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Abstract: In this paper, the generalized widest path problem (or generalized maximum capacity
problem) is studied. This problem is denoted by the GWPP. The classical widest path problem is
to find a path from a source (s) to a sink (t) with the highest capacity among all possible s-t paths.
The GWPP takes into account the presence of loss/gain factors on arcs as well. The GWPP aims
to find an s-t path considering the loss/gain factors while satisfying the capacity constraints. For
solving the GWPP, three strongly polynomial time algorithms are presented. Two algorithms only
work in the case of losses. The first one is less efficient than the second one on a CPU, but it proves
to be more efficient on large networks if it parallelized on GPUs. The third algorithm is able to deal
with the more general case of losses/gains on arcs. An example is considered to illustrate how each
algorithm works. Experiments on large networks are conducted to compare the efficiency of the
algorithms proposed.
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GPU parallelization
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1. Introduction

Consider a directed and connected network G = (V, A, u), where V represents the set
of nodes, A represents the set of arcs (each arc a = (i, j) starts from node i and terminates
at node j), and u is a capacity function mapping arcs to non-negative real numbers. Within
this network, there are two special nodes: s, referred to as the source node; and t, referred
to as the sink node. Let n denote the total number of nodes in the network (|V|) and m
represent the number of arcs (|A|). A path, denoted as P, from a node w ∈ V to a node
v ∈ V in network G is defined as a sequence of nodes P : (w = i1, i2, . . . , il = v), where
l is equal to or greater than 1, and each consecutive pair of nodes (ik, ik+1) is an arc from A
for every k = 1, 2, . . . , l − 1.

Combinatorial optimization is a special class of mathematical program that consists of
finding an optimal object among a finite set of specifically structured objects. Some of the
most prominent problems of this class are shortest path (SP) problems, maximum reliability
path (MRP) problems, and maximum capacity path (MCP) problems/widest path problem
(WPP). In these problems, the goal is to find an optimal path from an origin to a destination
under a special objective function as follows:

1. min
P∈P

∑
(i,j)∈P

lij for SP problems.

2. max
P∈P

∏
(i,j)∈P

pij for MRP problems.

3. max
P∈P

min
(i,j)∈P

uij for WPP.
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where the set P consists of all paths from the origin to the destination. In this context,
the parameters lij, pij, and uij represent the length, reliability, and capacity of arc (i, j)
respectively. Fortunately, these problems are tractable and there exist polynomial time
algorithms to solve them. For instance, the shortest path problem can be solved using
Dijkstra’s algorithm with a Fibonacci heap implementation [1], which has a complexity of
O(m + n log(n)) if the lengths, lij, are nonnegative. In case the lengths are negative, the
best-known algorithm is a FIFO implementation of the Bellman–Ford algorithm [2,3], with
a complexity of O(mn), where n and m represent the number of nodes and arcs, respectively.
The maximum reliability path problem can be transformed into a shortest path problem
by defining lij as − log

(
pij

)
for every arc (i, j). Consequently, it can be solved similarly

to the shortest path problem, especially when pij is less than 1. Additionally, both the
maximum reliability path problem and the widest path problem can be solved directly
by modifying the shortest path algorithms. This is because they share similar optimality
conditions with the shortest path problem (refer to [4] for more details). However, the
best-known algorithm for solving the widest path problem in an undirected network does
not rely on this concept. Instead, it employs a recursive algorithm with a linear complexity
of O(m) [5]. The maximum capacity problem has many applications. The service vehicles
and emergency vehicles should use such a path when returning from a service call to the
base [6]. Also, the maximum capacity problem could be used to deal with computation
problems where only comparison of the graph’s arcs values is permitted [7,8].

