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Abstract: This study explores the problem of describing viscous fluid motion for Navier–Stokes equations
in curved channels, which is important in applications like hemodynamics and pipeline transport.
Channel curvature leads to vortex flows and closed vortex zones. Asymptotic models of the flux
problem are useful for describing viscous fluid motion in long pipes, thus considering geometric
parameters like pipe diameter and characteristic length. This study provides a representation for the
vorticity vector and energy dissipation in the flow problem for a curved channel, thereby determining
the magnitude of vorticity and energy dissipation depending on the channel’s central line curvature
and torsion. The accuracy of the asymptotic formulas are estimated in terms of small parameter powers.
Numerical calculations for helical tubes demonstrate the effectiveness of the asymptotic formulas.
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1. Introduction

The description of viscous fluid motion in a curved channel is a complex problem
in theoretical hydrodynamics [1] and has significant relevance in various applications,
such as hemodynamics [2–4] and pipeline transport [5]. Channel curvature leads to a
rearrangement of flow topology, the formation of vortex flows, and closed vortex zones.
To date, the only parameter determining the influence of weak channel curvature on the
nature of slow flow remains the Dean number [6]. This parameter is not universal and
does not define the complete map of flow regimes, particularly the appearance of vortex
zones in channels with different geometries. From a mathematical perspective, this is due
to the complexity of the Navier–Stokes equations when working with a curved channel
[7–9], and the boundary conditions can be formulated in terms of the vortex [10]. In this
situation, asymptotic models of flow problems are useful, thus describing the motion of
viscous fluid in long pipes. In this case, the small parameter is the ratio of the pipe diameter
to its characteristic length. For straight and long pipes with branching nodes, a developed
asymptotic theory exists [11], which has effective applications in mathematical medicine [4].
For curved pipes, the consideration of geometric parameters becomes important. Works
such as [12–14] have developed asymptotic theories of flow problems, thereby taking into
account the channel geometry through the curvature and torsion of the central axis of
the tube. These works provide asymptotic representations of the main flow parameters
(velocity and pressure) for both steady and unsteady motion and for different behaviors of
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the channel walls (rigid or elastic). In fluid dynamics, the resistance force and the energy
required for fluid propulsion are significant [6,8]. For a viscous fluid, the resistance force
is computed through the energy dissipation, which is represented by an integral over the
flow region of the square of the vorticity vector modulus [15–18].

In this study, using asymptotic theory, we provide a representation for the vorticity
vector in a curved tube in terms of small parameter powers. The aim of the paper is to
derive, on the basis of the paper [14], asymptotic formulas for the vorticity and drag, as well
as the dissipation energy of the flow in the flow problem for the Navier–Stokes equations
in a curved pipe. These formulas give uniform estimates of the deviation of the solution
from the exact one by a small parameter characterizing the pipe length. In these formulas,
with the following being very important, the influence of characteristic parameters (the
curvature and torsion of the pipe center line on the flow geometry) is explicitly taken into
account. The asymptotic representation of the solution allows us to explicitly separate
within it the components that depend on the geometry and the part that does not depend
on it. The latter is determined by the solution of the standard problems (3)–(5) in the pipe
cross-section. This representation is important for determining the influence on the flow
of both the cross-section and the pipe curvature, which determines the intensity of vortex
formation. The value of the dissipation energy allows us to calculate the additional work
that must be expended to pump the fluid through a curved pipe compared to a straight
pipe. This problem is important in technological applications. The numerical calculation
of the problem of flow in a helicoidal pipe of circular cross-section performed using the
ANSYS package allows us to evaluate the quality of the approximation of the solution
using asymptotic formulas and is of interest as a basis for solving more complex problems.
The application of asymptotic formulas is simpler and requires less computational cost
compared to 3D modeling. The calculations performed in this paper show the effectiveness
of asymptotic formulas.

The paper is organized as follows. The introduction gives a description of the flow
problem for the Navier–Stokes equations in a curved pipe. In Sections 2 and 3, the formu-
lation of the flow problem for a curved pipe according to the Frenet–Serret basis and the
general structure of the asymptotic formulas are given. In Section 4, the main results of
[14] regarding the derivation of asymptotic formulas for velocity and pressure are given
in sufficient detail to close the presentation, in view of the cumbersome nature of the
key formulas. In Section 5, we formulate the problem of calculating resistance in viscous
fluid flow. It is reduced to the calculation of the viscous dissipation energy of the flow.
The main results of the paper, consisting of asymptotic formulas for the velocity vortex
and dissipation energy in a curved pipe, are formulated and proved. They determine the
explicit dependence of these quantities on the curvature and torsion of the center line of the
tube. Sections 6 and 7, on the one hand, illustrate the application of the obtained formulas
to the special case of helicoidal tubes with circular cross-sections and different values of
curvature and torsion. Explicit formulas for the velocity and vortex dissipation energy
are given, and a visualization of the flow is constructed. On the other hand, numerical
calculations using the ANSYS package demonstrate the good quality of the asymptotic
formulas and the possibility of their application for solving practical problems with lower
costs in comparison to 3D calculations.

