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Abstract: In this paper, a class of nonlinear ordinary differential equations with impulses at variable
times is considered. The existence and uniqueness of the solution are given. At the same time,
modifying the classical definitions of continuous dependence and Gâteaux differentiability, some
results on the continuous dependence and Gâteaux differentiable of the solution relative to the
initial value are also presented in a new topology sense. For the autonomous impulsive system,
the periodicity of the solution is given. As an application, the properties of the solution for a type
of controlled nonlinear ordinary differential equation with impulses at variable times is obtained.
These results are a foundation to study optimal control problems of systems governed by differential
equations with impulses at variable times.
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1. Introduction

We begin by introducing the problem studied. Let R+ ≜ [0,+∞), Y(t) = {yi(t)|i ∈
Λ ≜ {1, 2, · · · , p}}, f : R+ × Rn −→ Rn, yi : R+ −→ Rn and Ji : Rn −→ Rn (i = 1, 2,
· · · , p) be given maps. Consider the following differential equations with impulses at
variable times

ẋ(t) = f (t, x(t)), {x(t)}⋂
Y(t) = ∅, t ≥ 0,

x(t+) = Ji(x(t)) + x(t), {x(t)}⋂
Y(t) = yi(t), t ≥ 0,

x(0) = x0.
(1)

The main purpose of this study is (i) to provide a sufficient condition for the existence
and uniqueness of solution x for impulsive system (1); and (ii) to give the necessary and
sufficient condition for the exact times when solution x meets set Y(t); (iii) to present the
properties of the solution relative to the initial value.

There are some interesting phenomena for impulsive system (1). First, it is clear that
the system ẋ(t) = x(t) + u(t) is controllable (see [1]), but the following impulsive system{

ẋ(t) = x(t) + u(t), x(t) ̸= 1,
x(t+) = 0, x(t) = 1

is not controllable. Similarly, the system ẋ(t) = −x(t) is stable, but the impulsive system{
ẋ(t) = −x(t), x(t) ̸= 1,
x(t+) = 2, x(t) = 1
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is not stable when the initial value x(0) ≥ 1. Let us look at the third example. Denote by
x(·; 0, x0) the solution of the following impulsive differential system{

ẋ(t) = 2t, x(t) ̸= 1, t > 0,
x(t+) = 0, x(t) = 1, t ≥ 0

with the initial value (0, x0). Then, we have
x
(

t; 0, 1 + 1
n

)
= t2 + 1 + 1

n , t ≥ 0,

x(t; 0, 1) =
{

1, t = 0,
t2 − m, t ∈

(√
m,

√
m + 1

]
, m ∈ N.

This implies that the impulsive system (1) never has any continuous solution with respect to
the initial value in L1. In addition, we can also use simple cases to show that the impulsive
system (1) may not have a global solution.

The motivation for studying this problem is as follows. First of all, many physical
phenomena and application models are characterized by (1). For example, integrate-and-
fire models derived from a physical oscillation circuit [2,3] is widely used in neuroscience
research, which is concerned with current–voltage relations at which the states can be reset
once the voltage reaches a threshold level [4,5]. Again, in the application, it is crucial to
choose appropriate threshold levels for making decisions to trigger or suspend an impulsive
intervention: ref. [6] used glucose threshold level-guided injections of insulin; ref. [7] used
the time that when an economic threshold was reached by the number of pests as the time of
impulsive intervention. Second, the theory of impulsive differential equations has been an
object of increasing interest because of its wide applicability in biology, medicine and more
and more fields (see [8] and its references). The significant interest in the investigation of
differential equations with impulse effects is explained by the development of equipment in
which a significant role is played by complex systems [9–11]. In particular, the qualitative
theory of impulsive system (1) has not been systematically established and it is natural
to investigate it. We discuss the existence and uniqueness of a global solution and its
properties for nonlinear ordinary differential equations with impulses at variable times
(1) under weaker conditions. It is worth pointing out that the solutions of differential
systems with impulses may experience pulse phenomena, namely, the solutions may hit
a given surface a finite or infinite number of times, causing a rhythmical beating. This
situation presents difficulties in the investigation of properties of solutions of such systems.
In addition, it is not suitable for the stronger conditions of a control problem. Consequently,
it is desirable to find weaker conditions that guarantee the absence or presence of pulse
phenomena. More generally, it is significant to find conditions where the solution only
meets a given surface k ∈ N times (N denote the set of natural numbers).

Before concluding this section, we review the previous literature on the qualitative
analysis of impulsive differential equations. In fact, the qualitative analysis of impulsive
differential equations can at least be traced back to the works by N.M. Kruylov and N.N.
Bogolyubov [12] in 1937 in their classical monograph Introduction to Nonlinear Mechanics.
A mathematical formulation of the differential equation with impulses at fixed times was
first presented by A.M. Samoilenko and N.A. Perestyuk [13] in 1974. Since then, the
qualitative theory on differential equation with impulses at fixed times in finite (or infinite)
dimensional spaces has been extensively studied (see [14–17] and the references therein).
For the differential equations with impulses at variable times, A.M. Samoilenko and N.A.
Perestyuk [18] gave in 1981 the mathematical model{

ẋ(t) = f (t, x(t)), t ̸= τi(x(t)),
x(t+) = x(t) + Ji(x(t)), t = τi(x(t)).

(2)

Later relevant works were published by D.D. Bainov and A.B. Dishliev [19] in 1984, S.
Hu [20] in 1989, etc. For more details, one can see the monographs of V. Lakshmikan-
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tham [21] in 1989, A.M. Samoilenko [22] in 1995, D.D. Bainov [23] in 1995 and M. Ben-
chohra [24] in 2006 and so on. In a word, these works established the qualitative theory of
(2) under stronger conditions. However, they are not suitable for the stronger conditions
of a control problem and impulsive differential equations in infinite dimensional spaces.
At the same time, when yi, (∀i ∈ Λ) is a one-to-one mapping, x(t) = yi(t) is equal to
t = y−1

i (x(t)). Hence, (2) can be treated as a simplified case of (1). For the linear case of (1),
Peng et al. [25] obtained the existence and uniqueness of the solution and its properties.

The rest of the paper is organized as follows. Section 2 presents the main results. In
Sections 3–5, the proofs of the three main theorems are given in turn. The periodicity of an
autonomous impulsive system is presented in Section 6. As an application, the variation
in the solution relative to the control is presented in Section 7, which is a foundation for
studying optimal control problems of systems governed by differential equations with
impulses at variable times. Finally, some new phenomena of impulsive differential systems
are summarized.

2. Main Results

We present our main results in this section. To state the first one, some preliminaries
are introduced. Throughout this paper, we fix T > 0 and assume that T = +∞, R+ =

[0, ∞), L1
loc(R

+;Rn×n)
△
= {x : (0,+∞) → Rn×n

∣∣|x(·)| ∈ L1(0, T;Rn×n), ∀T > 0}. We first
introduce several definitions. We define the function set PCY([0, T),Rn) =

{
x : [0, T) −→

Rn|x is continuous at t when x(t) /∈ Y(t), x is left continuous at t, and the right limit x(t+)
exists when x(t) ∈ Y(t)

}
. For x ∈ PCY([0, T),Rn), t ∈ [0, T) is called an irregular point if

x(t) ∈ Y(t). Otherwise, t is called a regular point. One can directly verify that the function
set PCY([0, T),Rn) is not linear. Denoted by B(z, θ2), the closed ball (in Rn) is centered at z
and has radius θ2 > 0.

Definition 1. A piecewise continuous function xθ is said to be an approximate PC-solution of (1)
if xθ(·) ≡ xθ(·; 0, x0) satisfies the following integral equation with impulses

xθ(t) = x0 +
∫ t

0
f (τ, xθ(τ))dτ + ∑

0 ≤ tj < t,
xθ(tj) ∈ B(yi(tj), θ2)

Ji
(
xθ(tj)

)
. (3)

In particular, when θ = 0, we call x(·) ≡ x0(·) ∈ PCY([0, T),Rn) a PC-solution of (1).

Meanwhile, we introduce the following basic assumptions.
[F](1) f : R+ ×Rn −→ Rn is measurable in t on R+ and locally Lipschitz continuous in

x, i.e., for any ρ > 0, there exits L(ρ) > 0 such that for all x, y ∈ Rn with |x|, |y| ≤ ρ, we have

| f (t, x)− f (t, y)| ≤ L(ρ)|x − y| for any t ∈ R+.

(2) There exists a constant k̃ > 0 such that

| f (t, x)| ≤ k̃(1 + |x|) for any t ∈ R+.

