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Abstract: In this paper, we introduce a new class of special polynomials called the generalized Bell
polynomials, constructed by combining two-variable general polynomials with two-variable Bell
polynomials. The concept of the monomiality principle was employed to establish the generating
function and obtain various results for these polynomials. We explore certain related identities, prop-
erties, as well as differential and integral formulas. Further, specific members within the generalized
Bell family—such as the Gould-Hopper-Bell polynomials, Laguerre-Bell polynomials, truncated-
exponential-Bell polynomials, Hermite-Appell-Bell polynomials, and Fubini-Bell polynomials—were
examined, unveiling analogous outcomes for each. Finally, Mathematica was utilized to investigate
the zero distributions of the Gould-Hopper-Bell polynomials.

Keywords: Bell polynomials; two-variable general polynomials; generalized Bell polynomials; Gould-
Hopper-Bell polynomials; generating function; zero distribution

MSC: 05A10; 11B68; 11B73; 33B10

1. Introduction

Special functions have considerable roles in many branches of mathematics, theoretical
physics, and engineering (see [1–3]). We realize that various problems in engineering and
physics are framed in terms of differential equations, and most of these equations can
be investigated by using several families of special polynomials. Further, these special
polynomials allow the derivation of various helpful identities in a fairly straightforward
way and are useful in introducing new classes of special polynomials. Bell polynomials
are some of the most important special polynomials due to their various applications
in different mathematical frameworks (see [2–4]). Moreover, Bell polynomials play an
important role in the studies of water waves which help energy development, mechanical
engineering, marine/offshore engineering, hydraulic engineering, etc. [5–9].

Throughout this study, the following notations and definitions are used: N = {1, 2, 3, ...}
and N0 = N∪ {0}.

The two-variable Bell polynomials (2VBelP) Belε(υ1, υ2) [10,11] are defined by

eυ1ωeυ2(eω−1) =
∞

∑
ε=0
Belε(υ1, υ2)

ωε

ε!
. (1)

Taking υ1 = 0 in generating function (1), we obtain

eυ2(eω−1) =
∞

∑
ε=0
Belε(υ2)

ωε

ε!
, (2)
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where Belε(υ2) denotes the classical Bell polynomials [1,12,13].
Taking υ2 = 1 in generating function (2), we obtain

e(e
ω−1) =

∞

∑
ε=0
Belε

ωε

ε!
, (3)

where Belε denotes the Bell numbers [1,12,13].

Let f (ω) = e(e
ω−1) − 1. Then the compositional inverse of f (ω) is given by

f−1(ω) = log(1 + log(1 + ω)). (4)

We consider the new type of Bell numbers, which are called Bell numbers of the second
kind [14], and are defined by

log(1 + log(1 + ω)) =
∞

∑
ε=1

belε
ωε

ε!
. (5)

Note that the classical Bell polynomials satisfy the following relation (see [13])

Belε(υ2) =
ε

∑
m=0
S2(ε, m) υm

2 , (6)

where S2(ε, m) denotes Stirling numbers of the second kind [14] which are defined by

1
m!

(eω − 1)m =
∞

∑
ε=m
S2(ε, m)

ωε

ε!
. (7)

The two-variable general polynomials (2VGP) Gε(υ1, υ2) [15] are defined by

eυ1ωψ(υ2, ω) =
∞

∑
ε=0
Gε(υ1, υ2)

ωε

ε!
, G0(υ1, υ2) = 1, (8)

where

ψ(υ2, ω) =
∞

∑
ε=0

ψε(υ2)
ωε

ε!
, ψ0(υ2) 6= 0. (9)

The idea of monomiality arises from the concept of poweroid proposed by Stef-
fensen [16]. This idea is reformulated and systematically used by Dattoli [17]. According to
the monomiality principle [16,17] a given polynomial set ρε(υ) (ε ∈ N, υ ∈ C) is said to be
quasi-monomial, if two operators M̂, P̂, called “multiplicative” and “derivative” operators,
respectively, can be defined in such a way that

M̂{ρε(υ)} = ρε+1(υ), (10)

P̂{ρε(υ)} = ερε−1(υ), (11)

for all ε ∈ N. Also, the operators M̂ and P̂ satisfy the commutation relation

[P̂, M̂] = P̂M̂− M̂P̂ = 1̂ (12)

and thus display the Weyl group structure. If the considered polynomial set {ρn(υ)}ε∈N is
quasi-monomial, its properties can be easily derived from these of the M̂ and P̂ operators.
In fact the following holds:
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(i) If M̂ and P̂ have differential realizations, then the polynomials ρε(υ) satisfy the
differential equation

M̂P̂{ρε(υ)} = ερε(υ). (13)

(ii) Assuming that ρ0(υ) = 1, then the polynomials ρε(υ) can be explicitly constructed as

ρε(υ) = M̂ε{ρ0(υ)} = M̂ε{1}, (14)

which gives the series definition of ρε(υ).
(iii) In view of identity (14), the exponential generating function of ρε(υ) can be written in

the form

exp
(
ωM̂

)
{1} =

∞

∑
ε=0

ρε(υ)
ωε

ε!
, |ω| < ∞. (15)

The 2VGP Gε(υ1, υ2) are quasi-monomial [15] with respect to the following operators:

M̂G = υ1 +
ψ
′
(υ2, Dυ1)

ψ(υ2, Dυ1)

(
Dυ1 :=

∂

∂υ1
; ψ
′
(υ2, ω) :=

∂

∂ω
ψ(υ2, ω)

)
(16)

and
P̂G = Dυ1 , (17)

respectively.

