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Abstract: In this note, we show that, for any real number τ ∈ [ 1
2 , 1), any finite set of positive integers

K and any integer s1 ≥ 2, the sequence of integers s1, s2, s3, . . . satisfying si+1 − si ∈ K if si is a prime
number, and 2 ≤ si+1 ≤ τsi if si is a composite number, is bounded from above. The bound is given
in terms of an explicit constant depending on τ, s1 and the maximal element of K only. In particular, if
K is a singleton set and for each composite si the integer si+1 in the interval [2, τsi] is chosen by some
prescribed rule, e.g., si+1 is the largest prime divisor of si, then the sequence s1, s2, s3, . . . is periodic.
In general, we show that the sequences satisfying the above conditions are all periodic if and only if
either K = {1} and τ ∈ [ 1

2 , 3
4 ) or K = {2} and τ ∈ [ 1

2 , 5
9 ).
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1. Introduction

Throughout, we denote by P(n) the largest prime divisor of an integer n ≥ 2. In [1],
for k ∈ N, the sequence of integers a1, a2, a3, . . ., where a1 ≥ 2 and, for each i = 1, 2, 3, . . .,

ai+1 =

{
ai + k, if ai is a prime number;
P(ai), if ai is a composite number

(1)

has been considered. For example, in the case when a1 = 2 and k = 12, this sequence
(ai)

∞
i=1 is

2, 14, 7, 19, 31, 43, 55, 11, 23, 35, 7, 19, 31, 43, 55, 11, 23, 35, . . . . (2)

Evidently, no two consecutive terms of the sequence (ai)
∞
i=1 defined in (1) can be a com-

posite. Deleting all the composite terms and leaving only those elements of (ai)
∞
i=1 that are

primes, we will obtain a sequence of prime numbers p1, p2, p3, . . ., where p1 = a1 if a1 is a
prime number and p1 = a2 if a1 is a composite number, satisfying

pi+1 = P(pi + k) (3)

for each i = 1, 2, 3, . . .. Accordingly, removing the composite terms from (2), we obtain the
following sequence of primes (pi)

∞
i=1 satisfying (3) with the first term p1 = 2 and k = 12:

2, 7, 19, 31, 43, 11, 23, 7, 19, 31, 43, 11, 23, . . . .

The sequences (1) and (3) are both iterative sequences of integers

x, f (x), f ( f (x)), f ( f ( f (x))), . . . ,

where f is a map from the set N to itself. The most known sequence of this type is the
Collatz sequence defined by f (x) = 3x + 1 for x odd and f (x) = x/2 for x even; see [2] and
some recent papers [3–6] on the original Collatz problem and its variations. The results are
very far from the conjecture asserting that the Collatz sequence starting from an arbitrary
positive integer is ultimately periodic with the period 1, 4, 2. Some other versions of iterative
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integer sequences have been considered in [7] (where f (x) = ⌊αx + β⌋) and subsequently
in [8,9].

In [1], it was shown that the sequence (1) is periodic for any k ∈ N and any initial
choice of a1 ≥ 2. Now, we will give a different proof of this fact by deriving an explicit
upper bound on the largest element of this sequence in terms of a1 and k. Of course, this
immediately implies the periodicity of (ai)

∞
i=1, because, by (1), for each i ∈ N, the element

ai+1 is uniquely determined by its predecessor ai.
To present our result, we will use the following notation. For a given k ∈ N, by N(k)

we denote the smallest prime number that does not divide k. For odd k, it is clear that

N(k) = 2.

Here are the first 15 values of N(k) for k even.

k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
N(k) 3 3 5 3 3 5 3 3 5 3 3 5 3 3 7

By the definition of N(k), it follows that

N(k) ≤ k + 1 (4)

for each k ∈ N with equality if and only if k ∈ {1, 2}. For large k, the upper bound for
N(k) is much better than that in (4). Indeed, let q = N(k) be the least prime number not
dividing k > 2. Then, all the primes smaller than q must divide k. Thus, their product
∏p<q p divides k and hence

∑
p<q

log p ≤ log k.

Using the asymptotical formula ∑p<x log p ∼ x as x → ∞, we deduce that for any ε > 0
there is a constant k(ε) > 0 such that

N(k) ≤ (1 + ε) log k for each k ≥ k(ε). (5)

In fact, by [10] (Theorem 4), the lower bound

∑
p<q

log p = ∑
p≤q−1

log p > (q − 1)
(

1 − 1
2 log(q − 1)

)
holds for q ≥ 564, so an explicit k(ε) in (5) in terms of ε can be determined.