(3) f is continuous, partially differentiable in x, and fx(·, x) ∈ L1
loc(R

+,Rn×n).
[Y](1) yi ∈ C(R+,Rn), and yi(t) ̸= yj(t) for all t ∈ R+ and i ̸= j (i, j ∈ Λ).
(2) yi ∈ C1([0, T],Rn), and f (t, yi(t)) ̸= ẏi(t) (i ∈ Λ).
[J](1) Ji : Rn −→ Rn is continuous, and

Υi(t) ≡ yi(t) + Ji(yi(t)) ̸= yj(t) for all t ∈ R+ and i, j ∈ Λ. (4)

(2) Ji : Rn −→ Rn is continuous, partially differentiable.
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It is clear that when assumptions [F](1)(2) hold, for any fixed (s, zs) ∈ R+ ×Rn, the
differential equation {

ż(t) = f (t, z(t)), t > s,
z(s) = zs,

has a unique solution z(·; s, zs) ∈ C([s,+∞),Rn) given by

z(t; s, zs) = zs +
∫ t

s
f (τ, z(τ; s, zs))dτ. (5)

We define several functions:

Fi(t; s, zs) = ⟨z(t; s, zs)− yi(t), zs − yi(s)⟩ (i = 1, 2, · · · , p), t ≥ s (6)

and

Fij(t; s, Υi(s)) = ⟨z(t; s, Υi(s))− yj(t), Υi(s)− yj(s)⟩ (i, j = 1, 2, · · · , p), t ≥ s, (7)

where ⟨·, ·⟩ denotes the inner product in Rn.
The first main result is presented as follows.

Theorem 1. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold.
(1) The system (1) admits a unique PC-solution x ∈ PCY(R+,Rn).
(2) x has exactly one irregular point set {ti|0 ≤ t1 < t2 < · · · < tk < +∞} over R+ if and

only if there exists li ∈ Λ (i = 1, 2, · · · , k) such that

Fl1(t1; 0, x0) = 0, Fli li+1
(ti+1; ti, Υli (ti)) = 0 for i = 1, 2, · · · , k − 1, (8)

and
Flk j

(
t; tk, Υlk (tk)

)
> 0 for any t ∈ [tk,+∞) for all j ∈ Λ. (9)

We have to point out that the necessary and sufficient conditions of a pulse phe-
nomenon is also given in Theorem 1. Moreover, for the existence of a solution of system (2),
in order to ensure tk = τk(x) is monotonous with respect to k in [21], it requires that τk(x)
be smooth and satisfy the corresponding inequality conditions. However, using Theorem 1,
we can obtain immediately the following result.

Corollary 1. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold. If yi is invertible and τi = y−1
i

for any i ∈ Λ, then the system (2) admits a unique PC-solution x ∈ PCY(R+,Rn).

Now, we state our second and third main results. It follows from Theorem 1 that
for any fixed, sufficiently small θ > 0, (1) has a unique approximate PC-solution xθ

provided that assumptions [F](1)(2), [Y](1) and [J](1) hold. Let v ∈ Rn, xθ(·; θ, x0 + θv) be
an approximate PC-solution of Equation (1) corresponding to (θ, x0 + θv). We note that (1)
is not well posed. Thus, we can never expect to have the continuity of the solution with
respect to the initial value. We have to modify the classical definition of continuity and
differentiability, respectively.

Definition 2. Let v ∈ Rn be fixed. The PC-solution x(·; 0, x0) of (1) is said to have a continuous
dependence relative to the initial value (0, x0) if the following facts hold:
(i) When x(t; 0, x0) ̸= yi(t) (i ∈ Λ), xθ(t; θ, x0 + θv) −→ x(t; 0, x0) as θ → 0;
(ii) For any sufficient small ε > 0, there exist δ > 0 and Iε ⊆ [0, T] such that

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| < ε for any t ∈ Iε, (10)

when µ([0, T]\Iε) < ε, 0 < θ < δ, where µ denotes the Lebesgue measure.
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Definition 3. Let v ∈ Rn be fixed. The PC-solution x(·; 0, x0) of (1) is said to be Gâteaux
differentiable relative to the initial value (0, x0) if the Gâteaux derivative φ(t) of x(t; 0, x0) exists
at (0, x0) for all t ∈ [0, T] with x(t; 0, x0) ̸= yi(t), otherwise,

φ(t) = lim
s↗t

φ(s),

where

φ(t) = lim
ε→0

xε(t; ε, x0 + εv)− x(t; 0, x0)

ε
when x(t; 0, x0) ̸= yi(t).

Let us state the following main results.

Theorem 2. Suppose assumptions [F](1)(2), [Y](1) and [J](1) hold. Then, the PC-solution
x(·; 0, x0) of (1) has a continuous dependence relative to the initial value (0, x0) in the sense
of Definition 2.

Theorem 3. Suppose assumptions [F], [Y] and [J] hold. Then, the PC-solution x(·; 0, x0) of (1) is
Gâteaux differentiable relative to the initial value (0, x0) in the sense of Definition 3. Moreover, its
Gâteaux derivative φ is a PC-solution of the following differential equation with impulses

φ̇(t) = fx(t, x(t))φ(t), t ∈ (0, T], x(t)
⋂

Y(t) = ∅,
φ(t+) = φ(t) +∇Ji(yi(t))[φ(t) + ḣt(0) f (t, yi(t))], x(t)

⋂
Y(t) = yi(t),

φ(0) = v − f (0, x0).

Here, ht denotes the solution of the equation {xε(t; ε, x0 + εv)}⋂
∂B

(
yi(t), ε2) ̸= ∅ in ε for

some i ∈ Λ.

3. Proof of Theorem 1

Throughout this section, we define the function r : (0,+∞) −→ R+ given by

r(T) ∆
=

1
2

inf
s,t∈[0,T]

{
|yi(s)− yj(t)|,

∣∣yi(s)− Υj(t)
∣∣, |yi(s)− Υi(t)|

∣∣∣∣i, j ∈ Λ and i ̸= j
}

,

where Υj is defined by (4). It is easy from assumptions [J](1) and [Y](1) to see Υi ∈
C([0, T],Rn) for all i ∈ Λ. Hence, there exists a constant M(T) such that

|Υi(t)| ≤ M(T) for any t ∈ [0, T] and i ∈ Λ (11)

and

r(T) > 0 for all T > 0. (12)

To claim the existence and uniqueness of the solution of (1), we need the following
Lemma.

Lemma 1. If assumptions [F](1)(2), [Y](1) and [J](1) hold, then for any (s, ξ) ∈ [0, T) ×
{Υi(t)|t ∈ [0, T], i ∈ Λ}, there is a δ > 0 which is independent of (s, ξ) such that the following
differential equation {

ϕ̇(t) = f (t, ϕ(t)), t > s,
ϕ(s) = ξ,

(13)

has a unique solution ϕ ∈ C([s, s + δ],Rn) and

|ϕ(t)− yi(t)| ≥
r(T)

2
for any t ∈ [s, s + δ] and i ∈ Λ. (14)
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Proof. It follows from assumptions [F](1)(2) that (13) has a unique solution ϕ ∈ C([s, T],Rn)
and

|ϕ(t)| ≤ |ξ|+
∫ t

s
k̃(1 + |ϕ(τ)|)dτ.

Using Gronwall’s inequality, we have

|ϕ(t)| ≤
(
|ξ|+ k̃T

)
ek̃(t−s).

Together with (11), this means that

|ϕ(t)| ≤
(

M(T) + k̃T
)
ek̃T ≡ M̃(T; k̃) for any t ∈ [0, T].

Consequently, for any t ∈ [0, T], we have

|ϕ(t)− ξ| ≤
∫ t

s
| f (τ, 0)− f (τ, 0) + f (τ, ϕ(τ))|dτ

≤
∫ t

s
| f (τ, 0)|dτ +

∫ t

s
| f (τ, ϕ(τ))− f (τ, 0)|dτ

≤
∫ t

s
| f (τ, 0)|dτ +

∫ t

s
L(M̃(T; k̃))|ϕ(τ)|dτ

≤
∫ t

s
| f (τ, 0)|dτ + L(M̃(T; k̃))M̃(T; k̃)|t − s|

≤
[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t − s|

Together with (12) and

|ϕ(t)− yi(t)| ≥ |yi(t)− ξ| − |ϕ(t)− ξ|,

we have

|ϕ(t)− yi(t)| ≥ |yi(t)− ξ| − |ϕ(t)− ξ|
≥ |yi(t)− ξ| −

[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t − s| (15)

≥ 2r(T)−
[
k̃ + L(M̃(T; k̃))M̃(T; k̃)

]
|t − s|

and there exists a constant δ = δ(T, k̃) = 3r(T)
2[k̃+L(M̃(T;k̃))M̃(T;k̃)]

> 0 such that (14) holds.