The WPP finds its application in various domains. For instance, let us consider a
network that represents connections between routers on the Internet. In this context, each
arc in the network denotes the bandwidth of the corresponding connection between two
routers. With the WPP, the objective is to discover the path between two Internet nodes
that offers the highest possible bandwidth. This network routing problem is well-known
in the field. Apart from being a fundamental network routing problem, the WPP also
plays a crucial role in other areas. One noteworthy application is within the Schulze
method, which is utilized for determining the winner of a multiway election [9]. In this
method, the WPP aids in resolving ties and determining the strongest path among multiple
alternatives. Additionally, the WPP finds application in digital compositing, wherein
it assists in combining multiple images or video layers into a final composite image or
sequence [10]. By identifying the path with the maximum capacity, the compositing process
can ensure the most efficient allocation of computational resources. Moreover, the problem
contributes to metabolic pathway analysis, which involves studying chemical reactions
within biological systems. In this context, the WPP aids in understanding the flow of
metabolites through various pathways and identifying the most influential pathways in
terms of capacity [11]. In summary, the WPP has extensive applications ranging from
network routing on the Internet, multiway election methods, and digital compositing, to
metabolic pathway analysis. Its capability to identify and utilize paths with the highest
capacity proves valuable across these diverse domains.

In this paper, a new combinatorial optimization problem called the generalized widest
path (GWPP) problem is introduced. It is a more intricate version of the problem that
involves finding a directed path from a given source node s to a given sink node t, with the
minimum loss among all available directed paths from s to t [12]. To our knowledge, this
is the only paper in the literature that studies st-paths in the gain/loss case. The GWPP
is defined on a network where each arc is characterized by two attributes: capacity and
loss/gain factor.

The capacity of an arc represents the maximum flow value that can be transmitted
through it. On the other hand, the loss/gain factor of an arc indicates the flow value that
arrives at the tail node when one unit of flow is sent through the arc. The objective of the
GWPP is to find a path that is capable of transmitting the maximum flow while considering
the loss/gain factors.

This problem is inspired by an extension of the maximum flow problems [13,14] that
incorporates loss/gain factors, known as the generalized maximum flow problem. There-
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fore, the algorithms developed for solving the GWPP can also be utilized as subroutines for
addressing generalized maximum flow problems.

Moreover, the GWPP can be viewed as an extension of the maximum reliability path
and widest path problems. It becomes equivalent to the MRP problem when capacities
are infinite and transforms into the WPP when the loss/gain factors are equal to 1. Thus,
the GWPP upon the scope of both MRP and the WPPs, encompassing their characteristics
and generalizations.

In this paper, we introduce the GWPP—a novel combinatorial optimization problem
that extends the concept of the WPP by incorporating loss/gain factors. The algorithms
developed for the GWPP can be utilized for generalized maximum flow problems, making
it a versatile and applicable problem in various contexts.

The rest of this paper is organized as follows. In Section 2, we provide the neces-
sary background information and definitions to lay the foundation for the research work.
Section 3 clearly defines the research problem and outlines its significance. Section 4 de-
scribes, in detail, the first two proposed algorithms to solve the GWPP in the case of loss
factors. In Section 5, the more general case of loss/gain factors is studied, and an algorithm
is presented to solve the GWPP in this general case. Section 6 presents the experiments
conducted to validate and evaluate the proposed algorithms. Finally, Section 7 summarizes
the main findings of the paper.

The current paper is an extension of the paper presented and published in the pro-
ceedings of the 13th International Conference on Operations Research and Enterprise
Systems (ICORES 2024) [15]. In the current paper, the general case (with loss/gain factors)
is studied, and a strongly polynomial algorithm is introduced to solve the GWPP in the
general case (see Section 5). Also, in order to illustrate the functionality of the proposed
algorithms, the iterations of each of the three algorithms are presented for a given network
(see Sections 4 and 5). The experiments from Section 6 were extended for Algorithm 3 [15]
as well.

2. Preliminaries

For the sake of simplicity, from now on, we refer to a path from s to t as an “st-path”.
The capacity of an st-path P is denoted by u(P) and is given by the minimum of its

capacities, that is,
u(P) = min{u(a)|a ∈ P}.

In the network G is intended to find an st-path P̃ with the maximum capacity among
all st-paths:

u
(

P̃
)
= max{u(P)|P is an s − t path}.

This problem is also called the widest path problem, the bottleneck shortest path
problem, and the max–min path problem in the literature.

3. Problem Formulation

In this section, we will delve into the problem of the generalized widest path. Let us
formally define the problem considering a connected and directed network denoted as
G(V, A, u, p). Here, p is the loss/gain factor parameter.