With this notation, we can state our first result:

Theorem 1. All the elements of the sequence (1) are smaller than or equal to

max{a1, N(k)k}+ N(k)k, (6)

while all the elements of the sequence (3) are smaller than or equal to

max{p1, N(k)k}+ (N(k)− 1)k, (7)

In particular, the sequences (1) and (3) are both periodic.

For k = 1 and a1 = 2, the sequence (1) is 2, 3, 4, 2, 3, 4, . . ., while the right-hand side
of (6) is max{2, 2} + 2 = 4. For k = 1 and p1 = 2, the sequence (3) is 2, 3, 2, 3, 2, 3, . . .,
whereas the right-hand side of (7) is 3. So, formally, the inequalities (6) and (7) are the best
possible. For k ≥ 2, these bounds can be improved, but we will not go into the details.

More generally, for a fixed real number τ satisfying 1
2 ≤ τ < 1 and a finite set

K = {k1, . . . , km} ⊂ N,

with
k = max

kj∈K
k j, (8)
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we will consider a class of integer sequences S(τ, K) consisting of all sequences {s1, s2, s3, . . .}
satisfying s1 ≥ 2 and, for each i = 1, 2, 3, . . .,

si+1 − si ∈ K if si is a prime number; (9)

2 ≤ si+1 ≤ τsi if si is a composite number. (10)

Note that the smallest composite number in N \ {1} is 4, so some integer si+1 satisfying (10)
can always be chosen due to τ ≥ 1

2 and si ≥ 4.
In particular, if K = {k} is a singleton set (this notation is consistent with (8)), then,

by (9) and (10), for each i = 1, 2, 3, . . .,

si+1 =

{
si + k, if si is a prime number;
any integer in the interval [2, τsi], if si is a composite number.

It is clear that
S(τ, K) ⊆ S(τ′, K) if τ < τ′

and
S(τ, K) ⊆ S(τ, K′) if K ⊂ K′.

For each S ∈ S(τ, K), we will show the following:

Theorem 2. Assume that τ ∈ [ 1
2 , 1) and that K = {k1, . . . , km} ⊂ N has the largest element k.

Then, the elements of the sequence {s1, s2, s3, . . .} ∈ S(τ, K) (as defined in (9) and (10)) are all
smaller than

max{s1, τe2k/(1 − τ)}+ e2k. (11)

Furthermore, in a particular case, when K = {k}, all the elements of S = {s1, s2, s3, . . .} ∈
S(τ, K) are smaller than or equal to

max{s1, τN(k)k/(1 − τ)}+ N(k)k, (12)

while all the prime elements of S do not exceed

max{p1, τN(k)k/(1 − τ)}+ (N(k)− 1)k, (13)

where p1 is the first prime element of the sequence S.

Note that parts (12) and (13) of Theorem 2 imply Theorem 1. Indeed, the sequence (1)
belongs to the class S(τ, K), where K = {k} is singleton set and τ = 1

2 . (The largest prime
factor of a composite integer n ≥ 4 does not exceed n/2.) Thus, the upper bound (6)
follows from (12) with τ = 1

2 , whereas (7) follows from (13). If i < j is the pair of positive
integers with the smallest index i and the smallest difference j − i satisfying ai = aj, then
the sequence (1) is ultimately periodic with period ai, ai+1, . . . , aj−1. (The same is true for
the sequence (3) and the first pair of primes in it satisfying pi = pj.)

Of course, the sequences in S(τ, K), although bounded, are not necessarily all periodic.
All the cases when they are all periodic are described by the next theorem:

Theorem 3. Assume that τ ∈ [ 1
2 , 1) and K = {k1, . . . , km} ⊂ N. Then, the sequences in S(τ, K)

are all periodic if and only if one of the following holds:

(i) K = {1} and 1
2 ≤ τ < 3

4 ;
(ii) K = {2} and 1

2 ≤ τ < 5
9 .

In all other cases, the class S(τ, K) contains infinitely many nonperiodic sequences.