Now, we prove conclusion (1) of Theorem 1. For any T > 0, with respect to the number
of irregular point of that system (1), there are only two possibilities: Case (1), x has no
irregular point on [0, T] and Case (2), x has at least one irregular point on [0, T]. For Case
(1), it follows from assumptions [F](1)(2) that (1) has a unique solution x ∈ C([0, T],Rn).
For Case (2), there exists i ∈ Λ and t1 > 0 such that x(t1; 0, x0) = yi(t1), and t1 is the
time of the first impulse. In a similar way, if no more impulse occurs, it follows from
assumptions [F](1)(2) that (1) has a unique solution x ∈ C([t1, T],Rn). If another impulse
occurs, there exists j ∈ Λ and t2 > t1, such that x(t2; t1, yi(t1) + Ji(yi(t1))) = yj(t2),
and t2 is the time of the second impulse. At the same time, from Lemma 1, we have
|t1 − t2| > δ. By a mathematical induction method, the system (1) has a unique PC-solution
x ∈ PCY([0, T],Rn). Thus, when T → ∞, Equation (1) admits a unique PC-solution
x(·; 0, x0) on R+.

Next, we discuss the number of irregular points for solution x of (1) over R+.

Lemma 2. If assumptions [F](1)(2), [Y](1) and [J](1) hold, then solution x of (1) has no irregular
point over R+ if and only if the following algebraic equations

Fi(t; 0, x0) = 0 has no solution on R+ for all i ∈ Λ.
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Proof. For the first step, we prove the sufficient condition. We assume solution x of (1)
has an irregular point over [0,+∞), then there exist i ∈ Λ and t1 ∈ [0,+∞) such that
x(t1; 0, x0) = yi(t1), and together with (5) and (6), we have

Fi(t1; 0, x0) = ⟨x(t1; 0, x0)− yi(t1), x0 − yi(0)⟩

= ⟨x0 +
∫ t1

0
f (τ, x(τ; 0, x0))dτ − yi(t1), x0 − yi(0)⟩

= ⟨x0 −
(

yi(t1) +
∫ 0

t1

f (τ, x(τ; 0, x0))dτ

)
, x0 − yi(0)⟩

= ⟨x0 − x(0; t1, yi(t1)), x0 − yi(0)⟩
= ⟨x0 − x(0), x0 − yi(0)⟩
= 0

This contradicts Fi(t; 0, x0) = 0 has no solution on R+ for all i ∈ Λ. the proof of the
sufficient condition is completed.

For the second step, we prove the necessary condition. In fact, we can prove that
under assumptions [F](1)(2), [Y](1) and [J](1), if solution x of (1) has no irregular point
over R+, then Fi(t; 0, x0) > 0 on R+ for all i ∈ Λ. First of all, if solution x of (1) has
no irregular point over R+, then for all i ∈ Λ, Fi(t; 0, x0) ∈ C([0,+∞),R). In addition,
for all i ∈ Λ, Fi(0; 0, x0) = ⟨x0 − yi(0), x0 − yi(0)⟩ > 0. Combined with the proof of the
sufficient condition, we have Fi(t; 0, x0) > 0 on R+ for all i ∈ Λ. The proof of the necessary
condition is completed.

Now, we prove the necessary condition on (2) in Theorem 1. For convenience, we let
x(·) = x(·; 0, x0) and {ti|0 ≤ t1 < t2 < · · · < tk < +∞} stand for the irregular point set of
x over R+. Then, there exists l1 ∈ Λ such that

x(t1) = yl1(t1).

Together with (6), we can affirm
Fl1(t1; 0, x0) = 0.

For the second irregular point t2 of x, there exists l2 ∈ Λ such that

x(t2) = x(t2; t1, Υl1(yl1(t1))) = yl2(t2).

Together with (7), it follows

Fl1l2(t2; t1, Υl1(yl1(t1)) = 0.

Similarly, for the irregular point tk of x, there is an lk ∈ Λ such that

Flk−1lk (tk; tk−1, Υlk−1
(tk−1)) = 0.

Moreover, we can see from Lemma 2 that x has no irregular point on [tk,+∞) if and only if

Flk j
(
t; tk, Υlk (tk)

)
= 0 has no solution on [tk,+∞) for all j ∈ Λ. (16)

Combined with (7), it is easy from assumptions [J](1) and [Y](1) to see that Flk j
(
·; tk, Υlk (tk)

)
∈

C([tk,+∞),R) and

Flk j
(
tk; tk, Υlk (tk)

)
= ⟨z(tk; tk, Υkk

(tk))− yj(tk), Υlk (tk)− yj(tk)⟩ > 0 for all j ∈ Λ.

Therefore, together with (16), this means (8) and (9) hold.
For the sufficient condition on (2) in Theorem 1, suppose {ti|0 ≤ t1 < t2 < · · · < tk < +∞}

satisfies (8) and (9). For tk, take Flk−1lk (tk; tk−1, Υlk−1
(tk−1)) = 0 and Flk j

(
t; tk, Υlk (tk)

)
>

0 for any t ∈ [tk,+∞) for all j ∈ Λ, and combine with Lemma 2, then, tk is the irreg-
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ular point. For tk−1, take Flk−2lk−1
(tk−1; tk−2, Υlk−2

(tk−2)) = 0 and Flk−1j

(
t; tk−1, Υlk−1

(tk−1)
)
>

0 for any t ∈ [tk−1, tk) for all j ∈ Λ, and combine with Lemma 2, then, tk−1 is the irregular
point. Analogously, {ti|0 ≤ t1 < t2 < · · · < tk < +∞} is the irregular point set of x over R+.
This completes the proof.

4. Proof of Theorem 2

Throughout this section, we fix T > 0 and vector v ∈ Rn. It follows from Theorem 1
that the irregular points to the PC-solution x of (1) occur at most a finite number of times
on the interval [0, T]. There are only two possibilities: Case (1), x has no irregular point on
[0, T] and Case (2), x has at least one irregular point on [0, T].

In Case (1), the PC-solution x has a continuous dependence relative to the initial value
in the sense of the classical definition, i.e.,

|xθ(·; θ, x0 + θv)− x(·; 0, x0)|C([0,T],Rn) −→ 0 as θ → 0.

In Case (2), if x0 = yi(0) for some i ∈ Λ, we only study the PC-solution x(·; 0+, Υi(0)).
Consequently, we may assume that x(·; 0, x0) meets the movement obstacle set Y(t) k
times in [0, T], and let t̄i

j be the moments when x(·; 0, x0) hits the movement obstacle line
yi(·), this moment is exactly the jth hits movement obstacle set Y(t), (i ∈ Λ, j = 1, 2,
· · · , k). For convenience, let {t̄i

j|0 < t̄i
1 < · · · < t̄r

k < T} denote the irregular point set of
x(·; 0, x0) on [0, T]. By Theorem 1, one can prove that the impulsive differential Equation (1)
has a unique approximate PC-solution xθ(·; θ, x0 + θv) corresponding to the initial value
(θ, x0 + θv). Note that the approximate PC-solution (3) is the PC-solution of (1), as θ = 0.
According to the continuous dependence of the solution of an ODE on parameters, there
exists ¯̄δ > 0, such that when 0 ≤ θ < ¯̄δ, xθ(·; θ, x0 + θv) and x0(·; 0, x0) have the same
number of irregular points on [t0, T]. Let ti

j(θ) be the irregular moments of xθ(·; θ, x0 + θv).
Notice approximate PC-solution (3) is the PC-solution of (1), again, as θ = 0, and using the
continuous dependence of the solution of an ODE on parameters, there exists ¯̄δ > δ̄ > 0,
such that when 0 ≤ θ < δ̄, max{t̄i

j, ti
j(θ)} < min{t̄r

j+1, tr
j+1(θ)}.

For a sufficient small ε > 0, the PC-solution x0(·; 0, x0) of (1) does not meet movement
obstacle set Y(t) on [0, t̄i

1 −
ε

4k ]. Similarly, using the continuous dependence of the solution
of an ODE on parameters, approximate PC-solution (3) is the PC-solution of (1), as θ = 0.
It yields that there is a δ̄ > δ1 > 0 such that for any 0 < θ < min{δ1, ε

4k}, the inequality
|xθ(·; θ, x0 + θv)− x0(·; 0, x0)| < ε holds on [θ, t̄i

1 −
ε

4k ]. Furthermore, together with x(t̄i
1) =

yi(t̄i
1), we have xθ(ti

1(θ)) = ỹi ∈ ∂Bθ2
yi

, this means

lim
θ→0

ti
1(θ) = t̄i

1.