According to the monomiality principle, the 2VGP Gε(υ1, υ2) satisfy the following
identities:

M̂G{Gε(υ1, υ2)} = Gε+1(υ1, υ2), (18)

P̂G{Gε(υ1, υ2)} = ε Gε−1(υ1, υ2), (19)

M̂G P̂G{Gε(υ1, υ2)} = ε Gε(υ1, υ2), (20)

exp(M̂Gω){1} =
∞

∑
ε=0
Gε(υ1, υ2)

ωε

ε!
(|ω| < ∞). (21)

The 2VGP family Gε(υ1, υ2) contains a number of significant two-variable special
polynomials. Based on suitable choice of the function ψ(υ2, ω), various members belonging
to the family of two-variable general polynomials Gε(υ1, υ2) can be obtained.

Taking ψ(υ2, ω) = eυ2ωr
in generating function (8), gives

eυ1t+υ2ωr
=

∞

∑
ε=0
H(r)

ε (υ1, υ2)
ωε

ε!
, (22)

whereH(r)
ε (υ1, υ2) are the Gould-Hopper polynomials [18].

Taking ψ(υ2, ω) = C0(υ2ω) in generating function (8), gives

eυ1ω C0(υ2ω) =
∞

∑
ε=0

Lε(υ2, υ1)
ωε

ε!
, (23)

where Lε(υ2, υ1) are the two-variable Laguerre polynomials [19].

Taking ψ(υ2, ω) = 1
1−υ2ωs in generating function (8), gives

1
1− υ2ωs eυ1ω =

∞

∑
ε=0

e(s)ε (υ1, υ2)
ωε

ε!
, (24)

where e(s)ε (υ1, υ2) are the two-variable truncated-exponential polynomials of order s [20].
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Taking ψ(υ2, ω) = A(ω) eυ2ω2
in generating function (8), gives

A(ω) eυ1t+υ2ω2
=

∞

∑
ε=0
HAε(υ1, υ2)

ωε

ε!
, (25)

where HAε(υ1, υ2) are the Hermite-Appell polynomials [21].

Taking ψ(υ2, ω) = 1
1−υ2(eω−1) in generating function (8), gives

eυ1ω

1− υ2(eω − 1)
=

∞

∑
ε=0
Fε(υ1, υ2)

ωε

ε!
, (26)

where Fε(υ1, υ2) are the two-variable Fubini polynomials [22,23].

Recently, numerous researchers have utilized the operational methods together with
the monomiality principle [19,20] to establish and investigate new mixed families of special
polynomials [24–30]. Bell polynomials and their diverse generalizations have been densely
considered and investigated by many mathematicians. For instance, Duran et al. [10]
studied the Bell-based Bernoulli polynomials and their applications. Duran et al. [11]
introduced Bell-based Genocchi polynomials and established certain of their properties.
Khan et al. [31] defined Bell-based Euler polynomials and investigated some of their
properties. Kim et al. [14] investigated a new approach to Bell and poly-Bell numbers and
polynomials and discussed some of their properties. Kim et al. [13] investigated some
identities of Bell polynomials. Kim et al. [32] studied partially degenerate Bell numbers
and polynomials by using umbral calculus and derived some new identities. Kim et al. [25]
studied some identities of degenerate Bell polynomials and their properties.

Motivated by the above-mentioned works, in this paper, by combining the two-
variable general polynomials with two-variable Bell polynomials, we present a new gener-
alized family of hybrid special polynomials, namely, the generalized Bell polynomials, that
is in Definition 1. These polynomials are the most generalizations of the used polynomials,
and many other published results are considered as special cases of our current results. The
multiplicative and derivative operators, as well as differential equations for this family of
polynomials, are also obtained. Next, the series representations and certain other important
formulas for the generalized Bell polynomials are derived. Additionally, we obtain partial
derivative and integral relations involving these polynomials. Further, certain members
related to the generalized Bell polynomials are considered. Finally, we discuss the zero
distributions of Gould-Hopper-Bell polynomials.

2. Generalized Bell Polynomials

In this section, we introduce a class of generalized Bell polynomials through generating
functions. Then, the generating function is used to derive the related multiplicative and
derivative operators, differential equation, and certain series representations.