2. Tube Geometry

Let us provide a general formulation of the problem according to the work of [14].
Let γ be a smooth curve (central line of the tube), which is parameterized by arc length
y1 ∈ [0, ℓ], and let φ : [0, ℓ] → R3 be its natural parameterization:

γ = {φ(y1) : y1 ∈ [0, ℓ]}.
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At each point φ(y1), y1 ∈ [0, ℓ] of the curve γ, we define the curvature κ(y1) = |φ′′(y1)|
and the Frenet–Serret frame:

t(y1) = φ′(y1),

n(y1) =
φ′′(y1)

|φ′′(y1)|
=

φ′′(y1)

k(y1)
,

b(y1) = t(y1)× n(y1);

where t, n, and b are the tangent vector, normal vector, and binormal vector, respectively.
We denote the torsion of the curve γ with τ(y1) = −|b′(y1)|, and we write the Frenet–Serret
equations expressing the change of the basis along the curve γ:

t′(y1) = κ(y1)n(y1),

n′(y1) = −κ(y1)t(y1) + τ(y1)b(y1),

b′(y1) = −τ(y1)n(y1).

For a smooth domain S ⊂ R2 (cross-section) and a small parameter 0 < ε ≪ 1, we
define the undeformed straight tube:

Tε = {y = (y1, y2, y3) ∈ R3 : y1 ∈ [0, ℓ], (y2, y3) ∈ εS}.

Introducing the notations z2 = y2/ε and z3 = y3/ε, we require the fulfillment of the
standard assumption: ∫

S
z2dz2dz3 =

∫
S

z3dz2dz3 = 0,

which means that the origin “O” is located at the center of gravity of the cross-section S.
Assuming that

ε diamS |κ(y1)|L∞(0,ℓ) < 1, (1)

we define the mapping Φ : Tε → R3 as

Φ(y1) = φ(y1) + y2n(y1) + y3b(y1).

Let us note that det(∇Φ) = 1 − y2κ(y1), and therefore, assumption (1) implies the
injectivity of the mapping Φ. Thus, a bent tube with the central line γ and the cross-section
εS is defined by the following formula:

Pε = Φ(Tε).

The mapping Φ bends the straight tube Tε and transforms it into the bent tube Pε. It should
be noted that the curve γ is located at the center of gravity of each cross-section of the tube,
which explains the term “central line”. We denote the beginning and the end of the tube as
Σε

1 and Σε
2, respectively:

Σε
1 = Φ(0 × εS), Σε

2 = Φ(ℓ× εS).

We denote the boundary of the tube as Γε = Φ(]0, ℓ[×ε∂S) and the cross-section of the tube
at point y1 as Sε(y1) = Φ(y1 × εS). Figure 1 shows the tube and its center line with the
notations introduced above.
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Figure 1. The tube Pε and its central line γ.

3. Equations

The steady flow of viscous incompressible fluid flowing in the tube Pε is described by
the Navier–Stokes equations [8,19]:

−µ∇uε + (uε∆)uε +∇pε = 0,

div uε = 0,

uε = 0 on Γε, uε = gε
i on Σε

i , i = 1, 2.

(2)

We assume that the given velocity values at the inlet and outlet of the tube, gε
1 and gε

2,
respectively, have the following form:

gε
1(x) = gt

1

(
y′

ε

)
t(0) + gn

1

(
y′

ε

)
n(0) + gb

1

(
y′

ε

)
b(0), where x = Φ(0, y′), y′ = (y2, y3),

gε
2(x) = gt

2

(
y′

ε

)
t(ℓ) + gn

2

(
y′

ε

)
n(ℓ) + gb

2

(
y′

ε

)
b(ℓ), where x = Φ(ℓ, y′), y′ = (y2, y3).

In order to ensure the well-posedness of the boundary problem, we assume that the
functions of prescribed velocities gα

1 , gα
2 ∈ H1

0(S), and α = t, n, b, satisfy the compatibility
condition:

θ =
∫

S
gt

1(z2, z3)dz2dz3 =
∫

S
gt

2(z2, z3)dz2dz3.

Note that the condition gα
i = 0 on ∂S is necessary for the existence of a solution from the

space H1 × L2. In physical terms, the relevant and measurable quantity is the flow rate
θ = ε−2

∫
εS t · gε

i . In the paper [14], it was proved that the global behavior of the flow in a
bending tube is determined by the flow rate θ. Moreover, it was shown in this paper that the
influence of the inflow and outflow velocities for gε

i is only present in small neighborhoods
at the ends of the tube, thus meaning that two flows with different inflow and outflow
velocities for gε

i and the same flow rate θ differ only in some small regions near the tube
ends.

4. Asymptotic Solution

In this section, we present the asymptotic solution of Equation (2). For the sake of
completeness, we briefly describe the proof of this result. For a more complete derivation of
the asymptotic solution of Equation (2) and proof of the orders of asymptotic convergence,
we refer to [14]. Note that the tube parametrization can be read as x = F(ζ, z′), ζ = z1/ε.
This allows one to identify the small parameter as the dimensionless diameter of the
tube cross-section. First, we define three auxiliary differential problems on the axial
cross-section S:
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− µ∆w = 1 in S, w = 0 on ∂S, (3)

− µ∆χ = 2z2 − 3µ
∂w
∂z2

in S, χ = 0 on ∂S, (4)

−µ∆v +∇q = 2µ

−
∂

(
w − z2

3
4µ

)
∂z3

,
∂

(
w − z2

2
4µ

)
∂z2


= 2µ curl

(
w − |z′|2

4µ

)
in S,

div v = 0 in S, v = 0 on ∂S.