Together with the continuity of Ji, we have

lim
θ→0

Ji

(
xθ

(
ti
1(θ); θ, x0 + θv

))
= Ji

(
x
(

t̄i
1; 0, x0

))
.

It follows from (4) that

lim
θ→0

Υi

(
ti
1(θ)

)
= Υi

(
t̄i
1

)
,

where

Υi

(
ti
1(θ)

)
= xθ

(
ti
1(θ); θ, x0 + θv

)
+ Ji

(
xθ

(
ti
1(θ); θ, x0 + θv

))
.

For the time interval
[
t̄i
1 +

ε
4k , t̄j

2 −
ε

4k

]
,

|xθ(t; θ, x0 + θv)− x(t; 0, x0)|
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=
∣∣∣xθ

(
t; ti

1(θ), Υi

(
ti
1(θ)

))
− x

(
t; t̄i

1, Υi

(
t̄i
1

))∣∣∣
≤

∣∣∣Υi

(
ti
1(θ)

)
− Υi

(
t̄i
1

)∣∣∣+ ∣∣∣∣∫ t

ti
1(θ)

f (τ, xθ(τ))dτ −
∫ t

t̄i
1

f (τ, x(τ))dτ

∣∣∣∣
≤ 2M(T) +

∣∣∣∣∣
∫ max {ti

1(θ), t̄i
1}

min {ti
1(θ), t̄i

1}
f (τ, xθ(τ))dτ

∣∣∣∣∣
+ L(M̃(T; k̃))

∫ t

max {ti
1(θ), t̄i

1}
|xθ(τ)− x(τ)|dτ

≤ 2M(T) + k̃(1 + M̃(T; k̃))
∣∣∣ti

1(θ)− t̄i
1

∣∣∣+ L(M̃(T; k̃))
∫ t

max {ti
1(θ), t̄i

1}
|xθ(τ)− x(τ)|dτ

From Gronwall’s inequality, we obtain the estimate

|xθ(t; θ, x0 + θv)− x(t; 0, x0)|

≤ exp(L(M̃(T; k̃))[t − max {ti
1(θ), t̄i

1}])
(

2M(T) + k̃(1 + M̃(T; k̃))
∣∣∣ti

1(θ)− t̄i
1

∣∣∣)
which implies that there is a δ2 > 0 with δ2 < δ1 such that for any θ > 0 with θ < δ2,

|xθ(t; θ, x0 + θv)− x(t; u, 0, x0)| =
∣∣∣xθ

(
t; ti

1(θ), Υi

(
ti
1(θ)

))
− x

(
t; t̄i

1, Υi

(
t̄i
1

))∣∣∣
< ε for any t ∈

[
t̄i
1 +

ε

4k
, t̄j

2 −
ε

4k

]
.

Let

Υi

(
ti

j(θ)
)
= xθ

(
ti

j(θ); θ, x0 + θv
)
+ Ji

(
xθ

(
ti

j(θ); θ, x0 + θv
))

, j > 1, i ∈ Λ. (17)

In general, by repeating the above process, one can show that there is a δj+1 > 0 with
δj+1 < δj such that for any θ > 0 with θ < δj+1,

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| =
∣∣∣xθ

(
t; ti

j(θ), Υi

(
ti

j(θ)
))

− x
(

t; t̄i
j, Υi

(
t̄i

j

))∣∣∣
< ε for any t ∈

[
t̄i

j +
ε

4k
, t̄r

j+1 −
ε

4k

]
and

lim
θ→0

tr
j+1(θ) = t̄r

j+1,

lim
θ→0

Jr

(
xθ

(
tr

j+1(θ); θ, x0 + θv
))

= Jr

(
x
(

t̄r
j+1; 0, x0

))
,

lim
θ→0

Υr

(
tr

j+1(θ)
)
= Υr

(
t̄r

j+1

)
,

where

Υr

(
tr

j+1(θ)
)
= xθ

(
tr

j+1(θ); θ, x0 + θv
)
+ Jr

(
xθ

(
tr

j (θ); θ, x0 + θv
))

.

In short, for any sufficient small ε > 0, there exists a δ > 0 such that

|xθ(t; θ, x0 + θv)− x(t; 0, x0)| < ε for any t ∈ Iε when θ < δ,
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and µ([0, T] \ Iε) < ε, where

Iε =
[
θ, t̄i

1 −
ε

4k

]⋃k−1⋃
j=1

[
t̄i

j +
ε

4k
, t̄r

j+1 −
ε

4k

]⋃[
t̄r
k +

ε

4k
, T

]
.

This completes the proof.

5. Proof of Theorem 3

Throughout this section, we fix T > 0. It follows from Theorem 2 that there are only
two possibilities: Case (i), x(·; 0, x0) has no irregular point on [0, T] and Case (ii), x(·; 0, x0)
has at least one irregular point on [0, T].

In Case (i), one can directly check that x(·; 0, x0) of (1) is Gâteaux differentiable, and
its Gâteaux derivative φ is a weak solution of the following differential equation{

φ̇(t) = fx(t, x(t; 0, x0))φ(t), t ∈ (0, T],
φ(0) = v − f (0, x0).

To discuss Case (ii), we define function ht given by

ht(ε) denotes the solution of the equation H(ε, t) = 0. (18)

Here,

H(ε, t) = xε(t; ε, x0 + εv)− ỹ(t, ε), (19)

where ỹ(t, ε) = ỹi(t, ε) for some i ∈ Λ, ỹi(t, ε) ∈ ∂B
(
yi(t), ε2). By Theorem 2, when

x(t; 0, x0) = yi(t), there is a δ > 0 such that definition (18) holds for all ε ∈ [0, δ], that is,
ht : [0, δ] −→ O(t) is a function, and ht(0) = t, where O(t) denotes some neighborhood of t.
For convenience, let {ti

j|0 < ti
1 < · · · < tr

k < T} denote the irregular point set of x(·; 0, x0)

on [0, T]. If yi ∈ C1([0, T],Rn), it follows from Theorem 2 and (19) that there is an δ > 0
such that

H ∈ C([0, δ]× [0, T]) and H
(

ε, hti
j
(ε)

)
= 0 for any ε ∈ [0, δ], i ∈ Λ, j = 1, 2, · · · , k

and
Ht(ε, t) = f (t, xε(t; ε, x0 + εv))− ỹt(t, ε).

According to assumption [Y](2), f
(

ti
j, yi

(
ti

j

))
̸= ẏi

(
ti

j

)
(j = 1, 2, · · · , k, i ∈ Λ), we have

Ht

(
ε, hti

j
(ε)

)
= f

(
hti

j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏi(hti

j
(ε)) ̸= 0 in Rn, ∀ε ∈ [0, δ],

where j = 1, 2, · · · , k. Let f =
(

f 1, f 2, · · · , f n)⊤, yi =
(
y1

i , y2
i , · · · , yn

i
)⊤ (i ∈ Λ). Without

loss of generality, we suppose

f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i (hti
j
(ε)) ̸= 0 in R, ∀ε ∈ [0, δ], j = 1, 2, · · · , k, (20)

We introduce the following functions

Φε(t, s) = exp
(∫ t

s
fx(τ, xε(τ; ε, x0 + εv))dτ

)
; (21)
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then,

Φ(t, s) = lim
ε→0

Φε(t, s) = exp
(∫ t

s
fx(τ, x(τ; 0, x0))dτ

)
.

We let

Φ1
ε (t, s) and Φ1(t, s) denote the first line vector of Φε(t, s) and Φ(t, s), respectively. (22)

We first claim the following lemma.

Lemma 3. Suppose assumption [F](3) holds. Then, ht is differentiable over [0, δ] for some δ > 0,
and its derivative is given by

ḣti
j
(0) =


Φ1(ti

1,0)( f (0,x0)−v)
f 1(ti

1,yi(ti
1))−ẏ1

i (ti
1)

, j = 1,

ḣtrj−1
(0)Φ1

(
ti
j ,t

r
j−1

)[
f
(

tr
j−1,yr

(
tr
j−1

))
−
(

I+∇Jr

(
yr

(
tr
j−1

)))
ẏr

(
tr
j−1

)]
f 1
(

ti
j ,yi

(
ti
j

))
−ẏ1

i

(
ti
j

) , j > 1.

Here, I is a unit matrix.

Proof. When t ∈
(

0, hti
1
(ε)

)
, it follows from assumption [F](3), (10) and (3) that

Hε(ε, t) = lim
ξ→0

xε+ξ(t; ε + ξ, x0 + (ε + ξ)v)− xε(t; ε, x0 + εv)
ξ

+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

ε+ξ

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

v − f (ε, x0 + εv) +
∂

∂ε
ỹi(t, ε).

