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Abstract: This paper introduces the concept of equivalence operators based on overlap and grouping
functions where the associativity property is not strongly required. Overlap functions and grouping
functions are weaker than positive and continuous t-norms and t-conorms, respectively. Therefore,
these equivalence operators do not necessarily satisfy certain properties, such as associativity and the
neutrality principle. In this paper, two models of fuzzy equivalence operators are obtained by the
composition of overlap functions, grouping functions and fuzzy negations. Their main properties are
also studied.
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1. Introduction

In classical logic, the equivalence operator can be represented as

s ≡ t
de f
= (s → t) ∧ (t → s) = (s ∧ t) ∨ (¬s ∧ ¬t). (1)

It is also interpreted as the bi-implication logical connective denoted by using a double-
headed arrow s ↔ t.

Different versions of fuzzy equivalence operator have been investigated in the liter-
ature. Hájek [1] considered the equivalence connective as a derived connective which is
defined by

s ≡ t
de f
= (s → t)&(t → s) (2)

in several fuzzy logics, where → is a fuzzy implication and & is a t-norm. Novák et al. [2,3]
developed the EQ-logic and EQ-algebras in which fuzzy equivalence operator is a ba-
sic connective. Dombi et al. [4,5] studied several different types of equivalence operators in
Pliant systems and nilpotent systems. Hu et al. [6] studied the asymmetric equivalences in
fuzzy logics. Fuzzy equivalence operators are highly applied in fuzzy theories and fuzzy
methods. Based on the Formula (2) wherein & represents the minimum t-norm, i.e., & = ∧,
Pan et al. [7] explored the properties of robustness of the lattice-valued similarity, while Jin
et al. [8] and Dai et al. [9] investigated the robustness of fuzzy reasoning, Georgescu [10]
explored the similarity of fuzzy choice functions, Wang et al. [11] and Duan et al. [12]
investigated fuzzy metric spaces.

Notably, Fodor and Keresztfalvi [13] and Bustince et al. [14,15] mentioned applications
where the associativity properties of the t-norm and t-conorm are not rrquired. Conse-
quently, Bustince et al. [14,15] introduced the overlap and grouping functions as two types
of non-necessarily associative bivariate operators. By replacing t-norms and t-conorms with
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overlap and grouping functions respectively, researchers devoloped many new concepts,
such as symmetric differences [16,17], RO-implications [18,19], (G,N)-implications [20],
binary relations ≤O [21], (IO, O)-fuzzy rough sets [22], and (O, G)-fuzzy rough sets [23]
where G is a grouping function and O is an overlap function.

In this paper, we aim to define equivalence operators by considering (G,N)-implications,
overlap functions and grouping functions in the previously mentioned formulas. This
approach is particularly significant given that overlap and grouping functions are weaker
than the positive and continuous t-norms and t-conorms. Therefore, the new equivalence
operators may not necessarily satisfy certain properties, such as associativity and the
neutrality principle.

The paper is organized as follows. Section 2 presents the the concept of overlap
and grouping functions, fuzzy implication and (G, N)-implication. Section 3 focuses on
the model G(O1(s, t), O2(N1(s), N2(t))) of equivalence operator. Section 4 addresses the
model O(G1(N1(s), t), G2(N2(t), s)) of the equivalence operator. Section 5 constructes fuzzy
symmetric differences from fuzzy equivalences. Lastly, Section 6 provides a comparative
study, and the conclusion is presented in Section 7.

2. Preliminaries

Definition 1 ([14]). A binary function O : [0, 1]2 → [0, 1] is said to be an overlap function if the
following conditions hold: ∀s, t ∈ [0, 1],

(O1) O(s, t) = O(t, s);

(O2) O(s, t) = 0 ⇐⇒ st = 0;

(O3) O(s, t) = 1 ⇐⇒ st = 1;

(O4) O is increasing;

(O5) O is continuous.

Definition 2 ([15]). A binary function O : [0, 1]2 → [0, 1] is said to be a grouping function if the
following conditions hold: ∀s, t ∈ [0, 1],

(G1) G(s, t) = G(t, s);

(G2) G(s, t) = 0 ⇐⇒ s = t = 0;

(G3) G(s, t) = 1 ⇐⇒ s = 1 or t = 1;

(G4) G is increasing;

(G5) G is continuous.