In generating function (1), replacing υ1 and υ2 by the multiplicative operator M̂G (16)
of the 2VGP Gε(υ1, υ2) and z, respectively, gives

exp(M̂Gω) exp(z(eω − 1)) =
∞

∑
ε=0
Belε(M̂G , z)

ωε

ε!
. (27)

Using Equation (21) in the above equation and denoting Belε(M̂G , z) by the resultant
generalized Bell polynomials (GBelP) GBelε(υ1, υ2, z), gives( ∞

∑
ε=0
Gε(υ1, υ2)

ωε

ε!

)
exp(z(eω − 1)) =

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
. (28)

Now, utilizing Equation (8) in the above equation, we reach the following definition.
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Definition 1. The generalized Bell polynomials GBelε(υ1, υ2, z) are defined be the following gener-
ating function

eυ1ωψ(υ2, ω) ez(eω−1) =
∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
. (29)

Remark 1. Setting υ1 = 0 in generating relation (29), we obtain

ψ(υ2, ω) ez(eω−1) =
∞

∑
ε=0
GBelε(υ2, z)

ωε

ε!
, (30)

where GBelε(υ2, z) are called two-variable generalized Bell polynomials.

Remark 2. Setting z = 0 in generating relation (29), we obtain the 2VGP Gε(υ1, υ2) defined by
generating function (8).

To show that the generalized Bell polynomials GBelε(υ1, υ2, z) are quasi-monomial, we
prove the following results:

Theorem 1. The generalized Bell polynomials GBelε(υ1, υ2, z) are quasi-monomial with respect to
the following multiplicative and derivative operators:

M̂GBel = υ1 +
ψ
′
(υ2, Dυ1)

ψ(υ2, Dυ1)
+ zeDυ1 (31)

and
P̂GBel = Dυ1 , (32)

respectively.

Proof. Obviously, we have

Dυ1

(
eυ1ωψ(υ2, ω) ez(eω−1)) = ω

(
eυ1ωψ(υ2, ω) ez(eω−1)). (33)

Differentiating Equation (29) partially with respect to ω, gives(
υ1 +

ψ
′
(υ2, ω)

ψ(υ2, ω)
+ zeω

) ∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
=

∞

∑
ε=0
GBelε+1(υ1, υ2, z)

ωε

ε!
. (34)

Now, using identity (33) and equating the coefficients of like powers of ω in the
resultant equation, we have(

υ1 +
ψ
′
(υ2, Dυ1)

ψ(υ2, Dυ1)
+ zeDυ1

)
GBelε(υ1, υ2, z) = GBelε+1(υ1, υ2, z), (35)

which in view of Equation (18) (for GBelε(υ1, υ2, z)) yields the asserted result (31).
In view of Equation (33), we have

Dυ1

{
∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!

}
=

∞

∑
ε=0

ε GBelε−1(υ1, υ2, z)
ωε

ε!
, (36)

which, upon comparing like powers of ω and utilizing Equation (19) (for GBelε(υ1, υ2, z)),
yield the asserted result (32).
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Theorem 2. The generalized Bell polynomials GBelε(υ1, υ2, z) satisfy the following differential
equation: (

υ1Dυ1 +
ψ
′
(υ2, Dυ1)

ψ(υ2, Dυ1)
Dυ1 + zeDυ1 Dυ1 − ε

)
GBelε(υ1, υ2, z) = 0. (37)

Proof. In view of Equation (20) (for GBelε(υ1, υ2, z)), utilizing operators (31) and (32), we
obtain the asserted result (37).

Next, by using the generating function (29), we establish some identities and relations
including the generalized Bell polynomials.

Theorem 3. The generalized Bell polynomials GBelε(υ1, υ2, z) satisfy the following series repre-
sentations:

GBelε(υ1, υ2, z) =
ε

∑
κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) Belκ(z); (38)

GBelε(υ1, υ2, z) =
ε

∑
κ=0

(
ε

κ

)
Belε−κ(υ1, z) ψκ(υ2); (39)

GBelε(υ1, υ2, z) =
ε

∑
κ=0

(
ε

κ

)
GBelκ(υ2, z) υε−κ

1 . (40)

Proof. In view of generating relations (2) and (8) and Cauchy product rule, generating
relation (29) can be written as

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
=

∞

∑
ε=0

ε

∑
κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) Belκ(z)

ωε

ε!
, (41)

which, upon equating the coefficients of the analogous powers of ω, yields the asserted
result (38). Similarly, the assertions (39) and (40) can be proved.

Theorem 4. For ε ∈ N0, we have

GBelε(υ1 + u, υ2, z + w) =
ε

∑
κ=0

(
ε

κ

)
GBelε−κ(υ1, υ2, z) Belκ(u, w). (42)

Proof. Replacing υ1 by υ1 + u and z by z + w in (29), then making use of (1) and (29) in the
resultant equation, we have

∞

∑
ε=0
GBelε(υ1 + u, υ2, z + w)

ωε

ε!
=

∞

∑
ε=0

∞

∑
κ=0

(
ε

κ

)
GBelε−κ(υ1, υ2, z) Belκ(u, w)

ωε

ε!
, (43)

which, upon comparing the coefficients of the like powers of ω yields the desired re-
sult (42).