One can see from (21) and the above equality that

Hε(ε, t) = Φε(t, ε)(v − f (ε, x0 + εv)) +
∂

∂ε
ỹi(t, ε).

Combining (20), (21) and (22), we have

ḣti
1
(ε) = −

Φ1
ε

(
hti

j
(ε), ε

)
(v − f (ε, x0 + εv)) + ∂

∂ε ỹ1
i (t, ε)

f 1
(

hti
1
(ε), xε

(
hti

1
(ε); ε, x0 + εv

))
− ẏ1

i

(
hti

1
(ε)

)
and

ḣti
1
(0) =

Φ1(ti
1, 0

)
(v − f (0, x0))

ẏ1
i
(
ti
1
)
− f 1

(
ti
1, yi

(
ti
1
)) ,

In general, when t ∈
(

htr
j−1

(ε), hti
j
(ε)

)
, it follows from assumption [F](3), (10), (3) and (4) that

Hε(ε, t) = lim
ξ→0

xε+ξ(t; ε + ξ, x0 + (ε + ξ)v)− xε(t; ε, x0 + εv)
ξ

+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

xε+ξ

(
t; htr

j−1
(ε + ξ), Υr

(
htr

j−1
(ε + ξ)

))
− xε

(
t; htr

j−1
(ε), Υr

(
htr

j−1
(ε)

))
ξ
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+
∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

htrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

+ lim
ξ→0

Υr

(
htr

j−1
(ε + ξ), ε + ξ

)
− Υr

(
htr

j−1
(ε), ε

)
ξ

− lim
ξ→0

∫ htrj−1
(ε+ξ)

htrj−1
(ε)

f (s, x(s; ε, x0 + εv))ds

ξ
+

∂

∂ε
ỹr(t, ε)

= lim
ξ→0

∫ t

htrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; ε, x0 + εv) + θ(xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)

−xε(s; ε, x0 + εv)))
xε+ξ(s; ε + ξ, x0 + (ε + ξ)v)− xε(s; ε, x0 + εv)

ξ
dθds

+
(

I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))[
ḣtr

j−1
(ε)

∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]
− ḣtr

j−1
(ε) f

(
htr

j−1
(ε), ỹr

(
htr

j−1
(ε), ε

))
+

∂

∂ε
ỹr(t, ε).

We can also infer from (21) and the above equality that

Hε(ε, t) =
∂

∂ε
ỹr(t, ε) + Φε

(
t, htr

j−1
(ε)

)(
I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))[
ḣtr

j−1
(ε)

∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]
− ḣtr

j−1
(ε)Φε

(
t, htr

j−1
(ε)

)
f
(

htr
j−1

(ε), ỹr

(
htr

j−1
(ε), ε

))
.

Together with (20) and (22), by the implicit function theorem, we have

ḣti
j
(ε) = −

Φ1
ε

(
hti

j
(ε), htr

j−1
(ε)

)(
I +∇Jr

(
ỹr

(
htr

j−1
(ε), ε

)))
f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i

(
h

tj
2
(ε)

)
·
[

ḣtr
j−1

(ε)
∂

∂t
ỹr

(
htr

j−1
(ε), ε

)
+

∂

∂ε
ỹr

(
htr

j−1
(ε), ε

)]

−
∂
∂ε ỹ1

r (t, ε)− ḣtr
j−1

(ε)Φ1
ε

(
hti

j
(ε), htr

j−1
(ε)

)
f
(

htr
j−1

(ε), ỹr

(
htr

j−1
(ε), ε

))
f 1
(

hti
j
(ε), xε

(
hti

j
(ε); ε, x0 + εv

))
− ẏ1

i

(
hti

j
(ε)

) .

Further, this means that

ḣti
j
(0) =

ḣtr
j−1

(0)Φ1
(

ti
j, tr

j−1

)[
f
(

tr
j−1, yr

(
tr

j−1

))
−

(
I +∇Jr

(
yr

(
tr

j−1

)))
ẏr

(
tr

j−1

)]
f 1
(

ti
j, yi

(
ti

j

))
− ẏ1

i

(
ti

j

) .

This completes the proof.
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Now, we claim Case (ii). For t ∈
(
0, ti

1
)
, similarly to Case (i), it is not difficult to check

the following result {
φ̇(t) = fx(t, x(t; 0, x0))φ(t), t ∈

(
0, ti

1
]
,

φ(0) = v − f (0, x0),
(23)

Combining with Lemma 3, we first note that

lim
ε→0

xε

(
hti

j
(ε); ε, x0 + εv

)
− x

(
ti

j; 0, x0

)
ε

= lim
ε→0

xε

(
hti

j
(ε); ε, x0 + εv

)
− xε

(
ti

j; ε, x0 + εv
)

ε
+ lim

ε→0

xε

(
ti

j; ε, x0 + εv
)
− x

(
ti

j; 0, x0

)
ε

= φ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))
. (24)

Together with assumption [J](2), When hti
j
(ε) > ti

j, we have

φ
(

ti
j+

)
= lim

ε→0

xε

(
hti

j
(ε)+; ε, x0 + εv

)
− x

(
hti

j
(ε); 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x

(
hti

j
(ε); ti

j, x
(

ti
j; 0, x0

)
+ Ji

(
x
(

ti
j; 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x

(
ti

j; 0, x0

)
− Ji

(
x
(

ti
j; 0, x0

))
−

∫ h
tij
(ε)

ti
j

f (s, x(s; 0, x0))ds
]

=
(

I +∇Ji

(
yi

(
ti

j

)))[
φ
(

ti
j−

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
− ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))
= φ

(
ti

j−
)
+∇Ji

(
yi

(
ti

j

))[
φ
(

ti
j−

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
.

When hti
j
(ε) < ti

j, we also have

φ
(

ti
j+

)
= lim

ε→0

xε

(
ti

j; ε, x0 + εv
)
− x

(
ti

j+; 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
hti

j
(ε); ε, x0 + εv

)
+ Ji

(
xε

(
hti

j
(ε); ε, x0 + εv

))
−x

(
ti

j; 0, x0

)
− Ji

(
x
(

ti
j; 0, x0

))
−

∫ h
tij
(ε)

ti
j

f (s, xε(s; ε, x0 + εv))ds
]

= φ
(

ti
j−

)
+∇Ji

(
yi

(
ti

j

))[
φ
(

ti
j−

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
.

Consequently, we have

φ
(

ti
j+

)
= φ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))[
φ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

))]
, i ∈ Λ, j = 1, 2, · · · , k. (25)
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Therefore, when t ∈
(

ti
j, tr

j+1

)
(j = 1, 2, · · · , k − 1) or t ∈

(
tr
k, T

]
, it follows from assumption

[F](3) and (10), (3), (4), (17), (22) and (24) that

φ(t) = lim
θ→0

xθ(t; θ, x0 + θv)− x(t; 0, x0)

θ

= lim
θ→0

xθ(t; hti
j
(θ), Υr(hti

j
(θ)))− x(t; ti

j, Υr(ti
j))

θ

= lim
θ→0

Υi(hti
j
(θ))− Υi(ti

j))

θ
+ lim

θ→0

∫ t

h
tij
(θ)

∫ 1

0
fx(s, x(s; 0, x0) + ξ(xθ(s; θ, x0 + θv)

−x(s; 0, x0)))
xθ(s; θ, x0 + θv)− x(s; 0, x0)

θ
dξds − lim

θ→0

1
θ

∫ h
tij
(θ)

ti
j

f (s, x(s; 0, x0))ds

= −ḣti
j
(0) f

(
ti

j, yi

(
ti

j

))
+ lim

θ→0

∫ t

h
tij
(θ)

∫ 1

0
fx(s, x(s; 0, x0) + ξ(xθ(s; θ, x0 + θv)

−x(s; 0, x0)))
xθ(s; θ, x0 + θv)− x(s; 0, x0)

θ
dξds

+
(

I +∇Ji

(
yi

(
ti

j

)))(
φ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

)))
.

Thus, combining with (23) and (25), we obtain from the above equality that
φ̇(t) = fx(t, x(t; 0, x0))φ(t), t ∈ (0, T] and t ̸= ti

j, i ∈ Λ, j = 1, 2, · · · , k,
φ(0) = v − f (0, x0),

φ
(

ti
j+

)
= φ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))(
φ
(

ti
j

)
+ ḣti

j
(0) f

(
ti

j, yi

(
ti

j

)))
, j = 1, 2, · · · , k.

This completes the proof of Theorem 3.