For each arc (i, j) ∈ A, there are two key parameters associated with it. The first one
is the capacity, denoted as uij, which represents the maximum amount of flow that can be
sent along the arc. The second parameter pij is the loss factor if it lies in the interval (0, 1],
or it is the gain factor if pij ∈ (1,+∞). The loss factor captures physical transformations
such as evaporation, energy dissipation, breeding, theft, or interest rates [16]. The loss/gain
factor could be the exchange rate of two different currencies.

Considering the flow along the arcs, if xij units of flow enter arc (i, j), pijxij units of
flow are actually delivered to node j. If pij ∈ (0, 1], then this implies that

(
1 − pij

)
xij units

of flow are absorbed or lost along the arc due to the specified loss factor. If pij ∈ (1,+∞),
then this means that flow is increased by

(
pij − 1

)
xij units.
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The aim of the generalized widest path problem is to find an st-path that enables the trans-
mission of the maximum possible flow while taking the loss/gain factors into consideration.

To formulate this problem in a precise manner, we introduce the following variables:

- xij, representing the flow entering arc (i, j).
- yij, a binary variable that determines whether or not arc (i, j) carries a positive flow (1

if it does, 0 otherwise).

Now, we can express the GWPP as a mixed zero–one linear programming model,
which can be stated as follows:

maxz = vt (1a)

∑
j:(i,j)∈A

xij − ∑
j:(j,i)∈A

pjixji =


vs i = s,
0 i ̸= s, t,
−vt i = t,

∀i ∈ V, (1b)

∑
j:(i,j)∈A

yij ≤ 1, ∀i ∈ V\{t}, (1c)

0 ≤ xij ≤ uijyij, ∀(i, j) ∈ A. (1d)

Let us break its points down into separate parts:

1. The variables vs and vt represent the flow leaving the source node s and the flow
entering the sink node t, respectively.

2. Constraints (1b) and (1d) correspond to the balanced flow constraint and the bound
constraints commonly found in maximum flow problems [4].

3. Constraint (1c) ensures that, at most, one outgoing arc from any node is capable of
sending flow. This constraint guarantees that flow is sent only along a single st-path.

4. The formulation (1) of the GWPP closely resembles that of generalized maximum
flow problems, with the added inclusion of zero-one variables yij and the constraint
(1c) [4].

Remark 1. While we have assumed that pij ≤ 1, constraint (1d) does not account for the
possibility of a flow increment on arc (i, j) when pij > 1. In such cases, it should be written
as 0 ≤ max

{
xij, pijxij

}
≤ uijyij. To handle this situation without loss of generality, we can

redefine the capacity of arc (i, j) as min
{

uij, uij/pij
}

.

4. Algorithms for the Case of Losses on Arcs

This section focuses on the development of two algorithms to solve the GWPP in
polynomial time. This provides evidence that the problem is tractable, similar to the WPP,
SP, and MRP problems.

We start with a simple observation: if we send the maximum flow along a path, then
at least one of its arcs will be saturated. The capacity of this saturated arc determines the
flow value along the path. Let (iP, jP) be the last saturated arc in an st-path P = s − · · · −
iP − jP − · · · − k − t. The flow value along path P is then equal to uiP jP ×

(
piP jP × . . . × pkt

)
.

An interesting insight is that if we remove the arc (iP, jP) from the network and add a new
arc (s, jP) with capacity usjP = uiP jP , loss factor psjP = piP jP , then we can send the same
flow value along the new path s − jP − · · · − k − t. This simple idea leads to a polynomial
time algorithm for solving problem (1).

In the first algorithm, disregarding arc capacities, we aim to find a maximum reliability
path from s to t, which is a path P where the value of the product ∏(i,j)∈P pij is maximized.
This can be achieved by assigning arc lengths lij = −log

(
pij

)
and finding the shortest

st-path based on these arc lengths. Let P be the shortest path obtained. Then, we identify
the last arc (iP, jP) in P that would become saturated if we were to send the maximum flow
along P. We remove arc (iP, jP) from the network and introduce an artificial arc (s, jP)
with a loss factor psjP = piP jP , capacity usjP = uiP jP , and a weight of − log(uiP jP piP jP). We



Axioms 2024, 13, 127 5 of 16

repeat this process until we find a path P, in which the last saturated arc is one of the
artificial arcs.