(5)

Note that all unknown functions w, χ, v = (v2, v3), and q depend on the variables
z′ = (z2, z3), and the Laplace, divergence, and curl operators are applied accordingly.
By solving the boundary problem (3), we define two constants that will appear in the
asymptotic solution:

ω =
∫

S
w(z′)dz′ = µ

∫
S
|∇w(z′)|2dz′ > 0,

ρ =
∫

S
z2w(z′)dz′ = µ

∫
S

z2|∇w(z′)|2dz′.

Theorem 1 ([14]). The first-order approximation of the solution of the Navier–Stokes equations (2)
in the bent tube Pε has the following form:

u0
ε (x) =

θ

ω
w
(

y′

ε

)
t(y1), x = Φ(y),

p0
ε (x) = − θ

ω
y1.

(6)

This is the Poiseuille flow solution, which describes the flow corresponding to a given flow rate θ. Its
convergence order is ε, except for some neighborhood near Σε

i :

1√
|Pε|

|uε − u0
ε |L2(Pδ

ε )
≤ Cε, ∀δ > 0,

1√
|Pε|

|ε2 pε − p0
ε |L2(Pδ

ε )/R ≤ Cε, ∀δ > 0,

where Pδ
ε = Pε ∩ {δ < y1 < ℓ− δ} and C are constants that are independent of ε.

The second-order approximation of the solution of the Navier–Stokes equations (2) in the bent
tube Pε has the following form:

u1
ε (x) =

θ

ω

{
εχ

(
y′

ε

)
− (y2 + ε

ρ

ω
)w

(
y′

ε

)}
κ(y1)t(y1)+

θ

ω

{
εv2

(
y′

ε

)
− y3w

(
y′

ε

)}
τ(y1)n(y1)+

θ

ω

{
εv3

(
y′

ε

)
+ y2w

(
y′

ε

)}
τ(y1)b(y1),

p1
ε (x) = ε

θρ

ω2

∫ y1

0
κ(ξ)dξ + ε2 θ

ω
τ(y1)q

(
y′

ε

)
.

(7)
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The sum of the first- and second-order approximations u0
ε + u1

ε has a convergence order of ε3/2,
except for some neighborhood near Σε

i :

1√
|Pε|

|uε − u0
ε − u1

ε |L2(Pδ
ε )

≤ Cε
√

ε, ∀δ > 0,

1√
|Pε|

|ε2 pε − p0
ε − p1

ε |L2(Pδ
ε )/R ≤ Cε

√
ε, ∀δ > 0.

The sum of the first- and second-order approximations for the velocity gradient ∇uε has a conver-
gence order of ε1/2:

1√
|Pε|

|∇uε −∇(u0
ε + u1

ε )|L2(Pδ
ε )

≤ C
√

ε, ∀δ > 0. (8)

Now, we schematically describe the proof of this result. The idea is to attach a
curvilinear coordinate system to each point Pε and express the Navier–Stokes equations (2)
using these coordinates [20]. First, we define and write down all the auxiliary mathematical
objects [21] that will be used to express the Navier–Stokes equations (2) in the curvilinear
coordinate system for the case of a bent tube Pε = Φ(Tε). The covariant basis, defined by
the mapping Φ, contains the vector ai(y) = ∂Φ/∂yi, and in our case, it takes the following
form:

a1(y) = [1 − y2κ(y1)]t(y1)− y3τ(y1)n(y1) + y2τ(y1)b(y1), a2(y) = n(y1), a3(y) = b(y1).

The covariant metric tensor [G]ij = gij = ai · aj is given by the following:

G(y) = I +

−2y2κ + y2
2κ2 + y2

3τ2 + y2
2τ2 −y3τ y2τ

−y3τ 0 0
y2τ 0 0

,

and the metric g(y) = detG(y) = [1 − y2κ(y1)]
2. The contravariant basis ai is defined by

the condition ai · aj = δij, and in the case of a bent tube, it takes the following form:

a1(y) =
1
√

g
t(y1), a2(y) = n(y1) +

y3τ(y1)√
g

t(y1), a3(y) = b(y1)−
y2τ(y1)√

g
t(y1).

Thus, the contravariant metric tensor [G]ij = gij = ai · aj is given by the following:

G(y) =
1
√

g

 1 y3τ −y2τ
y3τ g + y2

3τ2 −y2y3τ2

−y2τ −y2y3τ2 g + y2
2τ2

.

