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Abstract: This paper deals with the oscillatory behavior of solutions of a new class of second-order
nonlinear differential equations. In contrast to most of the previous results in the literature, we
establish some new criteria that guarantee the oscillation of all solutions of the studied equation
without additional restrictions. Our approach improves the standard integral averaging technique to
obtain simpler oscillation theorems for new classes of nonlinear differential equations. Two examples
are presented to illustrate the importance of our findings.
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1. Introduction

In this work, we consider the asymptotic and oscillatory properties of solutions to a
class of differential equations of the form(

r(⊤)
(
y′(⊤)

)ξ
)′

+ p(⊤)
(
y′(⊤)

)ξ
+ q(⊤) f (y(⊤)) = 0, ⊤ ≥ ⊤0 > 0, (1)

where ξ ≥ 1 is a ratio of two odd positive integers, and

(H1) r(⊤) ∈ C1(I⊤0 ,R+
)
,

p(⊤) and q(⊤) ∈ C
(

I⊤0 ,R
)
, (2)

where I⊤0 = [⊤0, ∞);

(H2) f (⊤) ∈ C(R,R), y f (y) > 0 for y ̸= 0, and f (y)/yξ ≥ µ, for y ̸= 0 and for some µ > 0.

Definition 1 ([1]). By a solution y of Equation (1), we mean a function y ∈ C([⊤∗
y , ∞)), ⊤∗

y ∈ I⊤0 ,

which satisfies (1) on [⊤∗
y, ∞) for every ⊤ ≥ ⊤∗

y ≥ ⊤0, and r(⊤)(y′(⊤))ξ ∈ C1([⊤∗
y, ∞)). Our

attention is restricted to those solutions y of (1) that exist on some half line I and satisfy

sup
{
|y(⊤)| : ⊤y ≤ ⊤ < ∞

}
> 0, ⊤y ≥ ⊤∗

y .
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Definition 2 ([2]). A solution of Equation (1) is called oscillatory if it has arbitrarily large zeros;
otherwise, it is called non-oscillatory. Moreover, we say that Equation (1) oscillates if all its solutions
oscillate, otherwise we say that it does not oscillate.

Oscillation theory is considered one of the most important theories in all fields of
science, including physics and engineering. It also plays a crucial role in the advancement of
science and technology and in developing solutions to contemporary challenges. Through
continued research and development in this field, significant progress can be achieved
in various scientific and applied fields. It attempts to explain how objects or phenomena
can change over time and is used to understand advanced natural and technological
phenomena in the modern world. Currently, oscillation theory is of particular importance
because of its practical applications in various fields such as communications, astronomy,
and others. Its importance is not diminished even in the field of medicine, as it contributes
to examining and analysing vital signals such as heartbeats and brain waves, which enables
doctors to better evaluate health conditions and diagnose diseases.

Both the concept of symmetry and the oscillation theory play pivotal roles in under-
standing nature at different levels, and there can be overlaps and interactions between them
in certain contexts of physical research. Oscillations can be viewed as a kind of temporal
symmetry in many dynamical systems. Likewise, a physical system that oscillates regularly
can be described as a type of temporal symmetry in that phenomenon, where conditions
repeat periodically. On the other hand, the concept of symmetry plays an important role
in describing fundamental interactions and particle interactions. It is worth noting that
in some cases, symmetries lead to phenomena such as oscillation between different types
of particles, such as neutrino oscillation. Theories that combine symmetry and oscillation
may reveal new and unexpected phenomena. For example, broken symmetry could be
responsible for generating particle masses in the Standard Model of particle physics; see,
for instance [3–9].