Theorem 5. For ε ∈ N0, we have

GBelε(υ1, υ2, z) =
1
2

ε

∑
κ=0

(
ε

κ

)
Eκ

(
GBelε−κ(υ1 + 1, υ2, z) + GBelε−κ(υ1, υ2, z)

)
. (44)

Proof. According to generating relation (29), we can write

∞

∑
ε=0
GBelε(υ1 + 1, υ2, z)

ωε

ε!
+

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
= (eω + 1)

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
, (45)
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which can be written as

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!
=

1
2

( ∞

∑
ε=0
Eε

ωε

ε!

)( ∞

∑
ε=0
GBelε(υ1 + 1, υ2, z)

ωε

ε!
+

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!

)
, (46)

where Eε denotes the Euler numbers [33]. Finally, using the Cauchy product rule and
comparing the like powers of ω in the resultant equation, we obtain (44).

Theorem 6. The following implicit summation formula holds true:

GBelε+κ(σ, υ2, z) =
ε

∑
l=0

κ

∑
m=0

(
ε

l

) (
κ

m

)
(σ− υ1)

l+m
GBelε+κ−l−m(υ1, υ2, z). (47)

Proof. Replacing ω by ω + s in (29) and making use of the identity

∞

∑
m=0

ξ(m)
(υ1 + υ2)

m

m!
=

∞

∑
s,r=0

ξ(s + r)
υs

1 υr
2

s! r!
, (48)

we have

ψ(υ2, ω + s) ez(eω+s−1) = e−υ1(ω+s)
∞

∑
ε,κ=0

GBelε+κ(υ1, υ2, z)
ωε sκ

ε! κ!
. (49)

Now, replacing υ1 by σ in (49), then comparing the resultant equation with (49) and
simplifying, we obtain

∞

∑
ε,κ=0

GBelε+κ(σ, υ2, z)
ωε sκ

ε! κ!
=

∞

∑
χ=0

((σ− υ1)(ω + s))χ

χ!

∞

∑
ε,κ=0

GBelε+κ(υ1, υ2, z)
ωε sκ

ε! κ!
. (50)

Utilizing identity (48), we obtain

∞

∑
ε,κ=0

GBelε+κ(σ, υ2, z)
ωε sκ

ε! κ!
=

∞

∑
ε,κ=0

ε,κ

∑
l,m=0

(σ− υ1)
l+m
GBelε+κ−l−m(υ1, υ2, z) ωε sκ

l! m! (ε− l)! (κ −m)!
, (51)

which yields the asserted result (47).

Remark 3. Taking z = 0 and replacing σ by σ + υ1 in Equation (47), we obtain

Gε+κ(σ + υ1, υ2) =
ε

∑
l=0

κ

∑
m=0

(
ε

l

) (
κ

m

)
σl+m Gε+κ−l−m(υ1, υ2). (52)

3. Differential and Integral Formulas

In this section, we derive certain differential and integral formulas associated with
generalized Bell polynomials GBelε(υ1, υ2, z).

Theorem 7. Let ρ, ε ∈ N0. Then, the following formula holds true:

∂ρ

∂υ
ρ
1
{GBelε(υ1, υ2, z)} =

{
ε!

(ε−ρ)!GBelε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.
(53)
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Proof. Differentiate ρ times generating relation (29) with respect to υ1, we have

∞

∑
ε=0

∂ρ

∂υ
ρ
1
{GBelε(υ1, υ2, z)} ωε

ε!
= ωρ

{
eυ1ωψ(υ2, ω) ez(eω−1)

}
=

∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε+ρ

ε!

=
∞

∑
ε=ρ
GBelε−ρ(υ1, υ2, z)

ωε

(ε− ρ)!
, (54)

which, on simplifying then comparing the coefficients of ωε

ε! on both sides yield the asserted
result (53).

Remark 4. When ρ = 1 in (53), we obtain

∂

∂υ1
{GBelε(υ1, υ2, z)} = ε GBelε−1(υ1, υ2, z). (55)

Theorem 8. Let κ, ε ∈ N0. Then, the following formula holds true:

∂

∂z
{GBelε(υ1, υ2, z)} = ε

ε−1

∑
κ=0

(
ε− 1

κ

)
GBelε−κ−1(υ1, υ2, z)

κ + 1
. (56)

Proof. Differentiate generating relation (29) with respect to z, we have

∞

∑
ε=0

∂

∂z
{GBelε(υ1, υ2, z)} ωε

ε!
= (eω − 1)

{
∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!

}

=

{
∞

∑
ε=0

ωε+1

(ε + 1)!