To determine the covariant derivative ∇, we also need to compute the Christoffel symbols
Γl

ij = al · (∂ aj/∂yi). In this case, the Christoffel symbols are symmetric in the lower indices,

where Γl
ij = Γl

ji. Due to the definition of the contravariant and covariant basis, there are
several zero Christoffel symbols:

Γ1
13 = Γ1

22 = Γ1
32 = Γ1

33 = Γ2
22 = Γ2

23 = Γ2
33 = Γ3

13 = Γ3
22 = Γ3

23 = Γ3
33 = 0,

and the nonzero symbols have the following expressions in terms of the curvature κ and
torsion τ:
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Γ1
11 =

1
√

g
(κτy3 − κ′y2), Γ1

12 = − 1
√

g
κ,

Γ2
11 = gκ − τ2y2 − τ′y3 +

1
√

g
(τκ′y2y3 + κτ2y2

3), Γ2
12 =

1
√

g
κτy3, Γ2

13 = −τ,

Γ3
11 = y2τ′ − y3τ2 +

1
√

g
(τκ′y2

2 − y2y3τ2κ), Γ3
12 = τ +

1
√

g
κτy2.

The remaining nonzero Christoffel symbols can be expressed in terms of the curvature
κ and torsion τ as follows:

Γ1
11 = O(ε), Γ1

12 = −κ + O(ε),

Γ2
11 = κ + O(ε), Γ2

12 = O(ε), Γ2
13 = −τ,

Γ3
11 = O(ε), Γ3

12 = τ + O(ε).

(9)

The given text provides important information about the asymptotic behavior of the
contravariant metric tensor G(y) and the Christoffel symbols Γk

ij. Considering that y2 =

O(ε) and y3 = O(ε), we have the following expressions for the contravariant metric tensor:

G(y) = I + ε

 2z2κ z3τ −z2τ
z3τ 0 0
−z2τ 0 0

+ O(ε2), (10)

where I represents the identity matrix, and κ and τ are coefficients related to the curvature
and torsion of the tube.

The Christoffel symbols Γk
ij are given by the following expressions:

Γ1
11 = O(ε), Γ1

12 = −κ + O(ε),

Γ2
11 = κ + O(ε), Γ2

12 = O(ε), Γ2
13 = −τ,

Γ3
11 = O(ε), Γ3

12 = τ + O(ε).

This information allows us to derive the approximation representations (6) and (7).
Let (uε, pε) ∈ H1(Pε) × L2(Pε/R) be a solution of the Navier–Stokes equations (2). We
introduce the notations:

Uε(y) = uε(x), Pε(y) = pε(x), where x = Φ(y),

and we express the velocity vector components in the contravariant basis:

U i
ε = Uε · ai.

Then, the Navier–Stokes equations (2) in curvilinear coordinates yi (see [20]) for the
curved tube Pε can be written as follows:

−µgij∇i∇j U ℓ
ε + U i∇i U ℓ

ε + gℓi ∂Pε

∂yi
= 0,

∇iUi
ε = 0, in Tε, ℓ = 1, 2, 3,

(11)

where a summation convention is applied to the repeated lower and upper indices. The
covariant derivative ∇i in this case acts on the vector field U ℓ

ε according to the following
formula:

∇i U ℓ
ε =

∂U ℓ
ε

∂yi
+ Γℓ

ikU
k
ε .

We seek the asymptotic expansion for (U i
ε ,Pε) in the following form:
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U i
ε(y) = U i

0(y1, z′) + εU i
1(y1, z′) + . . . , i = 1, 2, 3,

Pε(y) =
1
ε2 P0(y1) +

1
ε
P1(y1, z′) + P2(y1, z′) + . . .

(12)



−µ∆U1 − µ

(
−3κ

∂U1
0

∂z2
,−2τ

∂U1
0

∂z3
, 2τ

∂U1
0

∂z2

)
+(

∂P1
∂y1

+ 2κz2
P0
∂y1

, ∂P2
∂z2

+ τz2
P0
∂y1

, ∂P2
∂z3

− τz2
P0
∂y1

)
= 0, in T,

divz′ U1 = 0, in T,
U1 = 0, on ]0, ℓ[×S,

where z′ = (z2, z3), divz′ V = ∂V2

∂z2
+ ∂V3

∂z3
, and ∆z′ V = ∂2V

∂z2
2
+ ∂2V

∂z2
3

for the vector function

V = (V1, V2, V3). By sequentially solving these differential problems, we obtain the
velocity components U i

0, U i
1 in the contravariant basis and the pressure P0,P1,P2 from

expansion (12):

U 1
0 (y1, z′) =

θ

ω
w(z′), U α

0 (y1, z′) = 0, α = 2, 3,

P0(y1, z′) = − θ

ω
y1,

U 1
1 (y1, z′) =

θ

ω

[
χ(z′)− ρ

ω
w(z′)

]
κ(y1), U α

1 (y1, z′) = vα(z′)
θ

ω
τ(y1), α = 2, 3,

P1(y1, z′) =
θρ

ω2

∫ y1

0
κ(ξ)dξ,

P2(y1, z′) =
θ

ω
τ(y1)q

(
y′

ε

)
,

where z′ = (z2, z3) =
( y2

ε , y3
ε

)
. Now we obtain the asymptotic solution of the Navier–Stokes

Equations (2) in the Frenet–Serret basis t, n, b by multiplying the velocities by the covariant
basis ai:

uε(x) = U i
0ai + U i

1ai,

pε(x) = P0 + P1 + P2.

