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Abstract: This article investigates finite-time passivity for fuzzy inertial complex-valued neural
networks (FICVNNs) with time-varying delays. First, by using the existing passivity theory, several
related definitions of finite-time passivity are illustrated. Consequently, by adopting a reduced-
order method and dividing complex-valued parameters into real and imaginary parts, the proposed
FICVNNs are turned into first-order real-valued neural network systems. Moreover, appropriate
controllers and the Lyapunov functional method are established to obtain the finite-time passivity
of FICVNNs with time delays. Furthermore, some essential conditions are established to ensure
finite-time synchronization for finite-time passive FICVNNs. In the end, corresponding simulations
certify the feasibility of the proposed theoretical outcomes.

Keywords: fuzzy inertial complex-valued neural networks; finite-time passivity; finite-time
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1. Introduction

As is known to all, the neural networks as a hot direction of non-linear systems have
aroused the interest of experts and scholars due to their fruitful applications, including
artificial intelligence, pattern recognition, associative memories, etc. Many worthy related
results have been explored in recent years [1–3].

However, plenty of existing articles mainly gather in the first derivative of the states
instead of the inertial term, which is the second derivative of voltage concerning time.
Hence, based on the Hopfield networks, inertial neural networks (INNs) were put forward
by Babcock. As mentioned in this document [4], the dynamic behaviors of second-derivative
neural networks could be more sophisticated. During these years, some corresponding
results on inertial neural networks (INNs) have been reported [5–9]. Tu et al. [10] discussed
the issue of global dissipativity for INNs with memristor-based neutral type using the
Filippov theory and LMI approach. In [11], Shanmugasundaram et al. introduced the
event-triggered impulsive control mechanism to guarantee synchronization for INNs.
Zhang and Cao [12] considered the INNs using inequality techniques to obtain finite-time
synchronization. As to the asymptotical stabilization problem, Han et al. [13] used a direct
method to analyze the Cohen–Grossberg INNs and constructed two adaptive controllers
to make the proposed model realize asymptotical and adaptive stabilization. In [14],
the authors were concerned with the issue of global exponential convergence for impulsive
INNs and presented an exponential convergence ball with a specified convergence rate.

Admittedly, time delays can easily provoke certain undesirable and unexpected dy-
namical behaviors and diverse types of time delays, including proportional delay [15,16],
time-varying delay [17,18], and mixed delays [19,20]. Moreover, the exchange of neural net-
work systems depends on the current state and the paste state or the variations of the paste
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state. From the theoretical and particle view, time delays are deeply researched for INN
instability [21,22], passivity [23,24], synchronization [11,12,16,25,26], dissipativity [27,28],
and so forth.

In many circumstances, the complex-valued neural networks (CVNNs), which ac-
tivate functions, connection parameters, neuron states, and so forth, are both complex-
valued [29–35]. Consequently, it becomes an expansion of real-valued networks. The
original intention of investigating CVNNs is to research novel dynamic behaviors and to
conquer some puzzles that real-valued networks can not describe [36]. Furthermore, the
inertial complex-valued neural networks (ICVNNs) have become a hot theme that has
attracted some researchers’ attention, especially stability and synchronization [37]. Tang
and Jian [38] carry out the exponential convergence for impulsive ICVNNs by developing
novel delay-dependent conditions. In [39], the authors emphasized the non-reduced or-
der method to deal with ICVNNs holistically to discuss the question of exponential and
adaptive synchronization by constructing a complex-valued feedback control input. Long
and Zhang et al. observed the finite-time stabilization and fixed-time synchronization of
ICVNNs by utilizing Lyapunov theory and inequality techniques applied theoretical results
into practical [40,41].

As a typical and essential problem, fuzzy logic has extensively emerged because
it can approximate non-linear functions with arbitrary accuracy, which can be viewed
as a potential method by which to emulate human thinking and sensation [42]. Hence,
Combining fuzzy logic into a neural network system has been received high concern [43].
On the other hand, as [9] reveals, stabilization and synchronization of many practical
engineering systems are required in a finite-time, which lead to the previous results of
asymptotic stabilization and synchronization control inoperative. Therefore, it is vital to
shorten the convergence time to achieve finite-time synchronization of complex-valued
neural networks. In [44], the authors dealt with the question on fixed-time stabilization of
fuzzy inertial neural networks (FINNs). The issues of synchronization for FINNs have been
addressed in [16,19]. Xiao et al. study the passive and passification for FINNs on time scales
inspired by the LMI method and analytical approaches [45]. Furthermore, the authors
of [46] developed fuzzy rules into CVNNs and established a class of fuzzy inertial complex-
valued neural networks (FICVNNs) to solve the adaptive synchronization problem.