}{
∞

∑
ε=0
GBelε(υ1, υ2, z)

ωε

ε!

}
, (57)

which, upon simplifying and using the Cauchy product rule yields the desired result (56).

Similarly, we can prove the following results.

Theorem 9. Let κ, ε ∈ N0. Then, the following formulas hold true:

∂

∂z
{GBelε(υ1, υ2, z)} =

ε

∑
κ=0

(
ε

κ

)
{GBelκ(υ1, υ2, z)− Gε−κ(υ1, υ2) Belκ(z)}; (58)

∂

∂z
{GBelε(υ1, υ2, z)} =

ε

∑
κ=0

(
ε

κ

)
{GBelκ(υ1, υ2, z)−Belε−κ(υ1, z) ψκ(υ2)}; (59)

∂

∂z
{GBelε(υ1, υ2, z)} =

ε

∑
κ=0

(
ε

κ

){
GBelκ(υ1, υ2, z)− GBelm(υ2, z) υε−κ

1
}

; (60)

GBelε(υ1, υ2, z) =
ε+1

∑
κ=0

(
ε + 1

κ

)
Bκ

∂

∂z
{GBelε−κ+1(υ1, υ2, z)}, (61)

where Bκ denotes the Bernoulli numbers [33].

Theorem 10. The following formula holds true:∫ u+w

u
GBelε(υ1, υ2, z) dυ1 =

1
ε + 1

[
GBelε+1(u + w, υ2, z)− GBelε+1(u, υ2, z)

]
. (62)
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Proof. Integrating both sides of generating relation (29) with respect to υ1, we have

∞

∑
ε=0

∫ u+w

u
GBelε(υ1, υ2, z) dυ1

ωε

ε!
=

1
ω

[
e(u+w)ω ψ(υ2, ω) ez(eω−1) − euω ψ(υ2, ω) ez(eω−1)

]
=

1
ω

[ ∞

∑
ε=0
GBelε(u + w, υ2, z)

ωε

ε!
−

∞

∑
ε=0
GBelε(u, υ2, z)

ωε

ε!

]
, (63)

which yields the assertion in (62).

Similarly, we can prove the following results.

Theorem 11. The following formulas hold true:

∫ u+w

u
GBelε(υ1, υ2, z) dυ1 =

1
ε + 1

ε+1

∑
κ=0

(
ε + 1

κ

)
Belκ(z)

[
Gε−κ+1(u + w, υ2)− Gε−κ+1(u, υ2)

]
; (64)

∫ u+w

u
GBelε(υ1, υ2, z) dυ1 =

1
ε + 1

ε+1

∑
κ=0

(
ε + 1

κ

)
ψκ(υ2)

[
Belε−κ+1(u + w, z)−Belε−κ+1(u, z)

]
; (65)

∫ u+w

u
GBelε(υ1, υ2, z) dυ1 =

1
ε + 1

ε+1

∑
κ=0

(
ε + 1

κ

)
GBelκ(υ2, z)

[
(u + w)ε−κ+1 − uε−κ+1

]
. (66)

In the next section, certain special members of the generalized Bell polynomials
GBelε(υ1, υ2, z) are considered.

4. Special Members

Here, we present some special hybrid members of the generalized Bell polynomials
GBelε(υ1, υ2, z). The obtained results in the previous sections are used to investigate the
corresponding results for these members.

I. Taking ψ(υ2, ω) = eυ2ωr
in generating function (29), gives

eυ1t+υ2ωr+z(eω−1) =
∞

∑
ε=0
H(r)Belε(υ1, υ2, z)

ωε

ε!
, (67)

where H(r)Belε(υ1, υ2, z) are called the Gould-Hopper-Bell polynomials. Certain correspond-
ing results related to these polynomials are mentioned in Table 1.

Table 1. Results for Gould-Hopper-Bell polynomials H(r)Belε(υ1, υ2, z).

Multiplicative and M̂GHBel = υ1 + rυ2Dr−1
υ1

+ zeDυ1 , P̂GHBel := Dυ1

derivative operators

Differential equation
(

υ1Dυ1 + rυ2Dr
υ1
+ zeDυ1 Dυ1 − ε

)
H(r)Belε(υ1, υ2, z) = 0

Identities and H(r)Belε(υ1, υ2, z) = ∑ε
κ=0 (

ε
κ)H

(r)
ε−κ(υ1, υ2) Belκ(z)

relations H(r)Belε(υ1 + u, υ2, z + w) = ∑ε
κ=0 (

ε
κ)H(r)Belε−κ(υ1, υ2, z) Belκ(u, w)

H(r)Belε(υ1, υ2, z) = 1
2 ∑ε

κ=0 (
ε
κ) Eκ

(
H(r)Belε−κ(υ1 + 1, υ2, z) + H(r)Belε−κ(υ1, υ2, z)

)
H(r)Belε+κ(σ, υ2, z) = ∑ε

l=0 ∑κ
m=0 (

ε
l) (

κ
m)(σ− υ1)

l+m
H(r)Belε+κ−l−m(υ1, υ2, z)

Differential and ∂ρ

∂υ
ρ
1

{
H(r)Belε(υ1, υ2, z)

}
=

{
ε!