We group the terms according to the corresponding powers of ε to express them as
follows:

uε(x) = u0(y1,
y2

ε
,

y3

ε
) + εu1(y1,

y2

ε
,

y3

ε
) + . . . ,

pε(x) =
1
ε2 p0(y1,

y2

ε
,

y3

ε
) +

1
ε

p1(y1,
y2

ε
,

y3

ε
) + p2(y1,

y2

ε
,

y3

ε
) + . . . ,

and we obtain the approximate solutions of first (6) and second (7) order of the Navier–
Stokes Equations (2) in the curved tube Pε. The proof of the corresponding convergence
orders is presented in [14].

5. Calculation of Vorticity

The drag force T in the problem of viscous fluid flow can be computed using the
following formula [6]:

T = −
∫

Γ
u∞(νe(u)− pI) · n ds, (13)

where e(u) = ∇u + (∇u)T , ν is the kinematic viscosity of the fluid, and p is the pressure.
The fluid occupies a volume Ω f , Γ = ∂Ω f is the boundary, and n is the normal to the
boundary. u∞ is the fluid velocity at the inlet of the channel. In fluid dynamics books [6] and
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in rigorous mathematical formulations [15], it has been proven that for an incompressible
fluid, the formula (13) follows the expression for drag as a volume integral:

T =
ν

2

∫
Ω f

|e(u)|2dx. (14)

In more complex channel geometries, such as a curved channel with an aneurysmal ex-
pansion or constriction, vortical zones are formed in the flow. The maintenance of these
vortical structures requires additional energy (14).

For the given asymptotic model, let us derive an asymptotic approximation for the
vorticity ωε(x) = rot uε.

Theorem 2. The first-order approximation of the vorticity for the solution of the Navier–Stokes
equations (2) in the curved tube Pε has the following form:

ω0
ε (x) =

1
ε

θ

ω

∂w
∂z3

n(y1)−
1
ε

θ

ω

∂w
∂z2

b(y1), x = Φ(y).

The second-order approximation of the vorticity for the solution of the Navier-Stokes equations (2)
in the curved tube Pε has the following form:

ω1
ε (x) =

θ

ω

{
∂v3

∂z2
− ∂v2

∂z3
+ 2w(z′)

}
τ(y1)t(y1) +

+
θ

ω

{
∂χ

∂z3
− ρ

ω

∂w
∂z3

}
κ(y1)n(y1) +

+
θ

ω

{
2w(z′)− ∂χ

∂z2
+

ρ

ω

∂w
∂z2

}
κ(y1)b(y1), x = Φ(y).

The sum of the first- and second-order approximations for the vorticity rot uε has a convergence
order of ε1/2, except for a small neighborhood near the ends of the tube Σε

i :

1√
|Pε|

|ωε − (ω0
ε + ω1

ε )|L2(Pδ
ε )

≤ C
√

ε, ∀δ > 0.

Proof of Theorem 2. Similarly to the notation in Theorem 1, we introduce the notation for
the vorticity of uε:

Ωε(y) = ωε(x), where x = Φ(y),

and we write the components of the vorticity vector Ωε in the contravariant basis as follows:

Ωi
ε(y) = Ωε(y) · ai.

We seek the asymptotic expansion of the vorticity in the following form:

Ωi
ε(y) =

1
ε

Ωi
0(y1,

y2

ε
,

y3

ε
) + Ωi

1(y1,
y2

ε
,

y3

ε
) + . . . , i = 1, 2, 3.

This form is natural considering the form of the asymptotic expansion of velocity (12) and
the rules of differentiation ∂/∂yα = (1/ε)∂/∂zα, α = 2, 3. We use the well-known formula
for computing the vorticity in curvilinear coordinates [20]:

Ωn
ε = (rot Uε)

n = gniεijkgjm∇mU k
ε , (15)

where εijk is the Levi–Civita tensor, including the factor
√

g, and U k
ε are the contravariant

coordinates of the velocity vector. Taking into account the asymptotic expansion (10) of the
contravariant metric tensor G(y) and expanding the formula (15), we have the following:



Axioms 2024, 13, 65 10 of 18

Ω1
ε = ∇2U 3

ε −∇3U 2
ε + O(ε),

Ω2
ε = ∇3U 1

ε −∇1U 3
ε + O(ε),

Ω3
ε = ∇1U 2

ε −∇2U 1
ε + O(ε).

By substituting the contravariant coordinates of the velocity’s asymptotic expansion [15],
we have the following:

U 1
ε (y1, z′) =

θ

ω
w(z′) + ε

θ

ω

[
χ(z′)− ρ

ω
w(z′)

]
κ(y1) + O(ε2),

U α
ε (y1, z′) = ε

θ

ω
vα(z′)τ(y1) + O(ε2), α = 2, 3,

and using the Christoffel symbols (9), we obtain the asymptotic expansion of the vorticity
in the contravariant basis:

Ω1
ε =

θ

ω

(
∂v3

∂z2
− ∂v2

∂z3
+ 2w(z′)

)
τ(y1) + O(ε),

Ω2
ε =

1
ε

θ

ω

∂w
∂z3

+
θ

ω

(
∂χ

∂z3
− ρ

ω

∂w
∂z3

)
κ(y1) + O(ε), (16)

Ω3
ε = −1

ε

θ

ω

∂w
∂z2

+
θ

ω

(
2w(z′)− ∂χ

∂z2
+

ρ

ω

∂w
∂z2

)
κ(y1) + O(ε).