Their approximations lead to very large linear systems and many properties can
be understood using the approximated solutions [10–12]. Damping is crucial in control
systems to prevent and minimise feedback-induced oscillations, so the damping differential
equation is used in the models of mechanical systems, electrical circuits, acoustics, civil
engineering, and control theory (economic cycles). Second-order differential equations
with a damping term play a central role in many scientific and engineering fields, helping
to understand and analyse dynamical systems and develop new technologies. They are
used in many different fields, and the analysis of solutions to these equations often includes
the term “damping” to describe resistance to movement or the gradual degradation of
energy, which may be the result of movement in an elastic medium or under the presence of
friction. Second-order differential equations can also be used to study damping vibrations
in structures and machines. Damping is also used to describe the effect that resistors,
capacitors, and coils have on the current and voltage in the system. The term damping
describes the interaction between particles and their surrounding environment, and its
importance extends to planetary science and astronomy, as these equations are used in
studying the motion of planets and other astronomical bodies and the damping effects
resulting from gravity and resistance [13–18].

A number of authors, such as [19–23], have paid attention to the oscillation of equations
of the form (

r(⊤)φ(y(⊤))y′(⊤)
)′
+ p(⊤)y′(⊤) + q(⊤) f (y(⊤)) = 0.

On the other hand, the authors in [24–27] examined the oscillation of the following differ-
ential equation: (

r(⊤)y′(⊤)
)′
+ p(⊤)y′(⊤) + q(⊤) f (y(⊤)) = 0 (3)

and some special cases under conditions

p(⊤) ≥ 0 and q(⊤) > 0. (4)
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Moreover, Rogovchenko [28] showed a sufficient condition for the oscillation of Equation (3)
assuming that (2) is satisfied and

f ′(x) exists, f ′(x) ≥ k for some k > 0.

Also, Grace [29] shed light on finding criteria that guarantee the oscillatory behavior of all
solutions of Equation (3).

Motivation

Adding a damping term to a differential equation may change the character of the
solutions, for example, giving rise to oscillations. For example, if we look at equation

y′′′(⊤) +
(

4⊤3
)−1

y(⊤) = 0, (5)

we find that all of its solutions are non-oscillatory as follows: y1 = 1.2696, y2 = 1.83763 and
y3 = −0.10716. While if we introduce the damping term

(
4⊤2)−1y′(⊤) into Equation (5) it

becomes as follows:

y′′′(⊤) +
(

4⊤2
)−1

y′(⊤) +
(

4⊤3
)−1

y(⊤) = 0.

We find that the behavior of its solutions is different, as we obtain two conjugate
solutions (oscillatory solutions) and another solution (nonoscillatory solution) as follows:
y1,2 = 1.5490 ± 0.3925i and y3 = −0.097912. Thus, the study of this type of equations can
be considered related to the oscillation theory. Through this work, we aim to establish
new relationships that can be used to obtain new oscillation criteria for the solutions of
the Equation (1). Our results are an extension of the findings presented in the previous
literature, for example [19–22,28,30–32], which studied the Equation (1) with ξ = 1. On
the other hand, our results work to develop and improve some of the previous findings;
for instance, contrary to [24–27], we do not need additional constraints, including the
constraints in (4). Therefore, the scope of application of our results extends to include more
models that previous studies did not cover.

This paper is organized as follows. In Section 1, we present the significance of studying
oscillations in many areas of life, which is the primary motivation for our study. In Section 2,
we present previous findings and the abbreviations that will be used throughout the paper.
Then, in Section 3, we provide some results of oscillation for the solutions of the studied
equation. We also present and discuss some examples to illustrate the importance of our
results in Section 4. Finally, in Section 5, we offer a brief overview of the main conclusions
and present some suggestions and open problems for future work.

2. Preliminaries

Now, assume that U ∈ C(D,R+) and

D = {(⊤, ς) : ⊤0 ≤ ς ≤ ⊤ < ∞} and D0 = {(⊤, ς) : ⊤0 ≤ ς < ⊤ < ∞}.