In the next section, we will give three auxiliary lemmas. Then, in Sections 3 and 4,
we will prove Theorems 2 and 3, respectively. (As we already observed above, Theorem 2
implies Theorem 1.) In the last section, we will show that the class S(K, τ) always contains
nonperiodic sequences in the case when K ⊂ N is infinite.
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2. Auxiliary Lemmas

Lemma 1. For any integers a, k ≥ 2, the arithmetic progression

a, a + k, . . . , a + (N(k)− 1)k, a + N(k)k (14)

contains a composite number. Moreover, if a ̸= N(k), then the arithmetic progression

a, a + k, . . . , a + (N(k)− 1)k (15)

contains a composite number.

For example, for k = 210, we have N(k) = 11. Selecting a = 199, we see that the first
10 numbers in (15)

199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089

are all primes, while the eleventh number

a + (N(k)− 1)k = 199 + 10 · 210 = 2299 = 112 · 19

is a composite. This shows that for k = 210, the list (15) cannot be replaced by the shorter
list a, a + k, . . . , a + (N(k)− 2)k. See the Wikipediaarticle (https://en.wikipedia.org/wiki/
Primes_in_arithmetic_progression) (accessed on 2 January 2024) for some further nontrivial
examples of primes that form long (in terms of k) arithmetic progressions with the difference k.

Proof. Consider the list of integers (15) modulo q = N(k). If for some integers i, j satisfying
0 ≤ i < j ≤ q − 1 the numbers a + ik and a + jk were equal modulo q, then q | (j − i)k.
Because q is a prime and 1 ≤ j − i ≤ q − 1, this forces q | k, which is not the case by
the definition of q = N(k). Therefore, the integers (15) are all distinct modulo q, which
means that exactly one of them, say a + ℓk, 0 ≤ ℓ ≤ q − 1, is divisible by q. This number is
composite, unless a + ℓk = q. Note that for ℓ ≥ 1, we have

N(k) = q = a + ℓk ≥ a + k ≥ k + 2,

which is impossible using (4). Hence, the equality a + ℓk = q occurs only for ℓ = 0 and
a = q. This proves the second assertion, because then a ̸= q. Of course, for a ̸= q, this also
proves the first assertion. On the other hand, if a = q = N(k), then the last number in the
list (14), namely, a + N(k)k = N(k)(1 + k), is composite. This completes the proof of the
first assertion of the lemma.

The next lemma is (1.12) from [11].

Lemma 2. For any real numbers x > 0 and y > 1, the interval (x, x + y] contains at most
2y/ log y prime numbers.

This result of Montgomery and Vaughan is related to the famous Hardy–Littlewood
conjecture, which asserts that for the prime-counting function π(x) = #{p ≤ x} the inequality

π(x + y) ≤ π(x) + π(y)

holds for any integers x, y ≥ 2, see [12] (p. 54). This inequality has been proved only under
some assumptions on x and y; roughly, when x and y are of similar size, see, e.g., [13–16].
More references can be found in [17]. However, in our situation, y can be small compared
to x, so the bound with an extra factor 2 as given in Lemma 2 seems to be the best available
known result for our purposes. In fact, as a result of Hensley and Richards [18], the
conjecture of Hardy and Littlewood is incompatible with the so-called prime k-tuples
conjecture, which is widely believed to be true. In view of this, it is not clear at all if the
constant 2 in Lemma 2 can be replaced by a constant arbitrarily close to 1.

https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression
https://en.wikipedia.org/wiki/Primes_in_arithmetic_progression
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To state our next lemma, we need the following definition. We say that a finite string
of positive integers

C = s1, s2, . . . , st

is an s-cycle in the class S(τ, K) if s1 = s, sj ̸= s for j = 2, . . . , t and the purely periodic sequence

C∞ = s1, s2, . . . , st, s1, s2, . . . , st, . . .

belongs to the class S(τ, K). This means that the elements of the sequence C∞ are all in
N \ {1} and satisfy (9) and (10). (Of course, it is sufficient to verify this for i = 1, . . . , t,
because st+1 = s1 = s and the sequence C∞ is periodic.)

For example, consider the case τ = 1
2 and K = {4}. Note that if si = 15, then, by (10),

as si+1 we can select, for instance, 3 or 6. Hence, C = 3, 7, 11, 15 and C′ = 3, 7, 11, 15, 6 are
both 3-cycles in the class S( 1

2 , {4}). (Their first element is 3, and 3 is the only element in
both strings C, C′.)