(ε−ρ)!H(r)Belε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.

Integral Formulas ∂
∂z
{
H(r)Belε(υ1, υ2, z)

}
= ε

ε−1
∑

κ=0
(ε−1

κ )H
(r)Belε−κ−1(υ1,υ2,z)

κ+1∫ u+w
u H(r)Belε(υ1, υ2, z) dυ1 = 1

ε+1

[
H(r)Belε+1(u + w, υ2, z)− H(r)Belε+1(u, υ2, z)

]
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II. Taking ψ(υ2, ω) = C0(υ2ω) in generating function (29), gives

eυ1ω C0(υ2ω) ez(eω−1) =
∞

∑
ε=0

LBelε(υ1, υ2, z)
ωε

ε!
, (68)

where LBelε(υ1, υ2, z) are called the Laguerre-Bell polynomials. Certain corresponding
results related to these polynomials are mentioned in Table 2.

Table 2. Results for Laguerre-Bell polynomials LBelε(υ1, υ2, z).

Multiplicative and M̂LBel = υ1 − D−1
υ2

+ zeDυ1 , P̂LBel := Dυ1

derivative operators

Differential equation
(

υ1Dυ1 − D−1
υ2

Dυ1 + zeDυ1 Dυ1 − ε

)
LBelε(υ1, υ2, z) = 0

Identities and LBelε(υ1, υ2, z) = ∑ε
κ=0 (

ε
κ)Lε−κ(υ1, υ2) Belκ(z)

relations LBelε(υ1 + u, υ2, z + w) = ∑ε
κ=0 (

ε
κ)LBelε−κ(υ1, υ2, z) Belκ(u, w)

LBelε(υ1, υ2, z) = 1
2 ∑ε

κ=0 (
ε
κ) Eκ

(
LBelε−κ(υ1 + 1, υ2, z) + LBelε−κ(υ1, υ2, z)

)
LBelε+κ(σ, υ2, z) = ∑ε

l=0 ∑κ
m=0 (

ε
l) (

κ
m)(σ− υ1)

l+m
LBelε+κ−l−m(υ1, υ2, z)

Differential and ∂ρ

∂υ
ρ
1
{LBelε(υ1, υ2, z)} =

{
ε!

(ε−ρ)! LBelε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.

Integral Formulas ∂
∂z{LBelε(υ1, υ2, z)} = ε

ε−1
∑

κ=0
(ε−1

κ ) LBelε−κ−1(υ1,υ2,z)
κ+1∫ u+w

u LBelε(υ1, υ2, z) dυ1 = 1
ε+1

[
LBelε+1(u + w, υ2, z)− LBelε+1(u, υ2, z)

]

III. Taking ψ(υ2, ω) = 1
1−υ2ωs in generating function (29), gives

1
1− υ2ωs eυ1ω+z(eω−1) =

∞

∑
ε=0

e(s)Belε(υ1, υ2, z)
ωε

ε!
, (69)

where e(s)Belε(υ1, υ2, z) are called the truncated-exponential-Bell polynomials of order s.
Certain corresponding results related to these polynomials are mentioned in Table 3.

Table 3. Results for the truncated-exponential-Bell polynomials of order s e(s)Belε(υ1, υ2, z).

Multiplicative and M̂TEBel = υ1 +
sυ2Ds−1

υ1
1−υ2Ds

υ1
+ zeDυ1 , P̂TEBel := Dυ1

derivative operators

Differential equation
(

υ1Dυ1 +
sυ2Ds

υ1
1−υ2Ds

υ1
+ zeDυ1 Dυ1 − ε

)
e(s)Belε(υ1, υ2, z) = 0

Identities and e(s)Belε(υ1, υ2, z) = ∑ε
κ=0 (

ε
κ)e

(s)
ε−κ(υ1, υ2) Belκ(z)

relations e(s)Belε(υ1 + u, υ2, z + w) = ∑ε
κ=0 (

ε
κ)e(s)Belε−κ(υ1, υ2, z) Belκ(u, w)

e(s)Belε(υ1, υ2, z) = 1
2 ∑ε

κ=0 (
ε
κ) Eκ

(
e(s)Belε−κ(υ1 + 1, υ2, z) + e(s)Belε−κ(υ1, υ2, z)

)
e(s)Belε+κ(σ, υ2, z) = ∑ε

l=0 ∑κ
m=0 (

ε
l) (

κ
m)(σ− υ1)

l+m
e(s)Belε+κ−l−m(υ1, υ2, z)

Differential and ∂ρ

∂υ
ρ
1

{
e(s)Belε(υ1, υ2, z)

}
=

{
ε!

(ε−ρ)! e(s)Belε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.