Considering the unique characteristics of our algorithm, it is noteworthy to underscore
that the negative weights exclusively pertain to arcs emanating from the source node s. This
crucial distinction enables the seamless application of Dijkstra’s algorithm, as its efficacy
is contingent upon the absence of negative cycles within the graph. To further streamline
the application of Dijkstra’s algorithm and eliminate negative arcs altogether, we propose
a judicious adjustment to the arc weights. Specifically, we suggest augmenting all arcs
with the minimum value among the arcs originating from s, denoted as min(s, j) for the
pair (s, j). This augmentation ensures the absence of negative weights in the entire graph,
rendering it amenable to Dijkstra’s algorithm without any reservations.

Subsequently, upon identifying the optimal path and obtaining the computed result,
we advocate for subtracting the added value, which is representative of the minimum value
among the source-emerging arcs. This corrective measure guarantees the restoration of the
original, unaltered values on the optimal path while harnessing the benefits of an adjusted
graph conducive to the successful application of Dijkstra’s algorithm.

It is important to note that the optimal value of problem (1) is equal to the maximum
flow along the last path found by the algorithm. To obtain the optimal path, we need to
save the segment of path P from s to iP whenever (iP, jP) is removed and (s, jP) is added.
This can be accomplished by introducing an additional parameter PsjP for each artificial arc.
Therefore, if the algorithm finds path P in the last iteration, the optimal solution will be a
path that includes arcs from PsjP and P, excluding (s, jP).

Algorithm 1 provides a formal description of our first algorithm. Since an arc is
removed in each iteration, the number of iterations is, at most, equal to m (the total number
of arcs). Algorithm 1 runs, at most, m times classical Dijkstra’s algorithm in the modified
network (by applying –log to the initial values). As a result, we can conclude the following.

Theorem 1. The complexity of Algorithm 1 is O(mS(n, m)), in which S(m, n) is the complexity
of finding the shortest path in the network.

Algorithm 1 (Alg1)

Input: An instance of the generalized WPP
Output: An optimal path

for (i, j) ∈ A:
if i == s :

Set lij = − log pijuij and Pij = (i, j)
else:

Set lij = − log pij and Pij = ∅
while True:

Find a shortest path P with respect to lij
if PsjP ̸= ∅ :
The optimal path is PsjP ∪ P\{(s, jP)}
else:

Find the last arc (iP, jP) of P to be saturated.
Remove (iP, jP).
Add an artificial arc (s, jP)
Set lsjP = − log(uiP jP piP jP )

Algorithm 1 iterations (Figures 1–9 illustrate the iterations of the algorithm):
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We observe that our graph example contains arcs with negative weights. However,
this does not pose a problem as the negative arcs will always exist from the source node.
This particularity ensures that Dijkstra’s algorithm performs well.

We applied Dijkstra’s algorithm to find the shortest path from source 1 to the sink 8.
The resulting path is marked with dotted line and is P = (1,4,3,5,6,8).

The last saturated arc (5P, 6P) on the shortest path P is eliminated, and the arc (s,6) is
added with the capacity of (5P, 6P) and the weight lsjP = − log(uiP jP piP jP) =0.1503.

The resulted path on the second iteration is P = (1,4,3,5,8).
On the new shortest path found, after we push the maximum flow through it, we find

that the arc (3P, 5P) is last saturated. So, it is removed, and the arc (1,5) is added with the
same capacity of 3 and the new weight of −0.982.

The resulted path on the third iteration is P = (1,4,5,8).
In the third iteration, the arc (5P, 8P) is found to be the last saturated arc. An artificial

arc (1,8) with the capacity 4 and weight −0.6931 is added.
The last saturated arc is one of the artificial arcs; therefore, we stop here. In this

scenario, we applied Dijkstra’s algorithm fourth times. After we apply PsjP ∪ P\{(s, jP)},
which, in our scenario, is PsjP = (1, 4, 5) and P\{(s, jP)} = (5,8), we obtain the optimal path
(1,4,5,8) as can be seen in Figure 10.
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In the followings, we discuss optimality conditions for problem (1) and present an algo-
rithm with a time complexity of O(S(m, n)), which improves the complexity of Algorithm
1 by a factor of m.