Lemma 3. Assume that for some integer s ≥ 2, the class S(τ, K) has at least two distinct s-cycles.
Then, S(τ, K) contains infinitely many nonperiodic sequences.

Proof. Let C and C′ be two distinct s-cycles in S(τ, K). Take any nonperiodic sequence
with two letters of the alphabet {C, C′}. Then, replace C, C′ in it with their corresponding
strings of integers, say, s, s2, . . . , st and s, s′2, . . . , s′m. We claim that the resulting sequence
S ∈ S(τ, K) is nonperiodic.

Assume that S is periodic. Then, without the loss of generality, we may assume that
some period in it starts with s and ends at a certain integer s′ ̸= s. The next element of S
must be s again; so, in the period, we can replace the strings back to the letters C and C′.
Because S is periodic, this means that a nonperiodic sequence on {C, C′} from a certain
place is also represented by a periodic sequence on the same two letters. Consequently,
at some stage, say from the gth element, we must have the cycles C and C′ both starting
from the same element sg = s. As C ̸= C′, the cycles C and C′ cannot be of the same
length. Indeed, otherwise, the sequence of C, C′, starting from the element sg, is uniquely
determined, and a nonperiodic sequence on these two letters cannot be represented by a
periodic one.

Assume that C has more elements than C′, i.e., t > m. Recall that the cycles C and
C′ both start from sg = s. But then, as after C′ we have C or C′, the element sg+m of the
sequence S must be s, which is not allowed by the definition of C (s is only the first element
of C). The case t < m can be treated with the same argument.

Therefore, the sequence S obtained as a nonperiodic combination of two s-cycles C, C′

and then replacing them with their corresponding strings of numbers in N \ {1} is indeed
nonperiodic.

Finally, observe that, by taking any composite integer s0 greater than 2s and adding it
to the beginning of the above constructed nonperiodic sequence

S = {s1 = s, s2, s3, . . .} ∈ S(τ, K),

we will obtain a new nonperiodic sequence s0, s1, s2, s3, . . . in S(τ, K); see the property (10).
This completes the proof of the lemma, because there are infinitely many choices of such
integers s0.

3. Proof of Theorem 2

Let S = {s1, s2, s3, . . .} be a sequence from the class S(τ, K). For the simplicity of
exposition, we present this sequence in a binary alphabet {p, c}, where the letter p stands for
si if si is prime, and the letter c stands for si if si is composite. For example, the sequence (2) is

p, c, p, p, p, p, c, p, p, c, p, p, p, p, c, p, p, c, . . . .

We clearly have si < si+1 if the letter p stands for si, and si > si+1 if the letter c stands for si.
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Let {p1, p2, p3, . . .} be a subsequence of S obtained from S by deleting its composite
elements, so pi simply enumerate the letters p. If the sequence {p1, p2, p3, . . .} were finite,
then we would have si+1 ∈ [2, τsi] for each sufficiently large i, say, for i ≥ n0. But then, for
each i ≥ n0 from si+1 ≤ τsi < si, we deduce that sn0 > sn0+1 > sn0+2 > . . . is a decreasing
sequence of integers. This is impossible, because sj ≥ 2 for all sj ∈ S. Consequently,
the sequence {p1, p2, p3, . . .} is infinite. In the notation with p and c, this means that the
sequence S contains infinitely many letters p.

Next, we consider a subsequence {q1, q2, q2, . . .} of {p1, p2, p3, . . .} obtained by re-
moving from {p1, p2, p3, . . .} the primes from consecutive patterns p, p, . . . , p of all primes
except for the first one. In particular, we will have q1 = p1, while for each qi, i ≥ 2, between
qi−1 and qi, first there are possibly a few prime elements of S and then there must be one of
several composite elements of S.

Now, we will prove (13). (Recall that K = {k}.) We claim that

qi ≤ M := max{p1, τN(k)k/(1 − τ)} (16)

for each i ∈ N.
We will use the induction on i. Of course, (16) trivially holds for i = 1 because then

q1 = p1. Assume that (16) is true for some qi−1, where i ≥ 2. Suppose that between qi−1
and qi there are ℓ ≥ 0 primes (letters p) and then l ≥ 1 composite elements of S (letters c).
By Lemma 1, we have

ℓ ≤ N(k)− 1. (17)

Thus, the first composite element is smaller than or equal to qi−1 + N(k)k. The lth composite
element (the one that appears just before qi, say, sj) is therefore at most τl−1(qi−1 + N(k)k).
Hence,

qi ≤ τsj ≤ τl(qi−1 + N(k)k) ≤ τ(qi−1 + N(k)k).