If U(⊤,⊤) = 0, U(⊤, ς) > 0 and there is (⊤, ς) ∈ D0 for U has a nonpositive continuous
partial derivative with respect to ς, and there is there is a function ũ ∈ l{loc}(D,R) such that

∂U(⊤, ς)

∂ς
= −ũ(⊤, ς)(U(⊤, ς)))ξ/(ξ+1), (6)

then we say that U ∈ Wξ .
Now we present some results obtained previously, in order to compare them with the

main results we reached in this work.
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Theorem 1 ([29], Theorem 6). Assume that there exist functions ρ ∈ C1(I⊤0 ,R+), ϕ ∈
C(I⊤0 ,R), and U ∈ Wξ , ξ = 1 and f ′(x) ≥ K. If

0 < inf
ς≥⊤0

Φ(⊤) ≤ ∞, (7)

lim sup
⊤→∞

U−1(⊤,⊤∗)
∫ ⊤

⊤∗
r(ς)ρ(ς)

[
ũ(⊤, ς)− π(ς)

√
U(⊤, ς)

]2
dς < ∞,

lim sup
⊤→∞

U−1(⊤,⊤0)
∫ ⊤

⊤∗
(U(⊤, ς)ρ(ς)q(ς)−𭟋(⊤, ς))dς ≥ ϕ(⊤∗) ,

and
lim
⊤→∞

∫ ∞

⊤0

ϕ2
+(ς)(v(ς)r(ς))

−1/ξdς = ∞,

for ⊤ > ⊤0, and y ⊤∗ ≥ ⊤0, where

Φ(⊤) = lim inf
⊤→∞

U(⊤, ς)

U(⊤,⊤0)
,

ϕ+(⊤) = max(ϕ(⊤), 0)

and

𭟋(⊤, ς) = (4K)−1ρ(ς)r(ς)
(

ũ(⊤, ς)− π(ς)
√

U(⊤, ς)

)2
,

where π(ς) = (r(ς)ρ′(ς)− p(ς)ρ(ς))/(r(ς)ρ(ς)), then (3) is oscillatory.

Theorem 2 ([28], Theorem 2). Assume that there exist functions g ∈ C1(I⊤0 ,R+), ϕ ∈
C(I⊤0 ,R). Assume further that U ∈ Wξ , ξ = 1 and f ′(x) ≥ K. Set

ρ̃(⊤) = exp
(
−2

∫ ⊤
g(ς)dς

)
and

Ψ(⊤) = K−1ρ̃(⊤)
(

Kq(⊤)− p(⊤)g(⊤)− [r(⊤)g(⊤)]′ + r(⊤)g2(⊤)
)

.

If

lim sup
⊤→∞

U−1(⊤,⊤0)
∫ ⊤

⊤0

r(ς)ρ(ς)
(

ũ(⊤, ς) +
p(ς)
r(ς)

√
U(⊤, ς)

)2
dς < ∞ ,

lim sup
⊤→∞

U−1(⊤,⊤∗)
∫ ⊤

⊤∗
U(⊤, ς)Ψ(ς)− r(ς)ρ̃(ς)

4K

(
ũ(⊤, ς) +

p(ς)
r(ς)

√
U(⊤, ς)

)2
dς ≥ ϕ(⊤∗)

and

lim sup
⊤→∞

∫ ⊤

⊤0

ϕ2
+(ς)

ρ̃(ς)r(ς)
dς = ∞,

then (3) is oscillatory.

Now, define the functions

v(⊤) = exp
[
−(ξ + 1)

∫ ⊤

⊤0

(
ρ1/ξ(ς)− p(ς)

(ξ + 1)r(ς)

)
dς

]
, (8)

ψ(⊤) = v(⊤)
[
µq(⊤) + r(⊤)ρ(ξ+1)/ξ(⊤)− (r(⊤)ρ(⊤))′ − p(⊤)ρ(⊤)

]
(9)

and

𭟋̃(⊤, ς) = U(⊤, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(⊤, ς), for some β ∈ [1, ∞)
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3. Main Results

In this section we present two main results in the form of theorems. In the first theorem,
using the Riccati technique, we obtained criteria that ensure the oscillation of all solutions
of the studied equation. In the second theorem, using other analytical techniques, we
present another criterion that reaches the same conclusion as in the first theorem.