By multiplying the contravariant coordinates of the vorticity vector (16) by the covariant
basis ai and rearranging the terms, we obtain the asymptotic expansion of the vorticity in
the basis t, n, b for the curved tube Pε:

ωε =
θ

ω

{
∂v3

∂z2
− ∂v2

∂z3
+ 2w(z′)

}
τ(y1)t(y1) +

+
1
ε

θ

ω

∂w
∂z3

n(y1) +
θ

ω

{
∂χ

∂z3
− ρ

ω

∂w
∂z3

}
κ(y1)n(y1) −

− 1
ε

θ

ω

∂w
∂z2

b(y1) +
θ

ω

{
2w(z′)− ∂χ

∂z2
+

ρ

ω

∂w
∂z2

}
κ(y1)b(y1) + O(ε).

An estimate of the order of convergence follows from an estimate of the order of conver-
gence for the asymptotic expansion of the velocity gradient (8):

1√
|Pε|

|ωε − (ω0
ε + ω1

ε )|L2(Pδ
ε )

=
1√
|Pε|

|rot[uε − (u0
ε + u1

ε )]|L2(Pδ
ε )

≤

≤ 1√
|Pε|

|∇[uε − (u0
ε + u1

ε )]|L2(Pδ
ε )

=
1√
|Pε|

|∇uε −∇(u0
ε + u1

ε )|L2(Pδ
ε )

≤ C
√

ε, ∀δ > 0.

The transformations in the inequalities follow from the fact that the rotor operation contains
only a part of the derivatives of the gradient operation.

For a viscous incompressible fluid flow, an important characteristic is the complete
dissipation of mechanical energy [19], which depends on the intensity of the vortex ωε

inside the region P. From (14), we obtain

W = 4µ
∫

P
|ω(x)|2 dx

where W is the dissipation energy, µ is the dynamic viscosity, and ω is the vortex vector. In
this model, the dissipation energy W has the order of convergence ε, which follows from
the previous theorem:
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∣∣∣∣4µ
∫

Pδ
ε

|ωε|2 dx − 4µ
∫

Pδ
ε

|(ω0
ε + ω1

ε )|2 dx
∣∣∣∣ ≤ C2 |Pε| 4µ ε.

Thus, we have obtained an asymptotic approximation of the dissipation energy W for the
tube Pδ

ε .

6. Circular Cross-Section

For a circular tube, the auxiliary Poisson and Stokes problems (3)–(5) can be solved
explicitly, and then we can obtain explicit formulas for the asymptotic approximation of
the velocity vector, pressure and vortex vector. Consider a tube that in each axial section
will have a circle of radius R, i.e.,

S = S(0, R) = {x ∈ R2 : |x| < R}.

The solution for the auxiliary differential boundary value problem (3)

−µ∆ w = 1 in S(0, R), w = 0 on ∂S(0, R)

can be found explicitly, and in the polar coordinates z2 = r cos ϕ and z3 = r sin ϕ, it is
written as

w(r, ϕ) = − r2 − R2

4µ
.

Then, the auxiliary constants ω and ρ are respectively equal to

ω =
∫

S
w(z′)dz′ =

πR4

8µ
, ρ =

∫
S

z2w(z′)dz′ = 0.

For the second auxiliary differential boundary value problem (4)

−µ∆ χ = 2z2 − 3µ
∂w
∂z2

in S(0, R), χ = 0 on ∂S(0, R)

we have the solution
χ(r, ϕ) = − 7

16µ
(r3 − R2r)cos ϕ.

Differential problem (5), taking into account the found function w, takes the form

− µ∆ v +∇ q = (2z3,−2z2) in S(0, R),

div v = 0 in S(0, R), v = 0 on ∂S(0, R).

Moving back to the polar coordinates, we obtain a unique solution in the form

v2(r, ϕ) = − 1
4µ

(r3 − R2r)sin ϕ, v3(r, ϕ) =
1

4µ
(r3 − R2r)cos ϕ, q = 0.

By substituting the solutions of auxiliary problems (3)–(5) into formula (6) and then the
first-order approximations for velocity and pressure in a tube with a circular section of
radius R, we obtain

u0
ε = −2

θ

π

r2 − R2

R4 t(y1),

p0
ε = −8µ

θ

π

1
R4 y1.

As noted above, this is the Poiseuille flow in a round straight tube [8,19]; the pressure
gradient in this case is ∇ p = −(8νθ)/(πR4). The first term of the velocity approximation
u0

ε has a parabolic velocity profile. In Figure 2 on the left is the velocity profile of the first
term of the velocity approximation u0

ε ; on the right are the surface level lines of the velocity
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profile u0
ε . Figure 2 describes the approximation of the velocity profile in a thin round

straight tube.

Figure 2. The velocity profile for the first term of the velocity approximation is u0
ε . The color indicates

the magnitude of the velocity value, with blue indicating low velocity values and red indicating high
velocity values.

Similarly, we substitute the solutions of the problems (3)–(5) into formula (7) and
obtain a second-order approximation for the velocity and pressure in a tube with a circular
section of radius R:

u1
ε = −ε

3
2

θ

π

(r3 − R2r)cos ϕ

R4 κ(y1)t(y1),

p1
ε = 0.

