second, let   0 ≤ x < 1  and  y = 1  .



Then   H  ( T x , T y )  =  4 5   . We infer that


         τ + F  H ( T x , T y )  − F  ρ ( y , T y )       =    τ + F   4 5   − F  1       =    ln   2.1  2  + ln  4 5  − ln 1      =    ln 8.4 − ln 10 ≈ − 0.17 < 0 .      











Thus,


   τ + F  H ( T x , T y )  < F  ρ ( y , T y )    








which leads to


   τ + F  H ( T x , T y )  < F  m ( x , y )  .   











Hence, T is a Wardowski-type set-valued contraction. The assumptions of Theorem 2 are satisfied. By Theorem 2, T possesses two fixed points,   2 5   and    1 2  .  





Remark 1. 

Theorem 2 is a positive answer to Question 4.3 of [25].





Remark 2. 

Theorem 2 is an extention of Theorem 2.2 [13] to set-valued maps without conditions (F2) and (F3).





By Theorem 2, we have the following results.



Corollary 1. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


   τ + F ( H ( T x , T y ) ) ≤ F ( l ( x , y ) )   



(25)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function, and


      l ( x , y ) =     max { ρ  ( x , y )  ,  1 2   [ ρ  ( x , T x )  + ρ  ( y , T y )  ]  ,  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  } .      











If (F1) is satisfied, then T possesses a fixed point.





Proof. 

Since   l ( x , y ) ≤ m ( x , y )  ,   F  l ( x , y )  ≤ F  m ( x , y )   . Thus, (25) implies (2). By Theorem 2, T possesses a fixed point. □





Corollary 2. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


   τ + F ( H ( T x , T y ) ) ≤ F ( ρ ( x , y ) )   



(26)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function. If (F1) is satisfied, then T possesses a fixed point.





Proof. 

Since   ρ ( x , y ) ≤ m ( x , y )   and (F1) holds, (26) implies (2). By Theorem 2, T possesses a fixed point. □





Corollary 3. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


         τ + F ( H ( T x , T y ) )      ≤    F ( a ρ ( x , y ) + b ρ ( x , T x ) + c ρ ( y , T y ) + e [ ρ ( x , T y ) + ρ ( y , T x ) ] )      



(27)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function, and   a , b , c , e ≥ 0   and   a + b + c + 2 e = 1  . If (F1) is satisfied, then T possesses a fixed point.





Proof. 

It follows from (27) that


        τ + F ( H ( T x , T y ) )      ≤    F ( a ρ ( x , y ) + b ρ ( x , T x ) + c ρ ( y , T y ) + e [ ρ ( x , T y ) + ρ ( y , T x ) ] )      =    F  ( a ρ  ( x , y )  + b ρ  ( x , T x )  + c ρ  ( y , T y )  ]  + 2 e  1 2    [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  )       ≤    F (  ( a + b + c + 2 e )  max  { ρ  ( x , y )  , ρ  ( x , T x )  , ρ  ( y , T y )  ,  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  }  )      =    F ( m ( x , y ) ) .     











By Theorem 2, T possesses a fixed point. □





Corollary 4. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


         τ + F ( H ( T x , T y ) )      ≤    F ( a ρ ( x , y ) + b [ ρ ( x , T x ) + ρ ( y , T y ) ] + c [ ρ ( x , T y ) + ρ ( y , T x ) ] )      



(28)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function, and   a , b , c ≥ 0   and   a + 2 b + 2 c = 1  . If (F1) is satisfied, then T possesses a fixed point.





Proof. 

It follows from (28) that


        τ + F ( H ( T x , T y ) )      ≤    F ( a ρ ( x , y ) + b [ ρ ( x , T x ) + ρ ( y , T y ) ] + c [ ρ ( x , T y ) + ρ ( y , T x ) ] )      =    F ( a ρ  ( x , y )  + 2 b  1 2   [ ρ  ( x , T x )  + ρ  ( y , T y )  ]  + 2 c  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  )      ≤    F (  ( a + 2 b + 2 c )  max  { ρ  ( x , y )  ,  1 2   [ ρ  ( x , T x )  + ρ  ( y , T y )  ]  ,  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  }  )      =    F ( l ( x , y ) ) .     