Now, by our inductive assumption qi−1 ≤ M, it remains to verify the inequality

τ(M + N(k)k) ≤ M.

However, the latter inequality is equivalent to τN(k)k/(1 − τ) ≤ M, which is true by the
definition of M in (16). This completes the proof of (16).

Next, note that each pj is of the form qi + uk with some integers i ≥ 1 and u ≥ 0.
Furthermore, we must have u ∈ {0, 1, . . . , N(k)− 1} by Lemma 1. Hence, by (16), each pi,
i ∈ N, is smaller than or equal to M + (N(k)− 1)k. This completes the proof of (13).

In order to prove (12), we first observe that, by Lemma 1 and the definition of (qi)
∞
i=0,

each element of the sequence S is smaller than or equal to

max{s1, max{q1, q2, q3, . . .}+ N(k)k} ≤ max{s1, M + N(k)k}.

Hence, by the definition of M in (16), all the elements of S do not exceed

max{s1, max{p1, τN(k)k/(1 − τ)}+ N(k)k}. (18)

Because p1 ≤ s1, (18) does not exceed the right-hand side of (12).
It remains to prove (11) for the set K = {k1, . . . , km} with the largest element k. This

time, we claim that
qi ≤ M′ := max{p1, τe2k/(1 − τ)} (19)

for each i ≥ 1.
It is clear that (19) is true for i = 1. Assume that (19) is true for qi−1 with i ≥ 2. As

above, suppose that between qi−1 and qi first there are ℓ ≥ 0 prime elements and then l ≥ 1
composite elements of S. We will show that

ℓ <
e2k

k
− 1. (20)
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By 7k < e2k, it is clear that (20) holds for ℓ ≤ 6, so assume that ℓ ≥ 7. The inequality (20)
also holds for K being a singleton set by (4) and (17) because k(k + 1) < e2k. Thus, we can
assume that m = |K| ≥ 2. The ℓ+ 1 consecutive elements of S

qi−1, qi−1 + ki1 , qi−1 + ki1 + ki2 , . . . , qi−1 + ki1 + ki2 + . . . + kiℓ , (21)

where ki1 , ki2 , . . . , kiℓ ∈ K, are all prime, and the first composite element of S following
them is

qi−1 + ki1 + ki2 + . . . + kiℓ + kiℓ+1
, kiℓ+1

∈ K.

If l > 1, there are also other composite elements between this element and qi, but they all
appear in descending order. This means that

qi ≤ τ(qi−1 + ki1 + ki2 + . . . + kiℓ + kiℓ+1
). (22)

Also, the interval

(x, x + y] = (qi−1 − 1/2, qi−1 + ki1 + ki2 + . . . + kiℓ ]

contains at least ℓ+ 1 prime numbers, for example, ℓ+ 1 distinct primes that are listed
in (21). Here, x = qi−1 − 1/2 and

y = ki1 + ki2 + . . . + kiℓ + 1/2.

Therefore, using ℓ ≥ 7 and (8), we obtain

8 ≤ ℓ+ 1 ≤ y ≤ ℓk + 1/2 < (ℓ+ 1)k.

Hence, by Lemma 2, it follows that

ℓ+ 1 ≤ 2y
log y

<
2(ℓ+ 1)k

log((ℓ+ 1)k)
, (23)

because the function y
log y is increasing for y ≥ e. Inequality (23) implies log((ℓ+ 1)k) < 2k,

which yields (20).
Next, by (20) and (22), we obtain

qi ≤ τ(qi−1 + ki1 + ki2 + . . . + kiℓ + kiℓ+1
) ≤ τ(qi−1 + (ℓ+ 1)k) < τ(qi−1 + e2k). (24)

Using the inductive assumption qi−1 ≤ M′, from (24) we deduce that qi < τ(M′ + e2k),
which is less than or equal to M′ by the definition of M′ in (19). Hence, qi < M′. This
concludes the proof of (19) for each i ∈ N.