To begin, we introduce a label d(j) for each node j ∈ V. During intermediate stages
of computation, the label d(j) serves as an estimate (or an upper bound) of the maximum
flow sent from the source node s to node j along a single path. At the termination of the
algorithm, the label d(j) represents the optimal value of problem (1). Our objective is to
establish necessary and sufficient conditions for a set of labels to accurately represent the
maximum flow.

Let d(j) denote the value of the maximum flow sent from the source node to node
j (where we set d(s) = +∞). In order for the labels to be optimal, they must satisfy the
following necessary optimality conditions:

- Constraint (1c): For each node j ̸= s, there exists, at most, one outgoing arc with
positive flow. This condition ensures that the flow is sent only along a single st-path.

- Capacity Constraint: For each arc (i, j), the flow through the arc must not exceed its
capacity. Mathematically, this can be written as fij ≤ uij, where fij represents the
flow on arc (i, j) and uij represents the capacity of arc (i, j).

- Flow Conservation: The flow conservation principle must be satisfied at every node
(except the source and sink nodes). For any node j ̸= s and j ̸= t, the sum of
incoming flows must equal the sum of outgoing flows. Mathematically, this can be
expressed as ∑(i,j)∈A fij − ∑(j,k)∈A f jk = 0.
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- Optimality Condition: For each node j ̸= s, the label d(j) represents the maximum
flow sent from the source node s to node j. Therefore, we have d(j) = ∑(i,j)∈A fij −
∑(j,k)∈A f jk , where fij represents the flow on arc (i, j) and f jk represents the flow on
arc (j, k).

By satisfying these necessary optimality conditions, we can ensure that the labels d(j)
accurately represent the maximum flow in the network.

If the labels are optimal, they must satisfy the following necessary optimality conditions:

dj ≥ pijmin
{

uij, di
}

.

This is an extension of the optimality conditions of both the WPP and MRP problem.
On the optimal path, the inequality is satisfied in the equality form. It states that the label
of node j is either pijdi or pijuij. In the case that the flow value arriving at node i is less than
uij, (namely, di < uij), this arc is not saturated and consequently dj = pijdi. In the other
case, (i, j) is saturated, sending more flow than its capacity. So, dj = pijuij in this case.

Since this optimality condition is similar to that of the SP problem, we can apply the
concept of Dijkstra’s algorithm to solve problem 1. This is presented in Algorithm 2.

Theorem 2. Algorithm 2 solves the problem in O
(
n2) time.

Proof of Theorem 2. Considering the provided information, we can deduce that in the
while loop, each arc is checked only once. As a result, the number of iterations executed by
the two last lines of the loop is, at most, O(m), which is also less than or equal to O

(
n2)

considering the worst-case scenario. □

Conversely, the node selection process, where the node with the minimum label is cho-
sen, requires O(n) time in each iteration. Taking into account that the number of iterations
is O

(
n2), we can conclude that the most time-consuming operation in this algorithm is the

node selection, which takes O
(
n2) time. Algorithm 2 is derived from Dijkstra’s algorithm

by replacing the classical test with dj < pijmin
{

uij, di
}

; then, if necessarily, the update
dj = pijmin

{
uij, di

}
is performed.

Algorithm 2 (Alg. 2)

Input: An instance of the generalized WPP
Output: An optimal path

for i ∈ V :
Set d(i) = 0
Set ds = +∞
Set S0 = {}; S = V
while |S| < n:

Let i ∈ S be a node for which

di = max
{

dj : j ∈ S
}

;

S = S\{i};
for each j ∈ V : (i, j) ∈ A:

if dj < pijmin
{

uij, di

}
:

Update dj = pijmin
{

uij, di

}
Update S = S U {i};

We can also use the available implementations of Dijkstra’s algorithm for the complex-
ity improvement of Algorithm 2. For example, the Fibonacci heap implementation reduces
the complexity to O(m + n log n).