By Corollary 1, T possesses a fixed point. □





Corollary 5. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


   τ + F  ( H  ( T x , T y )  )  ≤ F (  1 2   [ ρ  ( x , T x )  + ρ  ( y , T y )  ]  )   



(29)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function. If (F1) is satisfied, then T possesses a fixed point.





Proof. 

Since    1 2   [ ρ  ( x , T x )  + ρ  ( y , T y )  ]  ≤ l  ( x , y )    and (F1) holds, (29) implies (25). By Corollary 1, T possesses a fixed point. □





Corollary 6. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for all   x , y ∈ E  with  H ( T x , T y ) > 0  ,


   τ + F  ( H  ( T x , T y )  )  ≤ F (  1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  )   



(30)




where   τ > 0   and   F : ( 0 , ∞ ) → ( − ∞ , ∞ )   is a function. If (F1) is satisfied, then T possesses a fixed point.





Proof. 

Since    1 2   [ ρ  ( x , T y )  + ρ  ( y , T x )  ]  ≤ l  ( x , y )    and (F1) holds, implies (25). By Corollary 1, T possesses a fixed point. □





Remark 3. 

Corollary 4 is a generalization of the main theorem of [29]. Indeed, if   F ( t ) = ln t , ∀ t > 0   and we take T to be the self-mapping of E, then Corollary 4 becomes the main theorem of [29].





Nadler [30] extended Banach’s fixed point theorem to set-valued maps. We are calling it Nadler’s fixed point theorem. We now prove the following theorem, which is a generalization of Nadler’s fixed point theorem.



Theorem 3. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is an Işik-type set-valued contraction, i.e., for each   x , y ∈ E   and each   u ∈ T x  , there exists   v ∈ T y   such that


   ρ ( u , v ) ≤ ϕ ( ρ ( x , y ) ) − ϕ ( ρ ( u , v ) )   



(31)




where   ϕ : [ 0 , ∞ ) → [ 0 , ∞ )   is a function such that


    lim  t →  0 +    ϕ  ( t )  = 0 .   



(32)







Then, T possesses a fixed point.





Proof. 

Let    x 0  ∈ E  , and let    x 1  ∈ T  x 0   . Then there exits    x 2  ∈ T  x 1    such that


  ρ  (  x 1  ,  x 2  )  ≤ ϕ  ( ρ  (  x 0  ,  x 1  )  )  − ϕ  ( ρ  (  x 1  ,  x 2  )  )  .  











Again, there exists    x 3  ∈ T  x 2    such that


  ρ  (  x 2  ,  x 3  )  ≤ ϕ  ( ρ  (  x 1  ,  x 2  )  )  − ϕ  ( ρ  (  x 2  ,  x 3  )  )  .  











Inductively, we have a sequence   {  x n  } ⊂ E   such that for all   n = 1 , 2 , 3 , ⋯  ,


   x n  ∈ T  x  n − 1    and  ρ  (  x n  ,  x  n + 1   )  ≤ ϕ  ( ρ  (  x  n − 1   ,  x n  )  )  − ϕ  ( ρ  (  x n  ,  x  n + 1   )  )  .  



(33)







It follows from (33) that   { ϕ  ( ρ  (  x  n − 1   ,  x n  )  )  }   is a non-increasing sequence and bounded below by 0. Hence, there exists   r ≥ 0   such that


   lim  n → ∞   ϕ  ( ρ  (  x  n − 1   ,  x n  )  )  = r .  











We show that   {  x n  }   is a Cauchy sequence.



Let   m , n   be any positive integers such that   m > n  . Then we have that


        ρ (  x n  ,  x m  )      ≤    ρ  (  x n  ,  x  n + 1   )  + ρ  (  x  n + 1   ,  x  n + 2   )  + ⋯ + ρ  (  x  m − 1   ,  x m  )       ≤    ϕ  ( ρ  (  x  n − 1   ,  x n  )  )  − ϕ  ( ρ  (  x  m − 1   ,  x m  )  )       ≤    ϕ ( ρ  (  x  n − 1   ,  x n  )  ) − r .     