Thus, for a circular tube, the second term of the approximation of the velocity vector u1
ε

contains only the component with the tangent vector t, since the coefficients before the
normal n and the binormal b are zero. As a consequence, the velocity vector in the first and
second approximation does not depend on the torsion τ of the center line γ.

In the presence of the curvature of the central line of the tube κ ̸= 0, the second term of
the velocity approximation is not zero: u1

ε ̸= 0. In Figure 3 on the left is the velocity profile
of the second term of the velocity approximation u1

ε ; on the right are the surface level lines
of the velocity profile u1

ε . The presence of curvature in a circular tube deflects the velocity
flow toward the outer wall of the tube. The flow rate increases on one side and decreases
on the other. These are the well-known Dean vortices [6] in hydrodynamics.

Figure 3. Velocity profile for the second term of the velocity approximation u1
ε at κ = 1. The color

indicates the magnitude of the velocity value, with blue indicating low velocity values and red
indicating high velocity values.
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The approximation of the velocity uε with the order of convergence ε3/2 is calculated
as the sum of the first and second approximations uε = u0

ε + u1
ε . In Figure 4, a velocity

profile is presented to approximate the velocity uε = u0
ε + u1

ε in the section of a curved tube.
The surface is shown on the left, and the surface level lines are shown on the right. The
velocity profile is calculated for the cross-section of a circular tube with curvature κ = 1
and torsion τ = 1.

Figure 4. Velocity profile for velocity approximation uε = u0
ε + u1

ε for curved tube, where κ = 1 and
τ = 1. The color indicates the magnitude of the velocity value, with blue indicating low velocity
values and red indicating high velocity values.

Similarly, for the vortex vector, we substitute the solutions of the problems (3)–(5)
into the formulas for the first and second approximations of the vortex vector. The first-
order approximation for a vortex in a tube with a circular cross-section of radius R is
represented as

ω0
ε = −4

ε

θ

π

r sin ϕ

R4 n(y1) +
4
ε

θ

π

r cos ϕ

R4 b(y1),

and the second-order approximation for a vortex in a tube with a circular section of radius
R has the form

ω1
ε = 4

θ

π

r2

R4 τ(y1)t(y1)−

− 7
θ

π

r2 cos ϕ sin ϕ

R4 κ(y1)n(y1)+

+
1
2

θ

π

(6 + 7cos 2ϕ)r2 + R2

R4 κ(y1)b(y1).

Figure 5 represents the surface of the vortex vector approximation module |ωε| =
|ω0

ε + ω1
ε | in the section of a straight thin tube, i.e., the curvature of κ = 0 and the torsion

τ = 0. The vortex takes the smallest value in the center of the tube; its greatest value is
reached at the walls of the tube. These facts are consistent with real observations of fluid
movement in straight tubes.

The approximation of the vortex ωε with the order of convergence ε1/2 is calculated as
the sum of the first and second approximations of the vortex vector ωε = ω0

ε + ω1
ε . As we

can see, the vortex vector, unlike the velocity vector, contains all three components t, n, and
b and depends on both the torsion τ and the curvature κ of the center line γ.

Figure 6 represents the surface of the vortex vector approximation module |ωε| =
|ω0

ε + ω1
ε | in a section of a curved tube. The surface is shown on the left; the surface level

lines are shown on the right. The approximation modulus of the vortex vector |ωε| is
calculated for the section of a circular tube with curvature κ = 1 and torsion τ = 1.
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Figure 5. Vortex vector approximation modulus |ωε| = |ω0
ε + ω1

ε | for a straight thin tube. Color
indicates the values of vortex vector modulus, with blue indicating low values of vortex vector
modulus and red indicating high values.

Figure 6. Velocity profile for velocity approximation uε = u0
ε + u1

ε and the vortex vector approxima-
tion module |ωε| = |ω0

ε + ω1
ε | for curved tube, where κ = 1 and τ = 1. Color indicates the values of

vortex vector modulus, with blue indicating low values of vortex vector modulus and red indicating
high values.

As noted earlier, the presence of curvature and torsion significantly deflects the fluid
flow. Both the velocity profile and the vortex vector module are rebuilt.

Consider that a round tube of length ℓ with a curvature κ(y1) and a torsion τ(y1) has
a constant radius of the section, i.e., the radius of R does not depend on y1. Calculate the
integral of Pε from the square of the modulus of the vortex vector ωε:

W = 4µ
∫

Pε

|ωε|2 = 4µ
∫ ℓ

0

(
ε2

∫ 2π

0

∫ R

0
r |ωε|2drdϕ

)
dy1 =

= 4µ
θ2

πR2

(
8ℓ
R2 + ε2 53

6

∫ ℓ

0
κ2(y1)dy1 + ε2 16

3

∫ ℓ

0
τ2(y1)dy1

)
.

The first term of the dissipation energy W corresponds to a round straight tube; the second
and third terms of the dissipation energy W correspond to the additional energy arising
due to the presence of the curvature κ and torsion τ of the center line γ of the curved tube.

Now, for a circular tube, we can explicitly calculate the velocity vector, pressure, and
vortex vector. Note that these values are different for different sections only if the curvature
values κ differ from the torsion τ at the points of the curve γ of these sections. Illustrative
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examples of the velocity profile uε and the modulus of the vortex vector ωε were presented
for a helical circular tube with a cross-section radius R. The fluid flow rate θ in the initial
and final section of the tube is set and constant.