Integral Formulas ∂
∂z
{

e(s)Belε(υ1, υ2, z)
}
= ε

ε−1
∑

κ=0
(ε−1

κ ) e(s)
Belε−κ−1(υ1,υ2,z)

κ+1∫ u+w
u e(s)Belε(υ1, υ2, z) dυ1 = 1

ε+1

[
e(s)Belε+1(u + w, υ2, z)− e(s)Belε+1(u, υ2, z)

]

IV. Taking ψ(υ2, ω) = A(ω) eυ2ω2
in generating function (29), gives

A(ω) eυ1t+υ2ω2+z(eω−1) =
∞

∑
ε=0

HABelε(υ1, υ2, z)
ωε

ε!
, (70)
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where HABelε(υ1, υ2, z) are called the Hermite-Appell-Bell polynomials. Certain corre-
sponding results related to these polynomials are mentioned in Table 4.

Table 4. Results for Hermite-Appell-Bell polynomials HABelε(υ1, υ2, z).

Multiplicative and M̂HABel = υ1 + 2υ2Dυ1 +
A
′
(Dυ1 )

A(Dυ1 )
+ zeDυ1 , P̂HABel := Dυ1

derivative operators

Differential equation
(

υ1Dυ1 + 2υ2D2
υ1
+

A
′
(Dυ1 )

A(Dυ1 )
Dυ1 + zeDυ1 Dυ1 − ε

)
HABelε(υ1, υ2, z) = 0

Identities and HABelε(υ1, υ2, z) = ∑ε
κ=0 (

ε
κ)HAε−κ(υ1, υ2) Belκ(z)

relations HABelε(υ1 + u, υ2, z + w) = ∑ε
κ=0 (

ε
κ)HABelε−κ(υ1, υ2, z) Belκ(u, w)

HABelε(υ1, υ2, z) = 1
2 ∑ε

κ=0 (
ε
κ) Eκ

(
HABelε−κ(υ1 + 1, υ2, z) + HABelε−κ(υ1, υ2, z)

)
HABelε+κ(σ, υ2, z) = ∑ε

l=0 ∑κ
m=0 (

ε
l) (

κ
m)(σ− υ1)

l+m
HABelε+κ−l−m(υ1, υ2, z)

Differential and ∂ρ

∂υ
ρ
1

{
HABelε(υ1, υ2, z)

}
=

{
ε!

(ε−ρ)!HABelε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.

Integral Formulas ∂
∂z
{
HABelε(υ1, υ2, z)

}
= ε

ε−1
∑

κ=0
(ε−1

κ )H
ABelε−κ−1(υ1,υ2,z)

κ+1∫ u+w
u HABelε(υ1, υ2, z) dυ1 = 1

ε+1

[
HABelε+1(u + w, υ2, z)− HABelε+1(u, υ2, z)

]

V. Taking ψ(υ2, ω) = 1
1−υ2(eω−1) in generating function (29), gives

eυ1ω

1− υ2(eω − 1)
ez(eω−1) =

∞

∑
ε=0
FBelε(υ1, υ2, z)

ωε

ε!
, (71)

where FBelε(υ1, υ2, z) are called the Fubini-Bell polynomials. Certain corresponding results
related to these polynomials are mentioned in Table 5.

Table 5. Results for Fubini-Bell polynomials FBelε(υ1, υ2, z).

Multiplicative and M̂FBel = υ1 +
υ2eDυ1

1−υ2(e
Dυ1−1)

+ zeDυ1 , P̂FBel := Dυ1

derivative operators

Differential equation
(

υ1Dυ1 +
υ2eDυ1

1−υ2(e
Dυ1−1)

Dυ1 + zeDυ1 Dυ1 − ε

)
FBelε(υ1, υ2, z) = 0

Identities and FBelε(υ1, υ2, z) = ∑ε
κ=0 (

ε
κ)Fε−κ(υ1, υ2) Belκ(z)

relations FBelε(υ1 + u, υ2, z + w) = ∑ε
κ=0 (

ε
κ)FBelε−κ(υ1, υ2, z) Belκ(u, w)

FBelε(υ1, υ2, z) = 1
2 ∑ε

κ=0 (
ε
κ) Eκ

(
FBelε−κ(υ1 + 1, υ2, z) + FBelε−κ(υ1, υ2, z)

)
FBelε+κ(σ, υ2, z) = ∑ε

l=0 ∑κ
m=0 (

ε
l) (

κ
m)(σ− υ1)

l+m
FBelε+κ−l−m(υ1, υ2, z)

Differential and ∂ρ

∂υ
ρ
1
{FBelε(υ1, υ2, z)} =

{
ε!

(ε−ρ)!FBelε−ρ(υ1, υ2, z), ε ≥ ρ;

0, 0 ≤ ε < ρ.