(34)







Letting   m , n → ∞   in (34), we obtain that


   lim  n , m → ∞   ρ  (  x n  ,  x m  )  = 0 .  











Thus,   {  x n  }   is a Cauchy sequence. It follows from the completeness of E that


   x *  =  lim  n → ∞    x n    exists .    



(35)







Now, we show that   x *   is a fixed point for T.



It follows from (31) that for    x n  ∈ T  x  n − 1    , there exists   v ∈ T  x *    such that


  ρ  (  x n  , v )  ≤ ϕ  ( ρ  (  x  n − 1   ,  x *  )  )  − ϕ  ( ρ  (  x n  , v )  )  ≤ ϕ  ( ρ  (  x  n − 1   ,  x *  )  )  .  



(36)







Taking limit   n → ∞   in Equation (36) and using (32), we infer that


   lim  n → ∞   ρ  (  x n  , v )  = 0  








which implies


   x *  = v ∈ T  x *  .  











□





Example 2. 

Let   E = {  x n  :  x n  =  ∑  k = 1  n  , n ∈ N }   and   ρ ( x , y ) = | x − y | , ∀ x , y ∈ E  . Then   ( E , ρ )   is a complete metric space.



Define a map   T : E → C L ( E )   by


   T x =      {  x 1  } ,     ( x =  x 1  )       {  x 1  ,  x 2  ,  x 3  , ⋯  x  n − 1   } ,     ( x =  x n  ) .        











Let   ϕ  ( t )  =  1 2  t , ∀ t ≥ 0  .



We show that condition (31) is satisfied.



Consider the following two cases.



First, let   x =  x 1   and  y =  x n  , n = 2 , 3 , 4 , ⋯  .



Then, for   u =  x 1  ∈ T x  , there exists   v =  x 1  ∈ T y   such that


   ρ  ( u , v )  = 0 <  1 2  ρ  (  x 1  ,  x n  )  = ϕ  ρ (  x 1  ,  x n  )  = ϕ  ρ (  x 1  ,  x n  )  − ϕ  ρ ( u , v )  .   











Second, let   x =  x n   and  y =  x m  , m > n , n = 2 , 3 , 4 , ⋯  .



For   u =  x k  ∈ T x   ( k = 1 , 2 , 3 , ⋯ , n − 1 )   , there exists   v =  x k  ∈ T y   such that


   ρ  ( u , v )  = 0 <  1 2  ρ  (  x n  ,  x m  )  = ϕ  ρ (  x n  ,  x m  )  = ϕ  ρ (  x n  ,  x m  )  − ϕ  ρ ( u , v )  .   











This show that T satisfies condition (31). Thus, all conditions of Theorem 3 hold. From Theorem 3, T possesses a fixed point,    x *  =  x 1   .





Corollary 7. 

Let   ( E , ρ )   be a complete metric space. Suppose that   T : E → C L ( E )   is a set-valued map such that for each   x , y ∈ E  ,


   H ( T x , T y ) < ϕ ( ρ ( x , y ) ) − ϕ ( H ( T x , T y ) ) ,   








where   ϕ : [ 0 , ∞ ) → [ 0 , ∞ )   is a strictly increasing function such that


    lim  t →  0 +    ϕ  ( t )  = 0 .   











Then, T possesses a fixed point.





Proof. 

Let   x , y ∈ E   and let   u ∈ T x  . As  ϕ  is strictly increasing,


  ρ ( u , T y ) + ϕ ( ρ ( u , T y ) ) < ϕ ( ρ ( x , y ) ) .  








Applying Lemma 4, there exists   v ∈ T y   such that


  ρ ( u , v ) + ϕ ( ρ ( u , v ) ) < ϕ ( ρ ( x , y ) ) .  