Passivity is a powerful tool for investigating the internal stability of non-linear sys-
tems. It is originally from circuit analysis methods that have received much attention
from the engineering fields and dynamical neural networks. And some related passivity
problems for neural networks have been published [23,24,33,35,45,47–49]. The authors
in [24,35,45,48,49] studied the passivity problem for different types of neural networks.
Huang et al. [33] further learned the passivity issues for CVNNs with coupled weights.
Motivated by the above analysis, based on the existing passivity theory, when it comes to
discussing FICVNNs with time-varying delays, some related puzzles naturally arise; for ex-
ample, how to ensure the proposed FICVNNs realize finite-time passivity (FTP), finite-time
input strict passivity (FTISP), as well as finite-time output strictly passivity (FTOSP)? If it
can be done, what kind of Lyapunov functional and control inputs are supposed to realize
the corresponding passivity goal? Is there any relation between the FTP and FTS? As far as
we are concerned, few documents carried out the FTP and FTS of FICVNNs, making this
work remarkable and valuable. The main contributions of this article are as follows.

First, by resorting to existing passivity definitions, three concepts of finite-time passiv-
ity are illustrated. Moreover, the neural model built in this paper is concerned with inertial
terms, complex-valued parameters, fuzzy logic, and time delays, which will increase the
difficulty and complexity of solving the neural systems internally stable.

Second, compared with [24,35,45,48,49], we use effective control inputs and the appro-
priate Lyapunov function to gain some finite-time passivity criteria for delayed FICVNNs.

Third, based on the finite-time passivity, we further discuss the finite-time synchroniza-
tion issue and apply the simulations about pseudorandom number generators to support
the feasibility of the obtained results.
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The article parts are arranged as follows: Finite-time passivity definitions and neces-
sary lemmas are put forward in Section 2. The analytical processes and some simulations
are obtained in Section 3. The conclusions are expressed in Section 4.

2. Preliminaries
Model, Assumption, Definitions, and Lemmas

Here, Cn and Rn, respectively, denote the n-dimensional complex vector space and
the real vector space with n-dimensional. For any w = wR + iwI ∈ C, i is the imaginary
unit and meets i =

√
−1, wR implies the real part of v, and wI ∈ R is the imaginary

part. ℵ = {1, 2, . . . , n}, τj = supk∈ℵ{τj(t0), σ}, t0 ≥ 0. For any ℓ = (ℓ1, ℓ2, . . . , ℓn)T ∈ Rn,

∥ℓ∥ =
√

∑n
i=1 |ℓi|2. Lk = max{|L−

k |, |L
+
k |}, k ∈ ℵ.

Now, a class of FICVNNs with time-varying delays is given:

ẍk(t) =− akxk(t)− bk ẋk(t) +
n

∑
j=1

ckj f j(xj(t))

+
n

∑
j=1

dkj f j(xj(t − τj(t))) +
n∧

j=1

wkj f j(xj(t − τj(t)))

+
n∨

j=1

qkj f j(xj(t − τj(t))), (1)

where k ∈ ℵ, t ≥ 0, xk(t) ∈ C is the state of kth neural at time t, ak and bk are positive
constants, and ckj, dkj ∈ C denote the feedback connection weights of system (1). f j(·) ∈ C
presents the feedback function, τj(t) is the time-varying delay, and 0 ≤ τj(t) ≤ τj and
τ̇j(t) ≤ ζ j < 1. wkj and qkj imply the fuzzy feedback MIN and MAX template.