Because the bound on ℓ in (20) is independent of i, the largest prime element of S does
not exceed

M′ + ℓk < M′ +
( e2k

k
− 1

)
k = M′ + e2k − k. (25)

Consider the subsequence {su, su+1, su+2, . . .} of (si)
∞
i=1, where su = p1 and u is the smallest

integer with this property. By (25), the largest element of this subsequence is less than

(M′ + e2k − k) + k = M′ + e2k = max{p1, τe2k/(1 − τ)}+ e2k.

This proves (11) in the case when u = 1. Assume that u > 1. Then, the largest element of
S = {s1, s2, s3, . . .} is either less than M′ + e2k (if it is among {su, su+1, su+2, . . .}) or is equal
to max{s1, . . . , su−1} = s1. Because s1 > p1, M′ + e2k does not exceed the right-hand side
of (11). On the other hand, the element s1 is also strictly smaller than the right-hand side of
(11). Consequently, all the elements of S are smaller than max{s1, τe2k/(1 − τ)}+ e2k. This
finishes the proof of the theorem.

4. Proof of Theorem 3

Consider the case (i). Let S = s1, s2, s3, . . . be a sequence in the class S(τ, {1}), where
1
2 ≤ τ < 3

4 . If s1 ∈ {2, 3, 4}, then, by (9) and (10), S is a purely periodic sequence with period
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2, 3, 4 or 3, 4, 2 or 4, 2, 3. We will show that any S ∈ S(τ, {1}) is ultimately periodic with
one of those three periods. The proof is by induction on s1 = s. Assume that s ≥ 5 and that
we already established the periodicity of the sequence S in case it has an element at most
s − 1. For s ≥ 5, at least one of the numbers s, s + 1 is composite and the next element of S is
smaller than 3

4 · (s + 1) < s. The periodicity now follows due to our inductive assumption.
Now, consider the case (ii). Let S = s1, s2, s3, . . . be a sequence in S(τ, {2}), where

1
2 ≤ τ < 5

9 . We will show that each S is ultimately periodic with one of the possible periods,
2, 4 or 4, 2 or 3, 5, 7, 9 or 5, 7, 9, 3 or 7, 9, 3, 5 or 9, 3, 7, 5. If s1 ∈ {2, 4}, then, by (9) and (10),
S is purely periodic with period 2, 4 or 4, 2. If s1 ∈ {3, 5, 7, 9}, then after several steps we
reach su = 9 (possibly u = 1), so the next element su+1 is less than 5

9 · 9 = 5. If su+1 is 2
or 4, then the sequence becomes ultimately periodic with period 2, 4 or 4, 2. Otherwise,
su+1 = 3. If it is always 3, namely, su+1+4m = 3 for every m ≥ 0, then the sequence is purely
periodic with period 3, 5, 7, 9 or 5, 7, 9, 3 or 7, 9, 3, 5 or 9, 3, 5, 7. If otherwise su+1+4m ∈ {2, 4}
for some m ≥ 0, then it is ultimately periodic with period 2, 4 or 4, 2. For s1 = s ≥ 6, one of
the integers s, s + 2, s + 4 is composite, so the next element of S is less than 5

9 · (s + 4) < s.
Hence, it is at most s − 1, which concludes the proof by induction on s.

Assume that τ and K are such that neither (i) nor (ii) is satisfied. We first consider the
case when the set K contains an element k satisfying k ≥ 3. In view of S( 1

2 , {k}) ⊆ S(τ, K),
it is sufficient to show that S( 1

2 , {k}) contains infinitely many nonperiodic sequences.
Suppose first that k ≥ 6 is even. Then, 2 + k is composite. Thus, 2, 2 + k is a 2-cycle

of S( 1
2 , {k}). Moreover, if 1 + k/2 is a composite number, then 2, 2 + k, 1 + k/2 is also a

2-cycle of S( 1
2 , {k}). On the other hand, if 1 + k/2 is a prime number, then k ̸= 6 and k/2

is not a prime. In that case, 2, 2 + k, k/2 is a 2-cycle of S( 1
2 , {k}). Therefore, in both cases,

for even k ≥ 6, the class S( 1
2 , {k}) contains at least two distinct 2-cycles. Consequently, by

Lemma 3, it contains infinitely many nonperiodic sequences.
Likewise, for k ≥ 9 odd, 3, 3 + k and 3, 3 + k, (3 + k)/2, where (3 + k)/2 is composite,

are both 3-cycles of S( 1
2 , {k}), so the result follows by Lemma 3. If (3+ k)/2 is a prime, then

k ̸= 9 and 3, 3 + k, (1 + k)/2 is a 3-cycle, because (1 + k)/2 = (3 + k)/2 − 1 is composite
and greater than or equal to 6. The result again follows by Lemma 3.