Definition 3 ([24]). A binary function I : [0, 1]2 → [0, 1] is said to be a fuzzy implication if the
following conditions hold: ∀s, t, u ∈ [0, 1],

(F1) s ≤ t =⇒ I(t, u) ≤ I(s, u);

(F2) s ≤ t =⇒ I(u, s) ≤ I(u, t);

(F3) I(0, 0) = 1;

(F4) I(1, 1) = 1;

(F5) I(1, 0) = 0.

Definition 4 ([24,25]). A function N : [0, 1] → [0, 1] is said to be a fuzzy negation if it is
decreasing and satisfies N(0) = 1 and N(1) = 0.

Moreover, we say N is strong if N(N(s)) = s, ∀s ∈ [0, 1]. The standard negation is
N(s) = 1 − s, ∀s ∈ [0, 1].

The overlap function O given by

O(s, t) = N
(

G
(

N(s), N(t)
))

, ∀s, t ∈ [0, 1]. (3)
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is the dual overlap function of G for N and, analogously, the grouping function G given by

G(s, t) = N
(

O
(

N(s), N(t)
))

, ∀s, t ∈ [0, 1]. (4)

is the dual grouping function of O for N.

Definition 5 ([20]). Let G be a grouping function and N be a fuzzy negation, we say that the
function IG,N : [0, 1]2 → [0, 1] defined by

IG,N(s, t) = G
(

N(s), t
)

(5)

is a (G,N)-implication.

Example 1. Some examples of overlap and grouping functions are given in [15,26]

• Onm(s, t) = min(s, t)max(s2, t2), Gnm(a, b) = 1 − min(1 − a, 1 − b)max((1 − a)2, (1 −
b)2);

• Op(s, t) = sptp, Gp(s, t) = 1 − (1 − s)p(1 − t)p, where p > 0 ;

• Omp(s, t) = min(sp, tp), Gmp(s, t) = 1 − min
(
(1 − s)p, (1 − t)p), where p > 0 ;

• OMp(s, t) = 1 − max
(
(1 − s)p, (1 − t)p), GMp(s, t) = max(sp, tp), where p > 0 .

3. The Model G
(

O1(s, t), O2
(

N1(s), N2(t)
))

In this section, we present our first model of the equivalence operator. We then
illustrate its properties and conclude with two examples.

The analogue of the formula a ≡ b
de f
= (a ∧ b) ∨ (¬a ∧ ¬b) in fuzzy set theory is

s ≡1 t
de f
= G(O1(s, t), O2(N1(s), N2(t))) (6)

where, G is a grouping function, O1 and O2 are overlap functions, and N1 and N2 are fuzzy
negations.

Theorem 1. The function ≡1: [0, 1]2 → [0, 1] given by Equation (6) satisfies: ∀s, t ∈ [0, 1]

(i) If N1 = N2, then s ≡1 t = t ≡1 s;

(ii) 1 ≡1 0 = 0 ≡1 1 = 0;

(iii) 1 ≡1 1 = 0 ≡1 0 = 1;

(iv) If both N1 and N2 are continuous, then ≡1 is continuous;

(v) If O1 has 1 as neutral element, G has 0 as neutral element, then 1 ≡1 s = s ≡1 1 = s;

(vi) If O2 has 1 as neutral element, G has 0 as neutral element, then 0 ≡1 s = N2(s) and
s ≡1 0 = N1(s);

(vii) If both N1 and N2 are defined as

N⊤(s) =
{

0, if s = 1,
1, if s < 1.

(7)

then s ≡1 s = 1;

(viii) If O1 = O2 and N1 and N2 are strong, then ≡1 is invariant with the pair of negations
(N1, N2), i.e., s ≡1 t = N1(s) ≡1 N2(t).
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Proof. (i) If N1 = N2, then

s ≡1 t

= G
(

O1(s, t), O2
(

N1(s), N1(t)
))

, by assumption and Equation (6)

= G
(

O1(t, s), O2
(

N1(t), N1(s)
))

, by (O1)

= t ≡1 s, by Equation (6).

(ii) Taking s = 1 and t = 0, then

1 ≡1 0

= G
(

O1(1, 0), O2
(

N1(1), N2(0)
))

, by Equation (6)

= G
(
O1(1, 0), O2(0, 1)

)
= G

(
0, 0

)
, by (O2)

= 0, by (G2).