7. Numerical Calculation

For a straight tube with a constant cross-section R, the normalized dissipation energy
has the form

Wnorm = 4µ
θ2

πR2
8ℓ
R2 · 1

V
, (17)

where V is the volume of a straight tube. For helicoidal pipes with a constant cross-section
R of the normalized dissipation energy up to terms with ε2, they have the form

Wnorm = 4µ
θ2

πR2

(
8ℓ
R2 + ε2 53

6
κ2ℓ+ ε2 16

3
τ2ℓ

)
· 1

V
, (18)

where V is the volume of a helical tube with a curvature κ and torsion τ. Table 1 presents
the characteristics of pipes for which the normalized dissipation energy Wnorm will be
calculated next. Note that we identify the small parameter as the dimensionless diameter
of the tube cross-section.

Table 1. Designations and characteristics of pipes.

Notation Curvature τ,
1/m Torsion κ, 1/m Length ℓ, m Radius of

Section R, m

C16T8 16 8 2.24 0.02

C16T4 16 4 4.12 0.02

C8T4 8 4 2.24 0.02

Straight Tube 0 0 1 0.02

Let us calculate the normalized dissipation energy for pipes from the Table 1 using the
formulas of (17) and (18). Calculations were carried out for various values of the velocity
v in the initial section of the tube, the flow rate in the initial section θ = πR2v, and the
viscosity of blood µ2 = 0.004 Pa·s, with a fluid density of ρ = 1060 kg/m3. Table 2 contains
the values of the normalized dissipation energy Wnorm calculated using the asymptotic
formulas of (17) and (18).

Table 2. The values of Wnorm calculated using asymptotic formulas.

Input Velocity v, m/s C16T8 C16T4 C8T4 Straight Tube

0.1 3.6 3.6 3.3 3.2

0.3 32.5 32.2 29.7 28.8

0.5 90.4 89.4 82.6 80.0

0.7 177.2 175.2 161.9 156.8

To confirm the accuracy of the asymptotic formulas, we performed a numerical calcu-
lation of the normalized dissipation energy using the ANSYS program. Table 3 contains the
values of the normalized dissipation energy Wnorm calculated using the ANSYS program.
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Table 3. The values of Wnorm calculated using the ANSYS program.

Input Velocity v, m/s C16T8 C16T4 C8T4 Straight Tube

0.1 3.7 3.7 3.5 3.3

0.3 32.9 32.2 29.9 28.7

0.5 94.5 91.1 88.2 80.6

0.7 166.7 164.3 156.8 157.3

Figure 7 presents the difference in percentages of the normalized dissipation energy
Wnorm calculated using the asymptotic formulas of (17) and (18) and using the ANSYS
program.

Figure 7. The percentage of Wnorm calculated using asymptotic formulas and Wnorm calculated using
the ANSYS package.

Figure 8 presents the values of the normalized dissipation energy Wnorm calculated
using the asymptotic formulas of (17) and (18) and the ANSYS program.

The above calculations show that the asymptotic formulas for calculating the normal-
ized dissipation energy Wnorm are quite accurate. The difference in the values of Wnorm
calculated using asymptotic formulas and in the ANSYS package is no more than 6%. For
initial velocities in the range from 0.1 to 0.5 m/s, the asymptotic formulas gave lower values
of the dissipation energy compared to the values calculated using the ANSYS program.
And for initial speeds of more than 0.5 m/s, the opposite trend was observed. This is due
to the fact that with an increase in the characteristic flow velocity, the Reynolds number
(Re) increases, and the transition from a laminar flow type to a turbulent one is carried
out. For blood-type fluid, the viscosity of the liquid came out to µ = 0.004 Pa·s, and
the fluid density came out to ρ = 1060 kg/m3. The Reynolds number for the considered
tubes with blood-type fluid has the form Re ≈ v · 104. Similarly, the Dean number is
(Dn) ≈ 2v ·

√
κ · 102. So, for the calculated values of Re and Dn at v > 0.3 m/s, we can

probably already talk about the turbulent flow regime of the fluid.
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Figure 8. Values of Wnorm calculated using asymptotic formulas and Wnorm calculated using the
ANSYS package.

8. Conclusions

This study employed asymptotic theory to investigate the behavior of fluid flow in a
curved tube. The main contributions of this research include providing representations for
the vorticity vector and the energy dissipation in terms of small parameter powers. These
formulas enable us to determine the magnitude of vorticity and energy dissipation, which
are influenced by the curvature and torsion of the central axis of the channel.

Moreover, the accuracy of the asymptotic formulas was assessed by estimating their
performance in terms of small parameter powers. Notably, numerical calculations were
conducted for a flow problem in a helical tube, thereby considering various curvature
and torsion values. The results of these calculations demonstrate the effectiveness of the
asymptotic formulas.

This study underscores the significance of both curvature and torsion in the central
axis of the channel in relation to vortex formation and energy dissipation. By considering
these geometric parameters, insights into the flow behavior and characteristics can be
gained. The obtained theoretical representations and their validation through numerical
calculations contribute to a better understanding of the fluid motion in curved channels.
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