∧
and

∨
represent fuzzy AND, OR. The initial conditions of FIVCNNs (1) are

xk(ℓ) = Ωx
k (ℓ), ẋk(ℓ) = Ψk(ℓ), ℓ ∈ [t0 − τj, t0], k ∈ ℵ, (2)

where Ωk(ℓ) = ΩR
k (ℓ) + iΩI

k, Ψk(ℓ) = ΨR
k + iΨI

k(ℓ), Ω(ℓ) = (Ω1(ℓ), Ω2(ℓ), . . . , Ωn(ℓ))T ,
Ψ(ℓ) = (Ψ1(ℓ), Ψ2(ℓ), . . . , Ψn(ℓ))T , and Ω(ℓ), Ψ(ℓ) ∈ C([t0 − τj, t0],Cn). With regard to
active function fk(·), we introduce the following assumption.

Assumption 1. As to activation function fk(x), x = ρ + iϑ, it can be divided by the real part and
the imaginary part, such as fk(x) = f R

k (ρ) + i f I
k (ϑ). And, for any ı1, ı2 ∈ R, the real part f R

k (·),
as well as the imaginary part f I

k (·) of the activation function fk(·), can be characterized by

| f R
k (·)| ≤ FR

k , | f I
k (·)| ≤ FI

k ,

| f R
k (ı1)− f R

k (ı2)| ≤ ηR|ı1 − ı2|,

| f I
k (ı1)− f I

k (ı2)| ≤ η I |ı1 − ı2|,

where FR
k (·), FI

k (·), ηR, η I are non-negative constants.

For certain positive scalar h̄ ∈ R, we make the variable transformation:

vk(t) = ẋk(t) + h̄kxk(t), k ∈ ℵ, (3)
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then, we have

ẋk(t) = −h̄kxk(t) + vk(t)
v̇k(t) = −[ak + h̄k(h̄k − bk)]xk(t)− (bk − h̄k)vk(t)

+
n
∑

j=1
ckj f j(xj(t)) +

n
∑

j=1
dkj f j(xj(t − τj(t)))

+
n∧

j=1
wkj f j(xj(t − τj(t))) +

n∨
j=1

qkj f j(xj(t − τj(t))).

(4)

Considering system (4) as the driver system, let x(t) = (x1(t), x2(t), . . . , xn(t))T ,
v(t) = (v1(t), v2(t), . . . , vn(t))T , A = diag{a1 + h̄1(h̄1 − b1), a2 + h̄2(h̄2 − b2), . . . , an +
h̄n(h̄n − bn)}, B = diag{b1 − h̄1, b2 − h̄2, . . . , bn − h̄n}, H = diag{h̄1, h̄2, . . . h̄n}, f (x(t)) =
( f1(x1(t), f1(x1(t), . . . , fn(xn(t))T ∈ Cn, f (x(t)) = ( f1(x1(t − τ1(t))), f2(x2(t − τ2(t))), . . . ,
fn(xn(t − τn(t))))T ∈ Cn, C = CR + iCI , D = DR + iDI , CR = (cR

kj)n×n, CI = (cI
kj)n×n,

DR = (dR
kj)n×n, DI = (dI

kj)n×n, W = (wkj)n×n, Q = (qkj)n×n.

W f (x(t)) =
( n∧

j=1

w1j f j(xj(t − τj(t))),
n∧

j=2

w2j f j(xj(t − τj(t))), (5)

. . . ,
n∧

j=n
wnj f j(xj(t − τj(t)))

)T ,

Q f (x(t)) =
( n∨

j=1

q1j f j(xj(t − τj(t))),
n∨

j=1

q2j f j(xj(t − τj(t))),

. . . ,
n∨

j=1

qnj f j(xj(t − τj(t)))
)T . (6)

Therefore, the matrix form of system (4) can be described by
ẋ(t) = −Hx(t) + v(t)
v̇(t) = −Ax(t)− Bvk(t) + C f (x(t)) + D f (x(t))

W f (x(t)) + Q f (x(t)),
(7)

then, the matrix form of the response system is as follows:
u̇(t) = −Hu(t) + y(t) + ∆(t)
ẏ(t) = −Au(t)− Byk(t) + C f (u(t)) + D f (u(t))

W f (u(t)) + Q f (u(t)) + m(t) + I(t),
(8)

where ∆(t), m(t) are control schemes; that is, ∆(t) = ∆R(t) + i∆I(t) and m(t) = mR(t) +
imI(t). I(t) represents external input which I(t) = IR(t) + iI I(t). Based on Assumption 1,
system (7) can be transformed as follows:

ẋR(t) = −HxR(t) + vR(t)
v̇R(t) = −AxR(t)− BvR

k (t) + CR f R(xR(t))− CI f I(xI(t))
+DR f R(xR(t))− DI f I(xI(t)) + W f R(xR(t))
+Q f R(xR(t)),

ẋI(t) = −HxI(t) + vI(t)
v̇I(t) = −AxI(t)− BvI

k(t) + CR f I(xI(t)) + CI f R(xR(t))
+DR f I(xI(t))− DI f R(xR(t)) + W f I(xI(t))
+Q f I(xI(t)),

(9)
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and response system (8) can be represented by

u̇R(t) = −HuR(t) + yR(t) + ∆R(t)
ẏR(t) = −AuR(t)− ByR

k (t) + CR f R(uR(t))− CI f I(uI(t))
+DR f R(uR(t))− DI f I(uI(t)) + W f R(uR(t))
+Q f R(uR(t)) + mR(t) + IR(t),

u̇I(t) = −HuI(t) + yI(t) + ∆I(t)
ẏI(t) = −AuI(t)− ByI

k(t) + CR f I(uI(t)) + CI f R(uR(t))
+DR f I(uI(t)) + DI f R(uR(t)) + W f I(uI(t))
+Q f I(uI(t)) + mI(t) + I I(t).

(10)

Considering eR(t) = uR(t) − xR(t), eI(t) = uI(t) − xI(t), zR(t) = yR(t) − vR(t),
zI(t) = yI(t) − vI(t). 𭟋R(eR(t)) = f R(uR(t)) − f R(xR(t)), 𭟋I(eR(t)) = f I(uI(t)) −
f I(xI(t)), 𭟋R(eR(t)) = f R(uR(t)) − f R(xR(t)) = f R(uR(t − τ(t))) − f R(xR(t − τ(t))),
𭟋I(eI(t)) = f I(uI(t))− f I(xI(t)) = f I(uI(t − τ(t)))− f I(xI(t − τ(t))). Through (9) and
(10), we obtain the following error system

ėR(t) = −HeR(t) + zR(t) + ∆R(t)
żR(t) = −AeR(t)− BzR

k (t) + CR𭟋R(eR(t))− CI𭟋I(eI(t))
+DR𭟋R(eR(t))− DI𭟋I(eI(t)) + W𭟋R(eR(t))
+Q𭟋R(eR(t)) + mR(t) + IR(t),

ėI(t) = −HeI(t) + zI(t) + ∆I(t)
żI(t) = −AeI(t)− BzI

k(t) + CR𭟋I(eI(t)) + CI𭟋R(eR(t))
+DR𭟋I(eI(t)) + DI𭟋R(eR(t)) + W𭟋I(eI(t))
+Q𭟋I(eI(t)) + mI(t) + I I(t).

(11)

Next, we give some necessary definitions as follows.

Definition 1 ([47]). Suppose that the output in system g(t) ∈ CN and input I(t) ∈ CN obtain
finite-time passivity (FTP) for any 0 < ε < 1 and 0 < µ ∈ R, if

U̇(t) + µ(U(t))ε ≤ (IR(t))T gR(t) + (I I(t))T gI(t), (12)

where U(t) stands for a non-negative function.

Definition 2 ([47]). Suppose that the output in system g(t) ∈ CN and input I(t) ∈ CN obtain
finite-time input strict passivity (FTISP) for any 0 < ε < 1 and 0 < µ ∈ R, if

U̇(t) + µ(U(t))ε ≤(IR(t))T gR(t) + (I I(t))T gI(t)

− γ1

(
(IR(t))T IR(t) + (I I(t))T I I(t)

)
, (13)

where U(t) stands for a non-negative function.