Similarly, we have 0 ≡1 1 = 0.
(iii) Taking s = 0 and t = 0, then

0 ≡1 0

= G
(

O1(0, 0), O2
(

N1(0), N2(0)
))

, by Equation (6)

= G
(
O1(0, 0), O2(1, 1)

)
= G

(
0, 1

)
, by (O2) and (O3)

= 1, by (G3).

Taking s = t = 1, then

1 ≡1 1

= G
(

O1(1, 1), O2
(

N1(1), N2(1)
))

, by Equation (6)

= G
(
O1(1, 1), O2(0, 0)

)
= G

(
1, 0

)
, by (O2) and (O3)

= 1, by (G3).

(iv) It is easy to be obtained from the continuity of O1, O2, G, N1 and N2.
(v) Since O1 has 1 as neutral element, G has 0 as neutral element, then

1 ≡1 s

= G
(

O1(1, s), O2
(

N1(1), N2(s)
))

, by Equation (6)

= G
(

O1(1, s), O2
(
0, N2(s)

))
= G

(
s, 0

)
, by assumption and (O2)

= s, by assumption.
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s ≡1 1

= G
(

O1(s, 1), O2
(

N1(s), N2(1)
))

, by Equation (6)

= G
(
O1(s, 1), O2(N1(s), 0)

)
= G

(
s, 0

)
, by assumption and (O2)

= s, by assumption.

(vi) Since O2 has 1 as neutral element, G has 0 as neutral element, then

0 ≡1 s

= G
(

O1(0, s), O2
(

N1(0), N2(s)
))

, by Equation (6)

= G
(
O1(0, s), O2(1, N2(s))

)
= G

(
0, N2(s)

)
, by assumption and (O2)

= N2(s), by assumption.

s ≡1 0

= G
(

O1
(
s, 0), O2(N1(s), N2(0)

))
, by Equation (6)

= G
(
O1(s, 0), O2(N1(s), 1)

)
= G

(
0, N1(s)

)
, by assumption and (O2)

= N1(s), by assumption.

(vii) If N1 = N2 = NT, case 1, if s = 0 or s = 1, then s ≡1 s = 1. Case 2, if s ∈ (0, 1),
then

s ≡1 s

= G
(

O1(s, s), O2
(

N⊤(s), N⊤(s)
))

, by Equation (6)

= G
(
O1(s, s), O2(1, 1)

)
= G

(
O1(s, s), 1

)
, by (03)

= 1.

(viii) If O1 = O2 and N1 and N2 are strong, then

s ≡1 t

= G
(

O1(s, t), O1
(

N1(s), N2(t)
))

, by Equation (6)

= G
(
O1(N1(s), N2(t)), O1(s, t)

)
, by (G1)

= G
(

O1
(

N1(s), N2(t)
)
, O1

(
N1(N1(s)), N2(N2(t))

))
(N1 and N2 are strong)

= N1(s) ≡1 N2(t), by Equation (6).
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Example 2. Consider the O1(s, t) = O2(s, t) = Om0.5(s, t) = min{
√

s,
√

t}, N1 and N2 are
standard negation, and G(s, t) = GM2(s, t) = max{s2, t2}. Then

s ≡1 t

= G
(

O1(s, t), O2
(

N1(s), N2(t)
))

= max
((

min(
√

s,
√

t)
)2,

(
min(

√
1 − s,

√
1 − t)

)2
)

= max
(

min(s, t), min((1 − s), (1 − t))
)

.

(8)

The characteristics of this equivalence operator are shown in Figure 1. The lines are turning
progressively yellower, indicating that the values are on the rise.

Example 3. Consider the O1(s, t) = Om0.5(s, t) = min{
√

s,
√

t}, O2(s, t) = Op=3(s, t) =

s3t3,N1(s) = N2(s) = N(s) = 1 − s2, and G(s, t) = GM2(s, t) = max{s2, t2}. Then

s ≡1 t

= G(O1(s, t), O2(N1(s), N2(t)))

= max
((

min(
√

s,
√

t)
)2,

(
(1 − s2)3(1 − t2)3)2

)
= max

(
min(s, t), (1 − s2)6(1 − t2)6

)
.

(9)

The characteristics of this equivalence operator are shown in Figure 2.
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4. The Model O
(
G1(N1(s), t), G2(N2(t), s)

)
In this section, we present our second model of the equivalence operator. We then

illustrate its properties and conclude with two examples.