Integral Formulas ∂
∂z{FBelε(υ1, υ2, z)} = ε

ε−1
∑

κ=0
(ε−1

κ ) F
Belε−κ−1(υ1,υ2,z)

κ+1∫ u+w
u FBelε(υ1, υ2, z) dυ1 = 1

ε+1

[
FBelε+1(u + w, υ2, z)− FBelε+1(u, υ2, z)

]

5. Applications in Computer Modeling

Here, we discuss zero distributions and show some graphical representations of
the Gould-Hopper-Bell polynomials (GHBelP) H(r)Belε(υ1, υ2, z) for some values of the
parameters and indices.
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In view of (67), the first few members of the GHBelP H(r)Belε(υ1, υ2, z) for r = 4 are:

H(r)Bel0(υ1, υ2, z) = 1,

H(r)Bel1(υ1, υ2, z) = υ1 + z,

H(r)Bel2(υ1, υ2, z) = υ2
1 + z + 2υ1z + z2,

H(r)Bel3(υ1, υ2, z) = υ3
1 + z + 3υ1z + 3υ2

1z + 3z2 + 3υ1z2 + z3υ1 z2 + z3,

H(r)Bel4(υ1, υ2, z) = υ4
1 + 24υ2 + z + 4υ1z + 6υ2

1z + 4υ3
1z + 7z2 + 12υ1z2 + 6υ2

1z2

+ 6z3 + 4υ1z3 + z4,

H(r)Bel5(υ1, υ2, z) = υ5
1 + 120υ1υ2 + z + 5υ1z + 10υ2

1z + 10υ3
1z + 5υ4

1z + 120υ2z + 15z2 + 35υ1z2

+ 30υ2
1z2 + 10υ3

1z2 + 25z3 + 30υ1z3 + 10υ2
1z3 + 10z4 + 5υ1z4 + z5.

The graphs of these members for r = 4, υ2 = 6 and z = 7 are shown in Figure 1.
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Figure 1. Graphs of H(r)Belε(υ1, υ2, z), for ε = 0, 1, 2, 3, 4, 5.
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The zero distribution of some members of the GHBelP H(r)Belε(υ1, υ2, z), i.e., for
ε = 5, 10, 15, 20, 25, 30, 35, 40 are shown in Figures 2–9.
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Figure 2. Zero distribution of H(r)Bel5(υ1, 6, 7).
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Figure 3. Zero distribution of H(r)Bel10(υ1, 6, 7).
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Figure 4. Zero distribution of H(r)Bel15(υ1, 6, 7).
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Figure 5. Zero distribution of H(r)Bel20(υ1, 6, 7).
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Figure 6. Zero distribution of H(r)Bel25(υ1, 6, 7).
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Figure 8. Zero distribution of H(r)Bel35(υ1, 6, 7).
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Figure 9. Zero distribution of H(r)Bel40(υ1, 6, 7).

Remark 5. We observed that the GHBelP H(r)Belε(υ1, υ2, z) for r = 4, υ2 = 6, z = 7 of degree ε
has ε zeros and these zeros have the following properties:

1. If ε is odd, the GHBelP H(r)Belε(υ1, υ2, z) has one real zero and ε− 1 complex zeros.
2. If ε is even, the GHBelP H(r)Belε(υ1, υ2, z) has ε complex zeros.
3. The zeros of the GHBelP H(r)Belε(υ1, υ2, z) are symmetric with respect to the real axis.

The 3D structure of zeros distribution of GHBelP H(r)Belε(υ1, 6, 7) is presented in
Figure 10.
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Figure 10. Zero distribution of H(r)Belε(υ1, 6, 7) = 0. This figure shows the 3D plot of the zeros of
Gould-Hopper-Bell polynomials H(r)Belε(υ1, υ2, z) for ε = 5, 10, 15, 20, 25, 30, 35, 40, υ2 = 6 and z = 7.

6. Conclusions

Recently, the hybrid forms of special polynomials and numbers have gained worthy
consideration by various researchers. The operational methods developed within the
context of the monomiality principle offer the opportunity to establish new classes of
hybrid special polynomials. In this paper, we introduced a new class of hybrid special
polynomials, namely, the generalized Bell polynomials. The generating function and
diverse results for these polynomials are obtained. We explored certain related identities,
properties, as well as differential and integral formulas. Further, certain special members of
the generalized Bell family—such as the Gould-Hopper-Bell polynomials, Laguerre-Bell
polynomials, truncated-exponential-Bell polynomials, Hermite-Appell-Bell polynomials,
and Fubini-Bell polynomials—were examined, unveiling analogous outcomes for each.
Our current results are the most generalizations of the used polynomials, and many other
published results are considered as special cases of our current results. Furthermore, we
used Mathematica to examine the zeros of Gould-Hopper-Bell polynomials and show that
these zeros are symmetric about the real axis, see Figures 2–9. The 3D distribution of the
zeros can be also viewed in the graph which is given in Figure 10. The integral equations
containing these types of special polynomials and related applications can be investigated
in further studies.
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