In the remaining cases k = 3, 4, 5, 7, we will explicitly present the corresponding
2-cycles in S( 1

2 , {k}). For k = 7, in S( 1
2 , {k}) there are two distinct 2-cycles, 2, 9 and 2, 9, 4.

For k = 5, there are two distinct 2-cycles, 2, 7, 12 and 2, 7, 12, 6. For k = 4, there are two
distinct 2-cycles, 2, 6 and 2, 6, 3, 7, 11, 15. Finally, for k = 3, in S( 1

2 , {k}) there are two
distinct 2-cycles, 2, 5, 8 and 2, 5, 8, 4. In all the above cases, the required result follows from
Lemma 3.

Now, it remains to consider the case K ⊆ {1, 2}. Suppose first that K = {1, 2}. Then,
the class S(τ, K) contains two distinct 2-cycles, 2, 4 and 2, 3, 4, so the proof is concluded
by Lemma 3. Because the cases (i) and (ii) are already considered, we are left with two
possibilities K = {1}, τ ≥ 3

4 and K = {2}, τ ≥ 5
9 . If K = {1} and τ ≥ 3

4 , then in S(τ, {1})
there are the following two distinct 2-cycles: 2, 3, 4 and 2, 3, 4, 3, 4. Finally, if K = {2} and
τ ≥ 5

9 , then the class S(τ, {2}) also contains two distinct 3-cycles, for instance, 3, 5, 7, 9 and
3, 5, 7, 9, 5, 8. In both cases, the proof is concluded by Lemma 3 as before.

5. Concluding Remarks

The main result of this paper’s Theorem 2 shows that the sequences of the class S(K, τ)
are all bounded. More precisely, the largest element of S = {s1, s2, s3, . . .} ∈ S(K, τ) is
bounded from above in terms of s1, τ and the maximal element of K no matter how large
the finite set K is.

What about the case when the set K ⊂ N is infinite, which is possibly a very sparse
set? We will show that then no result similar to Theorem 2 is possible, because the class
S(K, τ) always contains unbounded sequences for any infinite K ⊂ N and any τ ∈ (0, 1).

Indeed, let us start the construction of such S = {s1, s2, s3, . . .} ∈ S(K, τ) from any
prime number s1 = p. Because K is infinite, we can choose k ∈ K so large that
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( 2
τ
− 1

)
p < k. (26)

Take the least positive integer j for which the number p + jk is composite. By Lemma 1,
this j does not exceed N(k). Then, by the rule (9), because p, p + k, . . . , p + (j − 1)k are all
primes, the numbers

s2 = p + k, . . . , sj+1 = p + jk

can be chosen as the consecutive elements of S. Because sj+1 is composite, by the rule (10),
as the next element sj+2 of S we can choose any integer from the interval[τ

2
(p + k), τ(p + jk)

]
. (27)

This is indeed possible, because the right endpoint of the interval (27) is τsj+1, while its left
endpoint is

τ

2
(p + k) >

τ

2
· 2p

τ
= p ≥ 2

due to (26).
Note that the interval (27) is of the form [u, 2u], with u ≥ 2. Therefore, by Bertrand’s

postulate, it contains a prime number, say, p′. Let us choose sj+2 = p′. Because sj+2 = p′

belongs to the interval (27), using (26), we deduce

sj+2 = p′ ≥ τ

2
(p + k) >

τ

2
· 2p

τ
= p,

so p′ > p.
Now, arguing with sj+2 = p′ > p as before, namely, choosing k′ ∈ K so large that( 2

τ
− 1

)
p′ < k′,

we will construct another prime element p′′ of S satisfying p′′ > p′. Continuing this process,
we will obtain a sequence S ∈ S(K, τ) containing an infinite subsequence of primes

p < p′ < p′′ < p′′′ < . . . .

The latter sequence of primes is unbounded, so S ∈ S(K, τ) is unbounded too.
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