The analogue of the formula a ≡ b
de f
= (a → b) ∧ (b → a) in fuzzy set theory is

s ≡2 t
de f
= O

(
(s →1 t), (t →2 s)

)
(10)

where O is a overlap function and →1 and →2 are fuzzy implications. Here we consider
the (G,N)-implication, i.e., s → t = G(N(s), t). Then we obtain the following model for
fuzzy equivalence operator:

s ≡2 t
de f
= O

(
G1(N1(s), t), G2(N2(t), s)

)
(11)

where, G1 and G2 are grouping functions, O is a overlap function, and N1 and N2 are
fuzzy negations.

Theorem 2. The function ≡2 given by formula (11) satisfies: ∀s, t ∈ [0, 1]

(i) If G1 = G2 and N1 = N2, then s ≡2 t = t ≡2 s;

(ii) 1 ≡2 0 = 0 ≡2 1 = 0;

(iii) 1 ≡2 1 = 0 ≡2 0 = 1;

(iv) If N1 and N2 are continuous, then ≡2 is continuous;

(v) If O has 1 as neutral element, G1 has 0 as neutral element, then 1 ≡2 s = s and s ≡2 0 = N1(s);

(vi) If O has 1 as neutral element, G2 has 0 as neutral element, then s ≡2 1 = s and 0 ≡2 s = N2(s);

(vii) If N1 = N2 = N⊤, then s ≡2 s = 1;

(viii) If G1 = G2, N1 = N2, and N1 is strong, then ≡2 is invariant with the negation N1, i.e.,
s ≡2 t = N1(s) ≡2 N1(t).

Proof. (i) If G1 = G2 and N1 = N2, then

s ≡2 t

= O
(
G1(N1(s), t), G1(N1(t), s)

)
, by assumption and Equation (6)

= O
(
G1(N1(t), s), G1(N1(s), t)

)
, by (O1)

= t ≡2 s, by assumption and Equation (6).

(ii) Taking s = 1 and t = 0, then

1 ≡2 0

= O
(
G1(N1(1), 0), G2(N2(0), 1)

)
, by Equation (11)

= O
(
G1(0, 0), G2(1, 1)

)
= O

(
0, 1

)
, by (G3) and (O2)

= 0, by (O2).

Similarly, we can obtain 0 ≡2 1 = 0.
(iii) Taking s = 0 and t = 0, then

0 ≡2 0

= O
(
G1(N1(0), 0), G2(N2(0), 0)

)
, by Equation (11)

= O
(
G1(1, 0), G2(1, 0)

)
= O

(
1, 1

)
, by (G3)

= 1, by (O3).
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Taking s = t = 1, then

1 ≡2 1

= O
(
G1(N1(1), 1), G2(N2(1), 1)

)
, by Equation (11)

= O
(
G1(0, 1), G2(0, 1)

)
= O

(
1, 1

)
, by (G3)

= 1, by (O3).

(iv) It is easy to be obtained from the continuity of G1, G2, O, N1 and N2.
(v) Taking t = 0, then

s ≡2 0

= O
(
G1(N1(s), 0), G2(N2(0), s)

)
, by Equation (11)

= O
(
G1(N1(s), 0), G2(1, s)

)
= O

(
N1(s), 1

)
, by assumption and (G3)

= N1(s), by assumption.

Similarly, we have

1 ≡2 s

= O
(
G1(N1(1), s), G2(N2(s), 1)

)
, by Equation (11)

= O
(
G1(0, s), G2(N2(s), 1)

)
= O

(
s, 1

)
, by assumption and (G3)

= s, by assumption.

(vi) Taking t = 1, then

s ≡2 1

= O
(
G1(N1(s), 1), G2(N2(1), s)

)
, by Equation (11)

= O
(
G1(N1(s), 1), G2(0, s)

)
= O

(
1, s

)
, by assumption and (G3)

= s, by assumption.

Similarly, we have

0 ≡2 s

= O
(
G1(N1(0), s), G2(N2(s), 0)

)
, by Equation (11)

= O
(
G1(1, s), G2(N2(s), 0)

)
= O

(
1, N2(s)

)
, by assumption and (G3)

= N2(s), by assumption.