Theorem 3. Assume that there exists a function ρ ∈ C1([⊤0, ∞),R) such that, for some β ∈
[1, ∞) and U ∈ Wξ ,

lim sup
⊤→∞

U−1(⊤,⊤0)
∫ ⊤

⊤0

[
U(⊤, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(⊤, ς)

]
dς = ∞ (10)

with v(⊤) and ψ(⊤) given in (8) and (9), respectively. Then all solutions of Equation (1) are
oscillatory.

Proof. Let x(⊤) > 0 be a solution of (1) for ⊤ ≥ ⊤∗
0 ≥ ⊤0. Setting

u(⊤) = v(⊤)r(⊤)

[
(x′(⊤))ξ

xξ(⊤)
+ ρ(⊤)

]
, ⊤ ≥ ⊤∗

0 , (11)

we have

u′(⊤) =
v′(⊤)

v(⊤)
u(⊤) + v(⊤)

(
r(⊤)(x′(⊤))ξ

)′
xξ(⊤)

−ξv(⊤)r(⊤)

[
u(⊤)

v(⊤)r(⊤)
− ρ(⊤)

](ξ+1)/ξ

+ v(⊤)(r(⊤)ρ(⊤))′. (12)

According to [33], it is

N1+1/ξ
1 − (N1 − N2)

1+1/ξ ≤
N1/ξ

2
ξ

[(ξ + 1)N1 − N2]. (13)

Taking
N1 = u(⊤)/(v(⊤)r(⊤)) and N2 = ρ(⊤),

in (13), we obtain

(N1 − N2)
(ξ+1)/ξ =

[
u(⊤)

v(⊤)r(⊤)
− ρ(⊤)

](ξ+1)/ξ

≥
(

u(⊤)

v(⊤)r(⊤)

)(ξ+1)/ξ

−ρ1/ξ(⊤)

ξ

[
(ξ + 1)

u(⊤)

v(⊤)r(⊤)
− ρ(⊤)

]
.

It follows from (1), (8), and (12) that

u′(⊤) ≤ −ψ(⊤)− ξ

(
uξ+1(⊤)

v(⊤)r(⊤)

)1/ξ

, (14)

which we rewrite as

U(⊤, ς)u′(⊤) ≤ −U(⊤, ς)ψ(⊤)− U(⊤, ς)ξ

(
uξ+1(⊤)

v(⊤)r(⊤)

)1/ξ

. (15)
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By integrating (15) from ⊤∗
1 to ⊤, for all ⊤ ≥ ⊤∗

1 ≥ ⊤∗
0 and all β ≥ 1, we have

∫ ⊤

⊤∗
1

U(⊤, ς)ψ(ς)dς +
∫ ⊤

⊤∗
1

ũ(⊤, ς)(U(⊤, ς))ξ/(ξ+1)u(⊤)dς

+
ξ

β

∫ ⊤

⊤∗
1

U(⊤, ς)uξ+1/ξ(ς)
1

(v(ς)r(ς))1/ξ
dς

≤ U(⊤,⊤∗
1)u(⊤∗

1)− ξβ−1(β − 1)
∫ ⊤

⊤∗
1

U(⊤, ς)uξ+1/ξ(ς)
1

(v(ς)r(ς))1/ξ
dς. (16)

Also, according to [34], it is

M(ξ+1)/ξ
1 − ξ + 1

ξ
M1/ξ

1 M2 ≥ −1
ξ

M(ξ+1)/ξ
2 . (17)

Taking,

M(ξ+1)/ξ
1 =

ξ

β

U(⊤, ς)u(ξ+1)/ξ(ς)

(v(ς)r(ς))1/ξ

and

M(ξ+1)/ξ
2 = − ξβξ

(ξ + 1)ξ+1 v(ς)r(ς)ũ(ξ+1)(⊤, ς),

in (17), we get

u(ς)ũ(⊤, ς)(U(⊤, ς))ξ/(ξ+1) +
ξ

β
U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

)1/ξ

+
βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(⊤, ς) ≤ 0. (18)