By Theorem 3, T possesses a fixed point. □





From Theorem 3 we have the following result.



Corollary 8 

([31]). Let   ( E , ρ )   be a complete metric space. Suppose that   f : E → E   is a map such that for each   x , y ∈ E  ,


  ρ ( f x , f y ) ≤ ϕ ( ρ ( x , y ) ) − ϕ ( ρ ( f x , f y ) )  








where   ϕ : [ 0 , ∞ ) → [ 0 , ∞ )   is a function such that


   lim  t →  0 +    ϕ  ( t )  = 0 .  











Then, f possesses a fixed point.






3. Application


In this section, we give an application of our result to integral inclusion. Let   [ a , b ] ⊂ ( − ∞ , ∞ )   be a closed interval, and let   C ( [ a , b ] , ( − ∞ , ∞ ) )   be the family of continuous mapping from   [ a , b ]   into   ( − ∞ , ∞ )  . Let   E = C ( [ a , b ] , ( − ∞ , ∞ ) )   and   ρ  ( x , y )  =  sup  t ∈ [ a , b ]    | x  ( t )  − y  ( t )  |    for all   x , y ∈ E  . Then,   ( E , ρ )   is a complete metric space.



Consider the Fredholm type integral inclusion:


  x  ( t )  ∈  ∫  a  b  K  ( t , s , x  ( s )  )  d s + f  ( t )  , t ∈  [ a , b ]   



(37)




where   f ∈ E  ,   K : [ a , b ] × [ a , b ] × ( − ∞ , ∞ ) → C B ( ( − ∞ , ∞ ) )  , and   x ∈ E   is the un- known function.



Suppose that the following conditions are satisfied:




	(1st)

	
For each   x ∈ E , K  ( · , · , x  ( s )  )  =  K x   ( · , · )    is continuous;




	(2nd)

	
There exists a continuous function   Z : [ a , b ] × [ a , b ] → [ 0 , ∞ )   such that for all   t , s ∈ [ a , b ]   and all   u , v ∈ E  ,


   |   k u   ( t , s )  −  k v    ( t , s )  | ≤ Z  ( t , s )  ρ  ( u  ( s )  , v  ( s )  )    








where    k u   ( t , s )  ∈  K u   ( t , s )  ,  k v   ( t , s )  ∈  K v   ( t , s )  ;  




	(3rd)

	
There exists   α > 1   such that


   sup  t ∈ [ a , b ]    ∫  a  b  Z  ( t , s )  d s ≤  1  2 + α   .  

















We apply the following theorem, known as Michael’s selection theorem, to the proof of Theorem 5.



Theorem 4 

([32]). Let X be a paracompact space, and let B be a Banach space. Suppose that   F : X → B   is a lower semicontinuous set-valued map such that for all   x ∈ X , F ( x )   is a nonempty closed and convex subset of B. Then   F : X → B   admits a continuous single valued selection.





Note that   ( − ∞ , ∞ )   with absolute value norm is a Banach space and closed intervals and singleton of real numbers are a convex subset of   ( − ∞ , ∞ )  .



Theorem 5. 

Let   ( E , ρ )   be a complete metric space. If conditions (1st), (2nd) and (3rd) are satisfied, then the integral inclusion (37) has a solution.





Proof. 

Define a set-valued map   T : E → C B ( E )   by


  T x = { y ∈ E : y  ( t )  ∈  ∫  a  b  K  ( t , s , x  ( s )  )  d s + f  ( t )  , t ∈  [ a , b ]  } .  











Let   x ∈ E   be given. For the set-valued map    K x   ( t , s )  :  [ a , b ]  ×  [ a , b ]  → C B  (  ( − ∞ , ∞ )  )   , by applying Michael’s selection theorem, there exists a continuous map    k x   ( t , s )  :  [ a , b ]  ×  [ a , b ]  →  ( − ∞ , ∞ )    such that


   k x   ( t , s )  ∈  K x   ( t , s )  , ∀ t , s ∈  [ a , b ]  .  