6. Periodicity of an Autonomous Impulsive System

As an application, in this section, we discuss the periodicity of the solution of the
following impulsive differential equation

ẋ(t) = g(x(t)), x(t) ̸= y1, t ≥ 0,
x(t+) = y2, x(t) = y1, t ≥ 0,
x(0) = x0,

(26)

where y1, y2 ∈ Rn, and y1 ̸= y2. We introduce the function

G(t; s, zs) = ⟨z(t, s, zs)− y1, zs − y1⟩ for any t ≥ s ≥ 0.

Here,

z(t, s, zs) = zs +
∫ t

s
g(z(τ, s, zs))dτ, for any t ≥ s ≥ 0.

For function G(·; 0, x0), it is clear that

G(t; 0, x0) = 0 has no solution on R+ (27)

or

t1 is the minimum solution of G(t; 0, x0) = 0 on R+. (28)

Similarly, it is obvious that

G(t; t1, y2) = 0 has no solution on [t1,+∞) (29)
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or

t2 is the minimum solution of G(t; t1, y2) = 0 on [t1,+∞). (30)

Let PCy1y2(R+,Rn) =
{

x : [0,+∞) −→ Rn|x be continuous at t when x(t) ̸= y1, x
is left-continuous at t and the right limit x(t+) exists when x(t) = y1

}
. We check the

following main result for autonomous impulsive system (26).

Theorem 4. Suppose g : Rn −→ Rn is locally Lipschitz continuous in x, and there exists a
constant k̃ > 0 such that

|g(x)| ≤ k̃(1 + |x|) for any t ≥ 0.

(1) If (27) holds, then (26) has a unique solution x ∈ C(R+,Rn).
(2) If (28) and (29) hold, then the solution of (26) has a unique irregular point t1.
(3) If (29) and (30) hold, then the solution of (26) is a periodic function on [t1,+∞).

Proof. Using Theorem 1, we directly check that autonomous impulsive system (26) has
a unique solution x ∈ PCy1y2(R+,Rn). Further, there are only three possibilities for the
solution: Case (i), x has not irregular point on R+; Case (ii), x has a unique irregular point
on R+; and Case (iii), x has two irregular points on R+ at least.

For Case (i), it follows from (2) of Theorem 1 that x has no irregular point on R+ if
and only if (27) holds. This means (26) has a unique solution x ∈ C(R+,Rn). Similarly, for
Case (ii), together with (28) and (29), we can also infer that x only has a unique irregular
point t1.

For Case (iii), let t1 and t2 denote the smallest two irregular points of solution x on R+

and T = t2 − t1. We claim

x(t + T) = x(t) for any t ∈ [t1,+∞). (31)

By the definitions of t1 and t2 (see (28) and (30)), solution x of (26) has not irregular point
on (t1, t2) and satisfies

x(t) = y2 +
∫ t

t1

g(x(s))ds for any t ∈ (t1, t2] and x(t2) = x(t1) = y1. (32)

When t ∈ (t1, t2], we have t + T ∈ (t2, t2 + T] and

x(t + T) = y2 +
∫ t+T

t1+T
g(x(s))ds = y2 +

∫ t

t1

g(x(s + T))ds. (33)

It is easy to see that by the assumption conditions of g, there exists ρ > 0 such that |x(t)|,
|x(T + t)| ≤ ρ for every t ∈ (t1, t2]. Furthermore, we assert from (32) and (33) that

|x(t + T)− x(t)| ≤
∫ t

t1

|g(x(s + T))− g(x(s))|ds

≤ L(ρ)
∫ t

t1

|x(s + T)− x(s)|ds.

Together with Gronwall’s inequality, one can verify that

x(t + T) = x(t) for any t ∈ (t1, t2].

Consequently, we can infer that (31) holds. Thus, this means that solution x of (26) is a
periodic function on [t1,+∞) with period T. The proof is completed.
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7. Application

As an application, in this section, we discuss the variation in the solution relative to
the control for the following control impulsive differential equation

ẋ(t) = f (t, x(t)) + B(t)u(t), {x(t)}⋂
Y(t) = ∅, t ≥ 0,

x(t+) = Ji(x(t)) + x(t), {x(t)}⋂
Y(t) = yi(t), t ≥ 0,

x(0) = x0,
(34)

where control function u ∈ L1
loc(R

+,Rm), B ∈ L∞
loc(R

+,Rn×m).
Using the idea of Theorems 1 and 2, for any T > 0 and u ∈ L1((0, T),Rm), one can

prove the following result.

Theorem 5. Suppose assumptions [F](1)(2), [Y](1) and [J] hold. Then, system (34) has a unique
PC-solution x(·; u) ≡ x(·; u, 0, x0) ∈ PCY([0, T],Rn) given by

x(t; u) = x0 +
∫ t

0
[ f (τ, x(τ; u)) + B(τ)u(τ)]dτ + ∑

0 ≤ tj < t,
x(tj; u) = yi(tj))

Ji
(
x(tj; u)

)
.

Moreover, solution x(·; u) has a continuous dependence relative to the control u in the sense of
Definition 2.

Moreover, for any fixed sufficient small θ > 0 and fixed v ∈ L1([0, T],Rm), (34) has a
unique PC-approximate solution xθ(·) ≡ xθ(·; u + θv, 0, x0) which satisfies

xθ(t) = x0 +
∫ t

0
[ f (τ, xθ(τ)) + B(τ)(u(τ) + θv(τ))]dτ + ∑

0 ≤ tj < t,
xθ(tj) ∈ B(yi(tj), θ2)

Ji
(
xθ(tj)

)
. (35)

To discuss the variation in the solution relative to the control, we introduce the follow-
ing definitions.

Definition 4. The PC-solution x(·; u, 0, x0) of (34) is said to be Gâteaux differentiable relative to the
control u if the Gâteaux derivative ψ(·) of x(t; u) exists at u for all t ∈ [0, T] with x(t; u, 0, x0) ̸=
yi(t); otherwise,

ψ(t) = lim
s↗t

ψ(s),

where

ψ(t) = lim
ε→0

xε(t; u + εv, 0, x0)− x(t; u, 0, x0)

ε
when x(t; u, 0, x0) ̸= yi(t).

Theorem 6. Suppose assumptions [F], [Y] and [J] hold and u ∈ C([0, T],Rm), B ∈ C([0, T],
Rn×m). The PC-solution x(·) = x(·; u, 0, x0) of (34) is Gâteaux differentiable relative to the control
u in the sense of Definition 4. Moreover, its Gâteaux derivative ψ is a PC-solution of the following
differential equation with impulses

ψ̇(t) = fx(t, x(t))ψ(t) + B(t)v(t), t ∈ (0, T], x(t) ̸= yi(t), i ∈ Λ,
ψ(0) = 0,
ψ(t+) = ψ(t) +∇Ji(yi(t))[ψ(t) + ġt(0)( f (t, yi(t)) + B(t)u(t)], x(t) = yi(t), i ∈ Λ.

Proof. There are only two possibilities: Case (I), x(·; u, 0, x0) has no irregular point on [0, T]
and Case (II), x(·; u, 0, x0) has at least one irregular point on [0, T].
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In Case (I), one can directly check that x(·; u, 0, x0) of (34) is Gâteaux differentiable,
and its Gâteaux derivative ψ is a weak solution of the following differential equation{

ψ̇(t) = fx(t, x(t; u))ψ(t) + B(t)v(t), t ∈ (0, T],
ψ(0) = 0.

To discuss Case (II), we define function gt given by

gt(ε) denotes the solution of the equation G(ε, t) = 0.

Here,

G(ε, t) = xε(t; u + εv, 0, x0)− ỹ(t, ε).

By Theorem 5, when x(t; u, 0, x0) = yi(t), there is a δ > 0 such that for all ε ∈ [0, δ],
gt : [0, δ] −→ O(t) is a function and gt(0) = t, where O(t) denotes some neighborhood of t.
For convenience, let {ti

j|0 < ti
1 < · · · < tr

k < T} denote the irregular point set of x(·; u, 0, x0)

on [0, T]. If yi ∈ C1([0, T],Rn), it follows that there is a δ > 0 such that

Gt(ε, t) = f (t, xε(t; u + εv, 0, x0)) + B(t)[u(t) + εv(t)]− ỹt(t, ε).

Further, when f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)
̸= ẏi

(
ti

j

)
(j = 1, 2, · · · , k, i ∈ Λ), without loss of

generality, we assume

f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε)) ̸= 0 in R,

i ∈ Λ, ∀ε ∈ [0, δ], j = 1, 2, · · · , k, (36)

where B1 denotes the first line vector of B. We introduce the following functions given by

Ψε(t, s) = exp
(∫ t

s
fx(τ, xε(τ; u + εv, 0, x0))dτ

)
, (37)

then

Ψ(t, s) = lim
ε→0

Ψε(t, s) = exp
(∫ t

s
fx(τ, x(τ; u, 0, x0))dτ

)
. (38)

We let

Ψ1
ε (t, s) and Ψ1(t, s) denote the first line vector of Ψε(t, s) and Ψ(t, s), respectively.