Thus, it follows from (16) and (18) that

U(⊤,⊤∗
1)u(⊤∗

1) ≥
∫ ⊤

⊤∗
1

(
U(⊤, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(⊤, ς)

)
dς

+ξβ−1(β − 1)
∫ ⊤

⊤∗
1

U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

)1/ξ

dς. (19)

From property (6), we find

∫ ⊤

⊤∗
1

[
U(⊤, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(⊤, ς)

]
dς

≤ U(⊤,⊤∗
1)|u(⊤∗

1)| ≤ U(⊤,⊤0)|u(⊤∗
1)|, for all ⊤ ≥ ⊤∗

1 .

Therefore, it is ∫ ⊤

⊤0

ψ(ς)U(⊤, ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(⊤, ς)dς

≤ U(⊤,⊤0)

(
|u(⊤∗

1)|+
∫ ⊤∗

1

⊤0

|ψ(ς)|dς

)
.
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Hence,

lim sup
⊤→∞

U−1(⊤,⊤0)
∫ ⊤

⊤0

[
U(⊤, ς)ψ(ς)− βξ(ξ + 1)−(ξ+1)v(ς)r(ς)ũξ+1(⊤, ς)

]
dς

≤ |u(⊤∗
1)|+

∫ ⊤∗
1

⊤0

|ψ(ς)|dς

< ∞,

which contradicts (10).

Theorem 4. Assume that there exist functions ρ ∈ C1(I⊤0 ,R
)
, ϕ ∈ C

(
I⊤0 ,R

)
and U belonging

to the class Wξ such that, for some β > 1 and for ⊤∗ ≥ ⊤0,

lim sup
⊤→∞

U−1(⊤,⊤∗)
∫ ⊤

⊤∗
𭟋̃(⊤, ς)dς ≥ ϕ(⊤∗) (20)

and
0 < inf

⊤≥⊤0
Ũ(⊤) ≤ ∞. (21)

If ∫ ∞

⊤0

ϕ
ξ+1/ξ
+ (ς)(v(ς)r(ς))−1/ξdς = ∞, (22)

then all solutions of Equation (1) are oscillatory.

Proof. Let x(⊤) > 0 be a solution of (1) on [⊤∗
0 , ∞), ⊤∗

0 ≥ ⊤0. Proceeding exactly as in the
proof of Theorem 3, we get the inequality (19), it is obvious that

ϕ(⊤∗
1) ≤ lim sup

⊤→∞

1
U
(
⊤,⊤∗

1
) ∫ ⊤

⊤∗
1

[
U(⊤, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(⊤, ς)

]
dς

≤ u(⊤∗
1)−

ξ(β − 1)
β

lim inf
1

U
(
⊤,⊤∗

1
) ∫ ⊤

⊤∗
1

U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς,

for all ⊤ > ⊤∗
1 and for any β ≥ 1. This implies that

ϕ(⊤∗
1) + ξβ−1(β − 1) lim inf

⊤→∞
U−1(⊤,⊤∗

1)
∫ ⊤

⊤∗
1

U(⊤, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς ≤ u(⊤∗
1) (23)

and

lim inf
⊤→∞

U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς

≤ β(ξβ − ξ)−1(u(⊤∗
1)− ϕ(⊤∗

1))

< ∞. (24)

It follows from (21) that there exists υ > 0 such that

Ũ(⊤) > υ(⊤). (25)

Now, we claim that ∫ ∞

⊤∗
1

u
ξ+1

ξ (ς)

(v(ς)r(ς))
1
ξ

dς = ∞. (26)
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By (26) and for any constant η > 0, there exists a ⊤∗
2 > ⊤∗

1 such that

∫ ⊤

⊤∗
1

u
ξ+1

ξ (ς)

(v(ς)r(ς))
1
ξ

dς >
η

υ
, for all ⊤ ≥ ⊤∗

2 . (27)