Algorithm 2 iterations:
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We will apply Algorithm 2 for the graph from Figure 1. We have the following
data structures: d (distance vector), Pred. (predecessor vector), and S (priority queue
or a Fibonacci heap, depending on the implementation). It is important to note that all
structures are starting from index 1 in this example.

Upon examination of the predecessor vector Pred. represented by [−1, 1, 1, 1, 4, 5, 5,
5], it is obvious that the optimal path is (1, 4, 5, 8). So, both the first and second algorithms
yield identical optimal paths (see Figure 10 and Table 1).

Table 1. Algorithm 2 iterations.

No. itr. Structure Structure Data
D [inf, 0, 0, 0, 0, 0, 0, 0]

1 S [1]
Pred. [−1, −1, −1, −1, −1, −1, −1, −1]

2
D [inf, 6.02, 5.84, 8.2, 0, 0, 0, 0]
S [2, 3, 4]
Pred. [−1, 1, 1, 1, −1, −1, −1, −1]
D [inf, 6.02, 5.84, 8.2, 5.44, 0, 0, 0]

3 S [2, 3, 5]
Pred. [−1, 1, 1, 1, 4, −1, −1, −1]

4
D [inf, 6.02, 5.84, 8.2, 5.44, 0, 0, 0]
S [3, 5]
Pred. [−1, 1, 1, 1, 4, −1, −1, −1]
D [inf, 6.02, 5.84, 8.2, 5.44, 0, 0, 0]

5 S [5]
Pred. [−1, 1, 1, 1, 4, −1, −1, −1]

6
d [inf, 6.02, 5.84, 8.2, 5.44, 0.9, 1, 2]
S [6, 7, 8]
Pred. [−1, 1, 1, 1, 4, 5, 5, 5]
D [inf, 6.02, 5.84, 8.2, 5.44, 0.9, 1, 2]

7 S [6, 7]
Pred. [−1, 1, 1, 1, 4, 5, 5, 5]

8
D [inf, 6.02, 5.84, 8.2, 5.44, 0.9, 1, 2]
S [6]
Pred. [−1, 1, 1, 1, 4, 5, 5, 5]
D [inf, 6.02, 5.84, 8.2, 5.44, 0.9, 1, 2]

9 S [EMPTY]
Pred. [−1, 1, 1, 1, 4, 5, 5, 5]

5. Gain/Loss Case of the GWPP

Since the GWPP is reduced to a minimum path search problem in a network with
non-negative values on arcs (except for the arcs starting with the source node), Dijkstra’s
algorithm was adapted for solving the GWPP. The same optimality conditions may apply
to problems involving gain factors (leading to arcs with negative values in the modified
network). Therefore, Bellman–Ford’s algorithm can be adapted to address the case when the
arcs have gain/loss factors. We used the shortest path faster algorithm (SPFA) implementation
of Bellman–Ford [17]. The algorithm iteratively relaxes edges in the graph and updates the
optimal path estimates until no further updates are possible. This algorithm is described in
Algorithm 3. The correctness of Algorithm 3 is akin to that of the well-known Bellman–Ford
algorithm (the modifications performed for the classical Bellman–Ford’s algorithm are similar
to those conducted for Dijkstra’s algorithm). For a proof, please refer to [4].
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Algorithm 3 (Alg. 3)

Input: An instance of the GWPP with gain/loss factors
Output: An optimal path

for i ∈ V :
Set di = 0, predi = −1, Si = f alse

Set ds = +∞, Q = {s};
while Q has elements:

i = pool Q;
Si = f alse;
for (i, j) ∈ A:

if dj < pijmin
{

uij, di

}
:

Update dj = pijmin
{

uij, di

}
.

Set predj = i.
if Sj == f alse:

Q = Q U {j};
Sj = true;

Restore the optimal path by the Pred indices.