(vii) If N1 = N2 = N⊤, there are two cases. In case 1, if s = 0 or s = 1, then s ≡2 s = 1.
In case 2, if s ∈ (0, 1), then

s ≡2 s

= O
(
G1(N1(s), s), G2(N2(s), s)

)
, by Equation (11)

= O
(
G1(1, s), G2(1, s)

)
= O(1, 1), by (G3)

= 1, by (O3).
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(viii) If G1 = G2, N1 = N2, and N1 is strong, then

s ≡2 t

= O
(
G1(N1(s), t), G1(N1(t), s)

)
, by Equation (11)

= O
(

G1(s, N1(t)), G1
(
t, N1(s)

))
, by (G1) and (O1)

= O
(

G1
(

N1(N1(s)), N1(t)
)
, G1

(
N1(N1(t)), N1(s)

))
(N1 and N2 are strong)

= N1(s) ≡1 N1(t), by Equation (6).

This completes the proof.

Example 4. Consider the G1(s, t) = G2(s, t) = max{s2, t2}, O(s, t) = Om2(s, t) = min{s2, t2},
N1 and N2 are the standard negation. Then

s ≡2 t

= O
(
G1(N1(s), t), G2(N2(t), s)

)
= min

((
max((1 − s)2, t2)

)2,
(

max((1 − t)2, s2)
)2
)

= min
(

max
(
(1 − s)4, t4), max

(
(1 − t)4, s4)).

(12)

The characteristics of this equivalence operator are shown in Figure 3.
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Figure 3. Characteristics of equivalence operator of Example 4 and its contour line.

Example 5. Consider the G1(s, t) = max{s2, t2}, G2(s, t) = max{s3, t3}, O(s, t) = Op=2(s, t) =
s2t2, N1 and N2 are the standard negation. Then

s ≡2 t

= O
(
G1(N1(s), t), G2(N2(t), s)

)
=

(
max((1 − s)2, t2)

)2 ·
(

max((1 − t)3, s3)
)2

= max
(
(1 − s)4, t4) · max

(
(1 − t)6, s6).

(13)

The characteristics of this equivalence operator are shown in Figure 4.
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5. Comparative Study

In this section, we show a short comparison of the proposed equivalence operators
with some existing equivalence operators.

In [27], Li et al. defined the fuzzy equivalence operator as a binary function EN:[0, 1]2 →
[0, 1] satisfying

(EN1) E(s, t) = E(t, s);

(EN2) E(s, 1) = s;

(EN3) E(0, 0) = 0.

Li et al. [27] gave the following two models,

EN1(s, t) = S
(

T(s, t), T
(

N(s), N(t)
))

; (14)

EN2(s, t) = T
(
S(N(s), t), S(N(t), s)

)
. (15)

In [4,5], Dombi, Csiszár listed some important properties for equivalence operators:
∀s, t, u ∈ [0, 1]

(E1) Symmetry, s ≡ t = t ≡ s;
(E2) Compatibility, 0 ≡ 1 = 1 ≡ 0 = 0 and 0 ≡ 0 = 1 ≡ 1 = 1;
(E3) Reflexivity, s ≡ s = 1;
(E4) Associativity, s ≡ (t ≡ u) = (s ≡ t) ≡ u;
(E5) Neutrality principle, 1 ≡ s = s.

The comparison is demonstrated in the following:

Remark 1. ≡1 and ≡2 are two developed models of EN1 and EN2 by replacing t-norms and
t-conorms with overlap and grouping functions respectively.

Remark 2. ≡1, ≡2 and fuzzy equivalences in [6] drop symmetry (E1). Fuzzy equivalences
in [4,5,27] satisfy symmetry.

Remark 3. ≡1, ≡2 and fuzzy equivalences in [4–6,27] satisfy the compatibility (E2), so they are
generalizations of classical equivalence.

Remark 4. Both ≡1 and ≡2 drop reflexivity (E3). Fuzzy equivalences in [4–6,27] satisfy reflexivity.

Remark 5. ≡1, ≡2 and fuzzy equivalences in [5] drop associativity (E4). Fuzzy equivalences
in [4,27] satisfy associativity.



Axioms 2024, 13, 123 11 of 13

Remark 6. Both ≡1 and ≡2 drop the neutrality principle (E5). Fuzzy equivalences in [4–6,27]
satisfy the eutrality principle.

Table 1 provides a comprehensive comparison of various fuzzy equivalences. As can
be seen from the table, fuzzy equivalences ≡1 and ≡2 introduced in this paper have few
restrictions, thus providing greater flexibility and functionality.

Table 1. Comparison of fuzzy equivalences.