Integrating from ⊤∗
1 to ⊤ and using (27), we see that

U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)
u

ξ+1
ξ (ς)

(v(ς)r(ς))
1
ξ

dς

= U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)d

∫ ς

⊤∗
1

u
ξ+1

ξ (ζ)

(v(ζ)r(ζ))
1
ξ

dζ

,

for all ⊤ ≥ ⊤∗
1 . Hence,

U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς = U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

(
−∂U(⊤, ς)

∂ς

)

×

∫ ς

⊤∗
1

(
uξ+1(ζ)

v(ζ)r(ζ)

) 1
ξ

dζ

dς

≥ η

υ
U−1(⊤,⊤∗

1)
∫ ⊤

⊤∗
2

(
−∂U(⊤, ς)

∂ς

)
dς

=
η

υ
U(⊤,⊤∗

2)U
−1(⊤,⊤∗

1)

≥ η

υ
U−1(⊤,⊤0)U(⊤,⊤∗

2).

In view of (25), there exists a ⊤∗
3 ≥ ⊤∗

2 such that

U(⊤,⊤∗
2)

U(⊤,⊤0)
≥ υ(⊤), for all ⊤ ≥ ⊤∗

3 .

Thus, we have

U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς ≥ η for ⊤ ≥ ⊤∗
2 .

Since η > 0, we obtain

lim inf
⊤→∞

U−1(⊤,⊤∗
1)
∫ ⊤

⊤∗
1

U(⊤, ς)

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς = ∞.

But according to (24), we note that∫ ∞

⊤∗
1

u
ξ+1

ξ (ς)(v(ς)r(ς))
−1
ξ dς = ∞,

and from (23), we get

∫ ∞

⊤∗
1

(
ϕξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς ≤
∫ ∞

⊤∗
1

(
uξ+1(ς)

v(ς)r(ς)

) 1
ξ

dς < ∞.

This completes the proof.
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Remark 1. We observe that the restrictions imposed in Theorem 4 are more tractable than those
in [29] [Theorem 6], since we do not have the complex hypotheses that appear there.

Corollary 1. If one of the following statements is true
(i) All conditions of Theorem 3 are satisfied;
(ii) All conditions of Theorem 4 are satisfied,
then the equation (

r(⊤)
(
y′(⊤)

)ξ
)′

+ p(⊤)
(
y′(⊤)

)ξ
+ µq(⊤)yξ(⊤) = 0, (28)

where µ > 0, is oscillatory.

4. Applications

Example 1. Consider the following differential equation(
1
⊤
(
y′(⊤)

)ξ
)′

+ cos⊤
(
y′(⊤)

)ξ
+ q(⊤)yξ(⊤) = 0, (29)

for ⊤ ≥ 1 and ξ ≥ 1, where

q(⊤) =
1
⊤3 − ⊤ cos⊤− 2⊤−1

⊤(ξ + 1)

(
⊤ cos⊤− 2⊤−1

ξ + 1

)
+

(
⊤ cos⊤− 2⊤−1

ξ + 1

)
cos⊤

+

(
⊤ cos⊤− 2⊤−1

⊤ξ(ξ + 1)

)′
.

Let assume that

ρ(⊤) =

(
⊤ cos⊤− 2⊤−1

ξ + 1

)
, Ψ(⊤) = ⊤−1, v(⊤) = ⊤3 and β ≥ 1.

By condition (10) in Corollary 1, we conclude that

lim sup
⊤→∞

1
U(⊤,⊤0)

∫ ⊤

⊤0

[
U(⊤, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(⊤, ς)

]
dς

= lim sup
⊤→∞

1
⊤2

∫ ⊤

1

[
(⊤− ς)2

ς
− 2ξ+1βξ

(ξ + 1)ξ+1 ς(⊤− ς)1−ξ

]
dς = ∞.

That is Equation (29) is oscillatory.