Definition 3 ([47]). Suppose that the output in system g(t) ∈ CN and input I(t) ∈ CN obtain
finite-time input strict passivity (FTOSP) for any 0 < ε < 1 and 0 < µ ∈ R, if

U̇(t) + µ(U(t))ε ≤(IR(t))T gR(t) + (I I(t))T gI(t)

− γ2

(
(wR(t))TwR(t) + (wI(t))TwI(t)

)
, (14)

where U(t) stands for a non-negative function.
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Lemma 1 ([50]). It is assumed that with a continuous and non-negative function U(t) which
satisfies

U̇(t) ≤ −µ(U(t))ε, t ≥ 0, U(0) ≥ 0

where 0 < ε < 1 and 0 < µ ∈ R, it can determined that,

(U(t))1−ε ≤ (U(0))1−ε − µ(1 − ε)t, 0 ≤ t ≤ T,

and
U(t) = 0, t ≤ T,

thus, we obtain

T =
U(0)1−ε

µ(1 − ε)
. (15)

Remark 1. Many compelling results about passivity have been reported [48,49]. However, these
references only pat attention to the input or output passivity problems, making the system only
realize the infinite-time input or output passivity. Moreover, as [24,35,47] reveals, passivity can
be an effective tool for discussing infinite-time synchronization for neural systems. But, from a
practical perspective, the setting time of synchronization should be finite is more reasonable. Hence,
the research in the paper is more general and extends the existing passivity theory.

Lemma 2 ([3]). For any 0 < ℓ ≤ 1, si ∈ R, i ∈ ℵ, then one has

(|s1|+ |s2|+ . . . + |sn|)ℓ ≤ |s1|ℓ + |s2|ℓ + . . . + |sn|ℓ. (16)

Lemma 3 ([5]). Suppose π(t) = (π1(t), π2(t), . . . , πn(t))T and Ξ(t) = (Ξ1(t), Ξ2(t), . . . ,
Ξn(t))T imply two states of system (1); then, one obtains

|
n∧

ℓ=1

∂kℓ fℓ(Ξℓ)−
n∧

ℓ=1

∂kℓ fℓ(πℓ)| ≤
n

∑
ℓ=1

|∂kℓ| | fℓ(Ξℓ)− fℓ(πℓ) |, (17)

|
n∨

ℓ=1

ℜkℓ fℓ(Ξℓ)−
n∨

ℓ=1

ℜkℓ fℓ(πℓ)| ≤
n

∑
ℓ=1

|ℜkℓ| | fℓ(Ξℓ)− fℓ(πℓ) | . (18)

Remark 2. Passivity analysis for real-valued neural networks (RVNNs) is widely observed [23,24,
35,45,47–49], in which activation function, connection weight, input, and output are real-valued.
Compared with RVNNs, CVNNs can viewed as a more general case because of more complex dynamic
characteristics. Such symmetry detection and XOR issues are expected to be solved by CVNNs
easily but cannot be settled by RVNNs [36]. In addition, compared with [23,24,33,35,49], inertial
terms and fuzzy logic cases are supposed to cause complex essential impacts on dynamics behaviors
for network systems. To our knowledge, few corresponding outcomes focus on the model with these
elements. Therefore, it is significant to devote our effort to providing a guide for this analysis.

Remark 3. Suppose that an energy function U(·) stands for the energy stored in this system, and the
energy supply bounded over finite-time intervals, then we call the system passive. As to storage
function U(·) and supply rate ℘(g, I), compared with [23,47], we develop FTP, FTISP, and FTOSP
from real-valued into complex-valued, and different supply rate reveals that the dissipative of inside
the system U(t2)− U(t1) is not more than the external source

∫ t2
t1

℘(g(t), I(t))dt.
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3. Main Results
3.1. Finite-Time Passivity

Let the controller be ∆(t) = ∆R(t) + i∆I(t), m(t) = mR(t) + imI(t), and ∆R(t), ∆I(t),
mR(t), mI(t) are constructed as follows:

∆R(t) = −λReR(t)− εsign(eR(t))|eR(t)|β,

mR(t) = −φRzR(t)− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)
)2

1−ζ ds

) β+1
2

zR(t)
∥zR(t)∥2

−εsign(zR(t))|zR(t)|β − GRsign(zR(t))