Property ≡1 ≡2 Fuzzy Equivalences in [6] Fuzzy Equivalences in [5] Fuzzy Equivalences in [4,27]

E1 × × ×
√ √

E2
√ √ √ √ √

E3 × ×
√ √ √

E4 × ×
√

×
√

E5 × ×
√ √ √

6. Fuzzy Symmetric Differences from Fuzzy Equivalences

Fuzzy symmetric difference is a dual concept of fuzzy equivalence. We can define two
kinds od fuzzy symmetric differences as

s∆1t
de f
= N(s ≡1 t) = N

(
G
(

O1(s, t), O2
(

N1(s), N2(t)
)))

; (16)

s∆2t
de f
= N(s ≡2 t) = N

(
O
(
G1(N1(s), t), G2(N2(t), s)

))
. (17)

Fuzzy symmetric differences ∆1 and ∆2 are generalizations of classical symmetric
difference since 1∆11 = 0∆10 = 1∆21 = 0∆20 = 0 and 0∆11 = 1∆10 = 0∆21 = 1∆20 = 1.

Hu et al. [16] introduced the following two models of fuzzy symmetric differences

s▲1t
de f
=G

(
O1

(
s, N1(t)

)
, O2

(
N2(s), t

))
; (18)

s▲2t
de f
=O

(
G(s, t), N

(
O(s, t)

))
. (19)

We show that they are connected as follows.

Theorem 3. If N = N1 = N2 is a strong negation, let O = O1 = O2 and G is the dual grouping
functions of O for N. Then s∆1t = s▲2t.

Proof. From the assumptions, it follows that

s ≡1 t = N
(

G
(

O(s, t), O
(

N(s), N(t)
)))

= O
(

N
(
O(s, t)

)
, N

(
O
(

N(s), N(t)
)))

= O
(

N
(
O(s, t)

)
, G

(
N(N(s)), N(N(t))

))
= O

(
N
(
O(s, t)

)
, G(s, t)

)
= O

(
G(s, t), N

(
O(s, t)

))
= s▲2t.

(20)

This completes the proof.
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Theorem 4. If N = N1 = N2 is a strong negation, let G is the dual grouping function of
O for N and O1 and O2 are the dual overlap functions of G1 and G2 for N respectively. Then

s∆2t = G
(

O1
(
s, N(t)

)
, O2

(
t, N(s)

))
.

Proof. From the assumptions, it follows that

s ≡2 t

= N
(

O
(
G1(N(s), t), G2(N(t), s)

))
= G

(
N
(
G1(N(s), t)

)
, N

(
G2(N(t), s)

))
= G

(
N
(
G1(N(s), t)

)
, N

(
G2(N(t), s)

))
= G

(
O1

(
N(N(s)), N(t)

)
, O2

(
N(N(t)), N(s)

))
= G

(
O1

(
s, N(t)

)
, O2

(
t, N(s)

))
.

(21)

This completes the proof.

Corollary 1. If N = N1 = N2 is a strong negation, let O = O1 = O2, G = G1 = G2 and G is
the dual grouping function of O for N. Then s∆2t = s▲1t.

7. Conclusions

This paper introduces fuzzy equivalences based on overlap functions and grouping
functions instead of t-norms and t-conorms, aiming to provide more flexible fuzzy equiva-
lences that do not necessarily conform to certain properties such as associativity and the
neutrality principle. The fuzzy equivalences proposed in this paper are more flexible due
to their limited restrictions, compared to those based on t-norms and t-conorms (refer to
Table 1). The study of two models of equivalence operators has revealed the potential for
further investigation.

For further work, some possible topics are given.

(1) To expand on this research, it would be valuable to explore different types of over-
lap and grouping functions, including interval-valued, complex-valued, and lattice-
valued functions. This exploration could lead to the development of new interval-
valued, complex-valued, and lattice-valued operators based on these functions.

(2) Equivalence operators play a critical role in constructing similarity measures that are
essential for various aspects of fuzzy theory and applications. They contribute to the
robustness of fuzzy reasoning and the stabilization of fuzzy control systems. The
equivalence operators presented in this paper offer promising prospects for enhancing
fuzzy theory and applications.

(3) The additive and multiplicative generators of overlap and grouping functions are
given in [28,29], suggesting that further exploration into the use of these generators to
obtain equivalence operators would be a worthwhile pursuit.
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