Example 2. Consider the following differential equation

0 =

((
2⊤3 + 1

)
(2 + sin⊤)

2⊤3

(
x′(⊤)

)ξ

)′

+

(
3
(
2⊤3 + 1

)
(2 + sin⊤)

2⊤4

)(
x′(⊤)

)ξ
+ q(⊤)xξ(⊤), (30)

for ⊤ ≥ 1 and ξ ≥ 1, where

q(⊤) =
1
⊤3

((
1 −⊤3 + 2⊤2 − 6⊤

)
sin⊤+ 12⊤

)
.

Now, assume that

ρ(⊤) = 0, Ψ(⊤) =
(

1 −⊤3 + 2⊤2 − 6⊤
)

sin⊤+ 12⊤, v(⊤) = ⊤3, β = 2−1(1 + ξ)(ξ+1)/ξ .

Set U(⊤, ς) = (⊤− ς)2, ũ(⊤, ς) = 2(⊤− ς)(1−ξ)/(ξ+1).
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By condition (20) in Theorem 4, we find that

lim sup
⊤→∞

1
U(⊤,⊤∗)

∫ ⊤

⊤∗

[
U(⊤, ς)ψ(ς)− βξ

(ξ + 1)ξ+1 v(ς)r(ς)ũξ+1(⊤, ς)

]
dς

= lim sup
⊤→∞

1
⊤2

∫ ⊤

⊤∗
[(⊤− ς)2

((
1 − ς3 + 2ς2 − 6ς

)
sin ς + 12ς

)
− 2ξ βξ(ξ + 1)−(ξ+1)

×
(

2ς3 + 1
)
(2 + sin ς)(⊤− ς)1−ξ ]dς

≥ lim sup
⊤→∞

1
⊤2

∫ ⊤

⊤∗
[(⊤− ς)2

((
1 − ς3 + 2ς2 − 6ς

)
sin ς + 12ς

)
−
(

2ς3 + 1
)
(2 + sin ς)]dς

= 16 −⊤∗3 cos⊤∗ +⊤∗2(2 cos⊤∗ − 6 + 3 sin⊤∗)− 4⊤∗ sin⊤∗ − 3 cos⊤∗ = ϕ(⊤∗).

It is easy to see that condition (22) is satisfied. Therefore, Equation (30) is oscillatory.

Remark 2. If condition (10) in Theorem 3 fails, we can use Theorem 4.

Remark 3. By applying Theorems 3 and 4 when ξ = 1, we obtain the results presented in
references [24] [Theorems 17 and 19], Our results also improve those of [25,26], which imposed
more restrictions on the sign of the coefficients p and q.

5. Conclusions

Through this paper, we focus on studying some oscillatory properties of a particular
class of differential equations with damping. We note that the conditions in Theorem 2
are less restrictive and more efficient than those in Theorem 1. The improvement is due
to the fact that the oscillation criteria obtained in this paper are more flexible compared
to those appearing [29,35], because there are no restrictions on the damping coefficient
p(⊤). Studying this type of equation without any restrictions imposed on the functions
p(⊤) and q(⊤) is an extension and improvement of previous results. Defining the optional
functions U and ρ and then using them in Theorems 3 and 4 to test the oscillatory behavior
of Equation (1) (or its special cases) provide strong results for testing the oscillation of its
solutions. Also, for ξ = 1, Wξ generates the class of functions W, which was studied in [24].
On the other hand, our results do not need additional restrictions to ensure the oscillation
of all solutions of Equation (1) [1,24–28]. It would be worth studying the following more
general form of Equation (1):(

r(⊤)
(
y′(⊤)

)ξ
)′

+ p(⊤)
(
y′(⊤)

)β
+ q(⊤) f (y(⊤)) = 0,

where ξ and β are positive. Furthermore, introducing a delay term into the function
f (y(⊤)) so that it has the form f (y(τ(⊤))), where τ(⊤) < ⊤, will be a fertile field for
researchers. Also, the possibility of providing different conditions without resorting to
setting the restriction ξ ≥ 1 remains an inspiring point for researchers as well.
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