Now, we calculate the variation in the solution relative to the control in Case (II). For
t ∈

[
0, ti

1
]
, similar to Case (I), it is not difficult to check the following result:{

ψ̇(t) = fx(t, x(t; u, 0, x0))ψ(t) + B(t)v(t), t ∈
(
0, ti

1
]
,

ψ(0) = 0.
(39)

When t ∈
(

0, gti
1
(ε)

)
, it follows from assumption [F](3), (35) and (10) that

Gε(ε, t) = lim
ξ→0

xε+ξ(t; u + (ε + ξ)v, 0, x0)− xε(t; u + εv, 0, x0)

ξ
+

∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

0

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)

−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds
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∫ t

0
B(s)v(s)ds +

∂

∂ε
ỹi(t, ε).

It follows from (37) and the above that

Gε(ε, t) =
∫ t

0
Ψε(t, s)B(s)v(s)ds +

∂

∂ε
ỹi(t, ε).

Using the implicit function theorem, combined with (36), we have

ġti
1
(ε) = −

∫ g
ti1
(ε)

0 Ψ1
ε (gti

1
(ε), s)B(s)v(s)ds + ∂

∂ε ỹ1
i (gti

1
(ε), ε)

f 1
(

gti
1
(ε), xε

(
gti

1
(ε); u + εv, 0, x0

))
+ B1

(
gti

1
(ε)

)
u
(

gti
1
(ε)

)
− ẏ1

i (gti
1
(ε))

.

In the above equation, the vector product is the inner product operation. In the following
operations, the vector product is also the inner product operation. Together with Theorem 5,
we obtain

ġti
1
(0) = −

∫ ti
1

0 Ψ1(ti
1, s

)
B(s)v(s)ds

f 1
(
ti
1, x

(
ti
1; u, 0, x0

))
+ B1

(
ti
1
)
u
(
ti
1
)
− ẏ1

i (t
i
1)

. (40)

Further,

lim
ε→0

xε

(
gti

1
(ε); u + εv, 0, x0

)
− x

(
ti
1; u, 0, x0

)
ε

= lim
ε→0

xε

(
gti

1
(ε); u + εv, 0, x0

)
− xε

(
ti
1; u + εv, 0, x0

)
ε

+ lim
ε→0

xε

(
ti
1; u + εv, 0, x0

)
− x

(
ti
1; u, 0, x0

)
ε

= ψ
(

ti
1

)
+ ġti

1
(0)

[
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

)]
. (41)

Together with assumption [J](2), it follows from (40) and (41) that when gti
1
(ε) > ti

1,

ψ
(

ti
1

)
= lim

ε→0

xε

(
gti

1
(ε)+; u + εv, 0, x0

)
− x

(
gti

1
(ε); u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x

(
gti

1
(ε); u, ti

1, x
(

ti
1; u, 0, x0

)
+ Ji

(
x
(

ti
1; u, 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x

(
ti
1; u, 0, x0

)
− Ji

(
x
(

ti
1; u, 0, x0

))
−

∫ g
ti1
(ε)

ti
1

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds
]

=
(

I +∇Ji

(
yi

(
ti
1

)))[
ψ
(

ti
1−

)
+ ġti

1
(0)

(
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

))]
−ġti

1
(0)

(
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

))
= ψ

(
ti
1−

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−

)
+ ġti

1
(0)

(
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

))]
,
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and when gti
1
(ε) < ti

1, we also have

ψ
(

ti
1+

)
= lim

ε→0

xε

(
ti
1; u + εv, 0, x0

)
− x

(
ti
1+; u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

1
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

1
(ε); u + εv, 0, x0

))
−x

(
ti
1; u, 0, x0

)
− Ji

(
x
(

ti
1; u, 0, x0

))]
− lim

ε→0

1
ε

∫ g
ti1
(ε)

ti
1

[ f (s, xε(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds

= ψ
(

ti
1−

)
+∇Ji

(
yi

(
ti
1

))[
ψ
(

ti
1−

)
+ ġti

1
(0)

(
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

))]
.

Consequently, we have

ψ
(

ti
1+

)
= ψ

(
ti
1

)
+∇Ji

(
yi

(
ti
1

))[
ψ
(

ti
1

)
+ ġti

1
(0) f

(
f
(

ti
1, yi

(
ti
1

))
+ B

(
ti
1

)
u
(

ti
1

))]
, i ∈ Λ. (42)

Generally speaking, we first note that

lim
ε→0

xε

(
gtr

j−1
(ε); u + εv, 0, x0

)
− x

(
tr

j−1; u, 0, x0

)
ε

= lim
ε→0

xε

(
gtr

j−1
(ε); u + εv, 0, x0

)
− xε

(
tr

j−1; u + εv, 0, x0

)
ε

+ lim
ε→0

xε

(
tr

j−1; u + εv, 0, x0

)
− x

(
tr

j−1; u, 0, x0

)
ε

= φ
(

tr
j−1

)
+ ġtr

j−1
(0)

[
f
(

tr
j−1, yr

(
tr

j−1

))
+ B

(
tr

j−1

)
u
(

tr
j−1

)]
. (43)

Further, when t ∈
(

gtr
j−1

(ε), gti
j
(ε)

)
, one can infer from assumption [F](3), (35), (10) and

(43) that

Gε(ε, t) = lim
ξ→0

xε+ξ(t; u + (ε + ξ)v, 0, x0)− xε(t; u + εv, 0, x0)

ξ
+

∂

∂ε
ỹi(t, ε)

= lim
ξ→0

1
ξ

[
xε+ξ

(
t; u + (ε + ξ)v, gtr

j−1
(ε + ξ), Υr

(
gtr

j−1
(ε + ξ)

))
−xε

(
t; u + εv, gtr

j−1
(ε), Υr

(
gtr

j−1
(ε)

))]
+

∂

∂ε
ỹi(t, ε)

= lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)

−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds

+ lim
ξ→0

Υr

(
gtr

j−1
(ε + ξ), ε + ξ

)
− Υr

(
gtr

j−1
(ε), ε

)
ξ

+ lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

B(s)v(s)ds

− lim
ξ→0

∫ gtrj−1
(ε+ξ)

gtrj−1
(ε)

[ f (s, x(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds

ξ
+

∂

∂ε
ỹr(t, ε)

= lim
ξ→0

∫ t

gtrj−1
(ε+ξ)

∫ 1

0
fx(s, xε(s; u + εv, 0, x0) + θ(xε+ξ(s; u + (ε + ξ)v, 0, x0)
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−xε(s; u + εv, 0, x0)))
xε+ξ(s; u + (ε + ξ)v, 0, x0)− xε(s; u + εv, 0, x0)

ξ
dθds

+
∫ t

gtrj−1
(ε)

B(s)v(s)ds + ψ
(

gtr
j−1

(ε)
)
+

∂

∂ε
ỹr(t, ε)

+∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))[
ψ
(

gtr
j−1

(ε)
)

+ġtr
j−1

(ε)
(

f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B

(
gtr

j−1
(ε)

)
u
(

gtr
j−1

(ε)
))]

.

Moreover, one can see from (37) and the above equality that

Gε(ε, t) =
∂

∂ε
ỹr(t, ε) + Ψε

(
t, gtr

j−1
(ε)

)
∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))[
ψ
(

gtr
j−1

(ε)
)

+ġtr
j−1

(ε)
(

f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B

(
gtr

j−1
(ε)

)
u
(

gtr
j−1

(ε)
))]

+Ψε

(
t, gtr

j−1
(ε)

)
ψ
(

gtr
j−1

(ε)
)
+

∫ t

gtrj−1
(ε)

Ψε(t, s)B(s)v(s)ds.

Together with (36), by the implicit function theorem, we have

ġti
j
(ε) = −

Ψ1
ε

(
gti

j
(ε), gtr

j−1
(ε)

)
∇Jr

(
ỹr

(
gtr

j−1
(ε), ε

))
f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε))

·
[

ψ
(

gtr
j−1

(ε)
)
+ ġtr

j−1
(ε)

(
f
(

gtr
j−1

(ε), ỹr

(
gtr

j−1
(ε), ε

))
+ B

(
gtr

j−1
(ε)

)
u
(

gtr
j−1

(ε)
))]

−

∂
∂ε ỹ1

r

(
gti

j
(ε), ε

)
+ Ψ1

ε

(
gti

j
(ε), gtr

j−1
(ε)

)
ψ
(

gtr
j−1

(ε)
)
+
∫ g

tij
(ε)

gtrj−1
(ε)

Ψ1
ε (t, s)B(s)v(s)ds

f 1
(

gti
j
(ε), xε

(
gti

j
(ε); u + εv, 0, x0

))
+ B1

(
gti

j
(ε)

)
u
(

gti
j
(ε)

)
− ẏ1

i (gti
j
(ε))

.