Algorithm 3 iterations:

No. itr. Selected Edge Structure Structure Data
Q [1]
S [true,false,false,false,false,false,false,false]
d [inf, 0, 0, 0, 0, 0, 0, 0]0—init. -

Pred. [−1, −1, −1, −1, −1, −1, −1, −1]
Q [2]
S [false,true,false,false,false,false,false,false]
d [inf, 6.02, 0, 0, 0, 0, 0, 0]1 (1,2)

Pred. [−1, 1, −1, −1, −1, −1, −1, −1]
Q [2, 3]
S [false,true,true,false,false,false,false,false]
d [inf, 6.02, 5.84, 0, 0, 0, 0, 0]2 (1,3)

Pred. [−1, 1, 1, −1, −1, −1, −1, −1]
Q [2, 3, 4]
S [false,true,true,true,false,false,false,false]
d [inf, 6.02, 5.84, 8.20, 0, 0, 0, 0]3 (1,4)

Pred. [−1, 1, 1, 1, −1, −1, −1, −1]
Q [3, 4]
S [false,false,true,true,false,false,false,false]3 (2,3)

d, Pred. No change

4 (2,5)

Q [3, 4, 5]
S [false,false,true,true,true,false,false,false]
d [inf, 6.02, 5.84, 8.20, 4.45, 0, 0, 0]

Pred. [−1, 1, 1, 1, 2, −1, −1, −1]

5 (3,2)
Q [4, 5]
S [false,false,false,true,true,false,false,false]

d, Pred. No change
5 (3,4) Q, S, d, Pred. No change
6 (3,5) Q, S, d, Pred. No change

Q [5]
S [false,false,false,false,true,false,false,false]7 (4,3)

d, Pred. No change
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8 (4,5)
Q, S No change

d [inf, 6.02, 5.84, 8.20, 5.44, 0, 0, 0]
Pred. [−1, 1, 1, 1, 4, −1, −1, −1]

Q [6]
S [false,false,false,false,false,true,false,false]
d [inf, 6.02, 5.84, 8.20, 5.44, 0.90, 0, 0]9 (5,6)

Pred. [−1, 1, 1, 1, 4, 5, −1, −1]
Q [6, 7]
S [false,false,false,false,false,true,true,false]
d [inf, 6.02, 5.84, 8.20, 5.44, 0.90, 1.0, 0]10 (5,7)

Pred. [−1, 1, 1, 1, 4, 5, 5, −1]
Q [6, 7, 8]
S [false,false,false,false,false,true,true,true]
d [inf, 6.02, 5.84, 8.20, 5.44, 0.90, 1.0, 2.0]11 (5,6)

Pred. [−1, 1, 1, 1, 4, 5, 5, 5]
Q [7, 8]
S [false,false,false,false,false,false,true,true]12 (6,8)

d, Pred. No change

13 (7,8)
Q [8]
S [false,false,false,false,false,false,false,true]

d, Pred. No change
Q [EMPTY]
S [false,false,false,false,false,false,false,false]14

(8,-)
No neighbors

d, Pred. No change

The complexity of the algorithm is stated in the following theorem.

Theorem 3. Algorithm 3 solves the GWPP in the presence of loss and gain factors in O(nm) time.

Proof of Theorem 3. See [4]. □

While Algorithm 3 is less efficient than Algorithm 2, its ability to handle gain factors
makes it a valuable tool in the more general case of gain or loss factors attached to the arcs.

6. Experiments and Discussions

Since the problem studied in the paper is new, the (three) algorithms proposed in the
paper were compared with each other. The results of the comparison can be seen below.

Based on the findings presented in Theorems 1 and 2, it is obvious that Algorithm 2
outperforms Algorithm 1 in terms of speed. However, Algorithm 1 offers an advantage in
that it can be effectively parallelized on GPUs by utilizing classical Dijkstra’s algorithm [18]
in a sequential manner. So, the implementation of CUDA-based Dijkstra’s algorithm
resulted in a noteworthy acceleration of Algorithm 1.

The CUDA version exhibited significantly improved performance compared to Algo-
rithm 2, as shown in Figure 11. Particularly for larger network instances with 10,000 nodes
or more, the CUDA implementation of Algorithm 1 was up to 25.7 times faster than that of
Algorithm 2.

As expected, Algorithm 2 is faster than Algorithm 3 (see Figure 12). The experiments
were performed on large networks (see Table 2). They showed that Algorithm 2 runs up to
1.64 times faster than Algorithm 3 (see Table 3).
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We used different instances of random generated networks with the number of nodes
varying from 1000 to 25,000 (see Table 1). The networks were generated using the network
random generator from [19]. It is imperative to acknowledge that throughout various
experimental analyses, the graph’s density played an important role and was calibrated
using the Erdős–Rényi probability distribution [20]. The Erdős–Rényi variable, a contin-
uous parameter spanning the interval [0, 1], played a pivotal role in these experimental
investigations.