Thus,


   ∫  a  b   k x   ( t , s )  d s + f  ( t )  ∈ T x ,  








and so   T x ≠ ∅ .  



Since f and   k x   are continuous,   T x ∈ C B ( E )   for each   x ∈ E  .



Let    y 1  ∈ T  x 1   . Then,


   y 1   ( t )  ∈  ∫  a  b  K  ( t , s ,  x 1   ( s )  )  d s + f  ( t )  , t ∈  [ a , b ]  .  











Hence, there exists    k  x 1    ( t , s )  ∈  K  x 1    ( t , s )  , ∀ t , s ∈  [ a , b ]    such that


   y 1   ( t )  =  ∫  a  b   k  x 1    ( t , s )  d s + f  ( t )  , ∀ t , s ∈  [ a , b ]  .  











It follows from (2nd) that there exists   z  ( t , s )  ∈  K  x 2    ( t , s )    such that


   |   k  x 1     ( t , s )  − z  ( t , s )  | ≤ Z  ( t , s )  ρ   (  x 1   ( s )  ,  x 2   ( s )  )  , ∀ t , s ∈  [ a , b ]  .  











Let   U : [ a , b ] × [ a , b ] → C B ( ( − ∞ , ∞ ) )   be defined by


  U  ( t , s )  =  K  x 2    ( t , s )  ∩  { u ∈  ( − ∞ , ∞ )  : ρ  (  k  x 1    ( t , s )  , u )  ≤ ρ  (  x 1   ( s )  ,  x 2   ( s )  )  }  .  











From (1st) U is continuous. Hence, it follows that there exists a continuous map    k  x 2   :  [ a , b ]  ×  [ a , b ]  →  ( − ∞ , ∞ )    such that


   k  x 2    ( t , s )  ∈ U  ( t , s )  , ∀ t , s ∈  [ a , b ]  .  











Let


   y 2   ( t )  =  ∫  a  b   k  x 2    ( t , s )  d s + f  ( t )  , ∀ t , s ∈  [ a , b ]  .  











Then,


   y 2   ( t )  ∈  ∫  a  b   K  x 2    ( t , s )  d s + f  ( t )  =  ∫  a  b  K  ( t , s ,  x 2   ( s )  )  d s + f  ( t )  , ∀ t , s ∈  [ a , b ]  ,  








and so    y 2  ∈ T  x 2  .  



Thus, we obtain that


        ρ  (  y 1  ,  y 2  )  =   ∫  a  b   k  x 1    ( t , s )  −  k  x 2    ( t , s )  d s       ≤     sup  t ∈ [ a , b ]    ∫  a  b    k  x 1    ( t , s )  −  k  x 2    ( t , s )   d s      ≤     sup  t ∈ [ a , b ]    ∫  a  b  Z  ( t , s )  d s ρ  (  x 1   ( s )  ,  x 2   ( s )  )       ≤     1  2 + α   ρ  (  x 1   ( s )  ,  x 2   ( s )  )  .     











Thus, we have that


   ( 1 +  1 2  α )  δ  ( T  x 1  , T  x 2  )  ≤  1 2  ρ  (  x 1  ,  x 2  )   








which implies


   ( 1 +  1 2  α )  H  ( T  x 1  , T  x 2  )  ≤  1 2  ρ  (  x 1  ,  x 2  )  .  











Hence, we obtain that


        H  ( T  x 1  , T  x 2  )   ) ≤ ϕ   ( ρ  (  x 1  ,  x 2  )  )  − ϕ  ( α H  ( T  x 1  , T  x 2  )  )       <    ϕ  ( ρ  (  x 1  ,  x 2  )  )  − ϕ  ( H  ( T  x 1  , T  x 2  )  )   where  ϕ  ( t )  =  1 2  t , ∀ t ≥ 0 .     











By Corollary 7, T possesses a fixed point, and hence the integral inclusion (37) has a solution. □






4. Conclusions


Our results are generalizations and extensions of F-contractions and Işik contractions to set-valued maps on metric spaces. We give a positive answer to Question 4.3 of [25] and an application to integral inclusion.
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