∆I(t) = −λIeI(t)− εsign(eI(t))|eI(t)|β,

mI(t) = −φIzI(t)− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)
)2

1−ζ ds

) β+1
2

zI(t)
∥zI(t)∥2

−εsign(zI(t))|zI(t)|β − GIsign(zI(t)),

(19)

in which λR = diag
(

λR
1 , λR

2 . . . λR
n

)
∈ Rn×n and λI = diag

(
λI

1, λI
2 . . . λI

n

)
∈ Rn×n denote

the positive definite gain matrices; 0 < ε ∈ R and 0 < β < 1; when ∥z(t)∥ ̸= 0,

GR = diag
(

GR
1 , GR

2 , . . . GR
n

)
, GI = diag

(
GI

1, GI
2, . . . GI

n

)
,

|eR(t)|β =
(
|eR

1 (t)|β, |eR
2 (t)|β, . . . , |eR

n (t)|β
)T

,

|eI(t)|β =
(
|eI

1(t)|β, |eI
2(t)|β, . . . , |eI

n(t)|β
)T

,

sign(eR(t)) = diag

(
sign

(
eR

1 (t)
)

, sign
(

eR
2 (t)

)
, . . . , sign

(
eR

n (t)
))

,

sign(eI(t)) = diag

(
sign

(
eI

1(t)
)

, sign
(

eI
2(t)

)
, . . . , sign

(
eI

n(t)
))

;

|zR(t)|β, |zI(t)|β are the same defined as |eR(t)|β, |eI(t)|β, respectively. sign(zR(t)) and
sign(zI(t)) are the same, defined as sign(eR(t)) and sign(zI(t)), respectively.

What is more, 
∆R(t) = −λReR(t)− εsign(eR(t))|eR(t)|β,
mR(t) = 0,
∆I(t) = −λIeI(t)− εsign(eI(t))|eI(t)|β,
mI(t) = 0,

(20)

when ∥z(t)∥ = 0.
We define the output vector g(t) ∈ C of system (11):

g(t) = M1z(t) + M2e(t) + M3 I(t), (21)

where M1, M2, M3 ∈ Rn×n. For convenience, we let
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χR = diag
(
(ηR

1 )
2, (ηR

2 )
2, . . . (ηR

n )
2
)

, χI = diag
(
(η I

1)
2, (η I

2)
2, . . . (η I

n)
2
)

,

Λ = diag
( 1

1 − ζ1
,

1
1 − ζ2

, . . . ,
1

1 − ζn

)
,

g(t) =
(

g1(t), g2(t), . . . gn(t)
)T

, eR(t) =
(

eR
1 (t), eR

2 (t), . . . eR
n (t)

)T
,

eI(t) =
(

eI
1(t), eI

2(t), . . . eI
n(t)

)T
, zR(t) =

(
zR

1 (t), zR
2 (t), . . . zR

n (t)
)T

,

zI(t) =
(

zI
1(t), zI

2(t), . . . zI
n(t)

)T
, I(t) =

(
I1(t), I2(t), . . . In(t)

)T
.

Theorem 1. The network system (11) obtain FTP under control inputs (19) and (20) if there exist

λR = Diag(λR
1 , λR

2 , . . . λR
n ), λI = Diag(λI

1, λI
2, . . . λR

n ),

φR = Diag(φR
1 , φR

2 , . . . φR
n ), φI = Diag(φI

1, φI
2, . . . φI

n),

GR = Diag(GR
1 , GR

2 , . . . GR
n ), GI = Diag(GI

1, GI
2, . . . GI

n) ∈ Rn×n,

satisfying such conditions as

WFR + QFR − GR ≤ 0, WFI + QFI − GI ≤ 0, (22)
ΦR

1 δR
1 ϕR

1

(δR
1 )

T ϖR
1 ΞR

1

(ϕR
1 )

T (ΞR
1 )

T θR
1

 ≤ 0 and


ΦI

1 δI
1 ϕI

1

(δI
1)

T ϖ I
1 ΞI

1

(ϕI
1)

T (ΞI
1)

T θ1
I

 ≤ 0, (23)

 ΠR
1 ϕR

1

(ϕR
1 )

T θR
1

 ≤ 0 and

 ΠI
1 ϕI

1

(ϕI
1)

T θ I
1

 ≤ 0, (24)

where ΦR
1 = −2H + 2χR + 2χRΛ − 2λR, ΦI

1 = −2H + 2χI + 2χIΛ − 2λI , δR
1 = δI

1 =

E − A, ϕR
1 = ϕI

1 = M2
2 , ϖR

1 = −2B + CR + CI + DR + DI − 2φR, ϖR
1 = −2B + CR +

CI + DR + DI − 2φI , ΞR
1 = ΞI

1 = 2E−M1
2 , θR

1 = θ I
1 = M3. ΠR

1 = −2H − 2λR, ΠI
1 =

−2H − 2λI , and E is the identity matrix.