In this context, it is essential to elucidate that the Erdős–Rényi variable assumes a value
of 0 when the graph lacks any new arcs, signifying minimal density. Conversely, a value
of 1 denotes the graph’s attainment of maximum density, highlighting the comprehensive
spectrum of density exploration in our experimental framework.
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Table 2. Network generator parameters used for experiments.

No. of Nodes No. of Instances No. of Paths No. of Cycles Erdős–Rényi Prob. No.

1000 10,000
500 100 0.5 1
500 100 0.7 2
500 100 0.9 3

2000 1000
1000 100 0.1 4
1000 250 0.15 5
1000 500 0.6 6

5000 100
2500 1000 0.1 7
2500 1000 0.2 8
2500 1000 0.3 9

10,000 5
5000 2500 0.15 10
5000 2500 0.3 11
5000 2500 0.5 12

15,000 3 7500 1000 0.15 13
20,000 2 7500 1000 0.15 14
25,000 1 8000 1500 0.15 15

Table 3. Running times (ms) comparison between algorithms.

No. Algorithm 1
CPU

Algorithm 1
GPU Algorithm 2 Algorithm 3

Algorithm 1
GPU vs.

Algorithm 2
(Times Faster)

Algorithm 2 vs.
Algorithm 3

(Times Faster)

1 165.75 187.30 3.98 5.55 0.02 1.39
2 121.1 138.66 5.02 7.52 0.04 1.49
3 188.96 311.78 6.06 9.52 0.02 1.57
4 30.22 52.40 6.86 8.90 0.13 1.29
5 120.00 209.34 23.00 36.18 0.10 1.57
6 193.50 315.60 16.92 27.88 0.05 1.64
7 183.00 71.52 40.15 52.19 0.56 1.29
8 284.30 103.41 41.7 55.00 0.40 1.31
9 626.6 226.74 61.4 76.45 0.27 1.24

10 671.10 89.21 98.01 117.61 1.10 1.19
11 677.14 67.78 216.00 302.40 3.19 1.40
12 940.20 76.15 358.01 466.6 4.70 1.30
13 1306.07 49.41 265.33 424.52 4.82 1.59
14 2965.04 53.48 452.11 524.44 8.46 1.15
15 3549.10 32.11 826.04 966.46 25.72 1.16

The highest differences between algorithms’ running speeds are highlighted in Table 3.

The experiments were performed using a PC with an Intel(R) Core(TM) i5-6500 CPU @
3.20 GHz, 24 GB RAM, and an NVIDIA GeForce GTX 1070 TI graphics card. The algorithms
were programmed in Visual C++ 2022 under Windows 10.

7. Conclusions

In this paper, a novel combinatorial optimization problem was introduced (GWPP).
The main objective is to identify a path that can transmit the maximum flow, taking into
account both the capacities and loss/gain factors of the arcs.

The paper presented two strongly polynomial algorithms to address the GWPP in the
loss factor case and a third algorithm that can be used to solve the GWPP in the general
case of gain/loss factors attached to arcs. The first algorithm has a time complexity of
O(mS(n, m)), where S(m, n) represents the time complexity of finding the shortest path in
the network. On the other hand, the second algorithm has a more efficient time complexity
of O

(
n2). However, when the first algorithm is implemented on GPUs, it performs substan-

tially faster than the second algorithm, especially for large network instances. Algorithm 3
has a worse time complexity of O(mn) compared to that of Algorithm 2, but Algorithm
3 can deal with the more general case of gain/loss factors. To better understand how
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each of the three algorithms works, an example was considered, and the iterations of each
algorithm were presented.

The same experiments were performed for all three algorithms, and the performance
was compared. Algorithm 1 is considerably slower than Algorithm 2, both programmed on
a CPU. However, Algorithm 1 can be easily and efficiently implemented on GPUs, and in
this case, it outperforms Algorithm 2. As expected, Algorithm 3 is slower than Algorithm 2.
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