Further, it follows from the above expression, (38) and Theorem 5 that

ġti
j
(0) = −

Ψ1
(

ti
j, tr

j−1

)
∇Jr

(
yr

(
tr

j−1

))
f 1
(

ti
j, x

(
ti

j; u, 0, x0

))
+ B1

(
ti

j

)
u
(

ti
j

)
− ẏ1

i

(
ti

j

)
·
[

ψ
(

tr
j−1

)
+ ġtr

j−1
(0)

(
f
(

tr
j−1, yr

(
tr

j−1

))
+ B

(
tr

j−1

)
u
(

tr
j−1

))]
(44)

−
Ψ1

(
ti

j, tr
j−1

)
ψ
(

tr
j−1

)
+
∫ ti

j
tr
j−1

Ψ1
(

ti
j, s

)
B(s)v(s)ds

f 1
(

ti
j, x

(
ti

j; u, 0, x0

))
+ B1

(
ti

j

)
u
(

ti
j

)
− ẏ1

i

(
ti

j

) , i ∈ Λ, j = 1, 2, · · · , k.

Similar to (43), we can obtain

lim
ε→0

xε

(
gti

j
(ε); u + εv, 0, x0

)
− x

(
ti

j; u, 0, x0

)
ε

= ψ
(

ti
j

)
+ ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]
, i ∈ Λ, j = 1, 2, · · · , k. (45)

Together with assumption [J](2), (45) and (44), it follows that when gti
j
(ε) > ti

j,
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ψ
(

ti
j+

)
= lim

ε→0

xε

(
gti

j
(ε)+; u + εv, , x0

)
− x

(
gti

j
(ε); u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x

(
gti

j
(ε); u, ti

j, x
(

ti
j; u, 0, x0

)
+ Ji

(
x
(

ti
j; u, 0, x0

)))]
= lim

ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x

(
ti

j; u, 0, x0

)
− Ji

(
x
(

ti
j; u, 0, x0

))
−

∫ g
tij
(ε)

ti
j

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds
]

=
(

I +∇Ji

(
yi

(
ti

j

)))[
ψ
(

ti
j−

)
+ ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]]
−ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]
= ψ

(
ti

j−
)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−

)
+ ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]]
,

and when gti
j
(ε) < ti

j,

ψ
(

ti
j+

)
= lim

ε→0

xε

(
ti

j; u + εv, 0, x0

)
− x

(
ti

j+; u, 0, x0

)
ε

= lim
ε→0

1
ε

[
xε

(
gti

j
(ε); u + εv, 0, x0

)
+ Ji

(
xε

(
gti

j
(ε); u + εv, 0, x0

))
−x

(
ti

j; u, 0, x0

)
− Ji

(
x
(

ti
j; u, 0, x0

))
−

∫ g
tij
(ε)

ti
j

[ f (s, xε(s; u + εv, 0, x0)) + B(s)(u(s) + εv(s))]ds
]

= ψ
(

ti
j−

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j−

)
+ ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]]
.

Consequently, we have

ψ
(

ti
j+

)
= ψ

(
ti

j

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j

)
+ ġti

j
(0)

[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]]
(46)

for i ∈ Λ, j = 1, 2, · · · , k. Therefore, when t ∈
(

ti
j, tr

j+1

)
(j = 1, 2, · · · , k − 1) or t ∈

(
tr
k, T

]
,

it follows from assumption [F](3), (10), (35), (3), (17), (44) and (45) that

ψ(t) = lim
θ→0

xθ(t; u + θv, 0, x0)− x(t; u, 0, x0)

θ

= lim
θ→0

xθ(t; u + θv, gti
j
(θ), Υi(gti

j
(θ)))− x(t; u, ti

j, Υi(ti
j))

θ

= lim
θ→0

Υi(gti
j
(θ))− Υi(ti

j))

θ
+ lim

θ→0

∫ t

g
tij
(θ)

∫ 1

0
fx(s, x(s; u, 0, x0) + ξ(xθ(s; u + θv, 0, x0)

−x(s; u, 0, x0)))
xθ(s; u + θv, 0, x0)− x(s; u, 0, x0)

θ
dξds + lim

θ→0

∫ t

g
tij
(θ)

B(s)v(s)ds
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− lim
θ→0

1
θ

∫ g
tij
(θ)

ti
j

[ f (s, x(s; u, 0, x0)) + B(s)u(s)]ds

= ψ
(

ti
j

)
+∇Ji

(
yi

(
ti

j

))[
ψ
(

ti
j

)
+ ġti

j
(0)

(
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

))]
+

∫ t

ti
j

B(s)v(s)ds + lim
θ→0

∫ t

g
tij
(θ)

∫ 1

0
fx(s, x(s; u, 0, x0) + ξ(xθ(s; u + θv, 0, x0)

−x(s; u, 0, x0)))
xθ(s; u + θv, 0, x0)− x(s; u, 0, x0)

θ
dξds.

Thus, it follows from (39), (42) and (46) that
ψ̇(t) = fx(t, x(t; u, 0, x0))ψ(t) + B(t)v(t), t ∈ (0, T] and t ̸= ti

j, i ∈ Λ, j = 1, 2, · · · , k,
ψ(0) = 0,
ψ
(

ti
j+

)
=

(
I +∇Ji

(
yi

(
ti

j

)))
ψ
(

ti
j

)
+ġti

j
(0)∇Ji

(
yi

(
ti

j

))[
f
(

ti
j, yi

(
ti

j

))
+ B

(
ti

j

)
u
(

ti
j

)]
, j = 1, 2, · · · , k.

This completes the proof of Theorem 6.

8. Conclusions

In this paper, we proposed a class of widely applied impulsive differential systems
and gave its qualitative theory under some weaker conditions, including the existence,
uniqueness, and periodicity of the solution, as well as the continuous dependence and
differentiability of the solution on the initial value. For the pulse phenomena of the solution,
it is significant to give the sufficient and necessary conditions. It is very interesting that
the pulse may destroy the intrinsic properties of the system, such as the existence, the
continuous dependence, and differentiability of solution. Moreover, these results also lay a
theoretical foundation for the optimal control problem given by impulsive different systems
with impulses at variable times and the applications of such systems.

Author Contributions: Conceptualization, H.X., Y.P. and P.Z.; Methodology, Y.P. and P.Z.; Writing—
original draft, H.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China No.
12061021 and No. 11161009).

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors would like to thank the anonymous reviewers and the editor of
this journal for their valuable time and their careful comments and suggestions because of which the
quality of this paper has been improved.

Conflicts of Interest: The authors declare there are no conflicts of interest.

References
1. Bensoussan, A.; Giuseppe, D.P.; Michel, C.D.; Sanjoy, K.M. Representation and Control of Infinite Dimensional Systems, 2nd ed.;

Birkhäuser: Boston, MA, USA, 2007; p. 15.
2. Bainov, D.; Simeonov, P. Impulsive Differential Equations: Periodic Solutions and Applications, 1st ed.; Longman Scientific and

Technical: New York, NY, USA, 1993; pp. 39–58.
3. Kobayashi, Y.; Nakano, H.; Saito, T. A simple chaotic circuit with impulsive switch depending on time and state. Nonlinear Dyn.

2006, 44, 73–79. [CrossRef]
4. Touboul, J.; Brette, R. Spiking dynamics of Bidimensional integrate-and-fire neurons. SIAM J. Appl. Dyn. Syst. 2009, 8, 1462–1506.

[CrossRef]
5. Izhikevich, E.M. Dynamical Systems in Neuroscience, 1st ed.; MIT Press: Cambridge, MA, USA, 2007.
6. Huang, M.; Li, J.; Song, X.; Guo, H. Modeling impulsive injections of insulin: Towards artificial pancreas. SIAM J. Appl. Math.

2012, 72, 1524–1548. [CrossRef]
7. Zhang, Q.; Tang, B.; Cheng, T.; Tang, S. Bifurcation analysis of a generalized impulsive Kolmogorov model with applitions to pest

and disease control. SIAM J. Appl. Math. 2020, 80, 1796–1819. [CrossRef]

http://doi.org/10.1007/s11071-006-1937-1
http://dx.doi.org/10.1137/080742762
http://dx.doi.org/10.1137/110860306
http://dx.doi.org/10.1137/19M1279320


Axioms 2024, 13, 126 23 of 23
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