Proof. Case 1. When ∥z(t)∥ ̸= 0, we build the Lyapunov function as follows:

V(t) = V1(t) + V2(t), (25)

where

V1(t) = (eR(t))TeR(t) + (zR(t))TzR(t) + 2
n

∑
j=1

∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds, (26)

V2(t) = (eI(t))TeI(t) + (zI(t))TzI(t) + 2
n

∑
j=1

∫ t

t−τj(t)

(
η I

j eI
j (s)

)2

1 − ζ
ds. (27)

Then, when ∥z(t)∥ ̸= 0, we arrange the derivative of V1(t) as

V̇1(t) =2(eR(t))T(−HeR(t) + zR(t)− λReR(t)− εsign(eR(t))

× |eR(t)|β) + 2(zR(t))T

(
− AeR(t)− BzR

k (t)
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+ CR𭟋R(eR(t))− CI𭟋I(eI(t)) + DR𭟋R(eR(t))

− DI𭟋I(eI(t)) + W𭟋R(eR(t)) + Q𭟋R(eR(t))− φRzR(t)

− GRsign(zR(t)− εsign(zR(t))|zR(t)|β + IR(t)

− ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds
) β+1

2 zR(t)
∥zR(t)∥2

)
+ 2(eR(t))TχRΛeR(t)− 2(eR(t))TχReR(t). (28)

V̇2(t) =2(eI(t))T(−HeI(t) + zI(t)− λIeI(t)

− εsign(eI(t))|eI(t)|β) + 2(zI(t))T

(
− AeI(t)− BzI

k(t)

+ CR𭟋I(eI(t)) + CI𭟋R(eR(t)) + DR𭟋I(eI(t))

+ DI𭟋R(eR(t)) + W𭟋I(eI(t)) + Q𭟋I(eI(t))

− φIzI(t)− GIsign(zI(t)− εsign(zI(t))|zI(t)|β + I I(t)

− ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
ηR

j eI
j (s)

)2

1 − ζ
ds
) β+1

2 zI(t)
∥zI(t)∥2 + I I(t)

)
+ 2(eI(t))TχIΛeI(t)− 2(eI(t))TχIeI(t). (29)

under Assumption 1, from (28), then

2(zR(t))TCR𭟋R(eR(t)) = 2
n

∑
k=1

|zR(t)|cR
k ηR

k |e
R
k (t)|

≤
n

∑
k=1

(zR(t))2(cR
k )

2 +
n

∑
k=1

(ηR
k )

2(eR
k (t))

2

= (zR(t))TCRzR(t) + (eR(t))TχReR(t). (30)

In addition, according to Lemma 3, one has

2(zR(t))TW𭟋R(eR(t)) ≤ 2|(zR(t))T |WFR, (31)

2(zR(t))TQ𭟋R(eR(t)) ≤ 2|(zR(t))T |QFR. (32)

Moreover,

− 2(zR(t))TCI𭟋I(eI(t)) ≤ (zR(t))TCIzR(t) + (eI(t))TχIeI(t), (33)

2(zR(t))T DR𭟋R(eR(t)) ≤ (zR(t))T DRzR(t) + (eR(t))TχReR(t), (34)

− 2(zR(t))T DI𭟋I(eI(t)) ≤ (zR(t))T DIzR(t) + (eI(t))TχIeI(t). (35)

Likewise, from Lemma 2, one has

(eR(t))Tsign(eR(t))|eR(t)|β =
n

∑
k=1

|eR
k (t)|

β+1

≥
n

∑
k=1

((eR
k (t))

2)
β+1

2

= ((eR(t))TeR(t))
β+1

2 , (36)
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(zR(t))Tsign(zR(t))|zR(t)|β ≥ ((zR(t))TzR(t))
β+1

2 . (37)

Similarly,

2(zI(t))TCR𭟋I(eI(t)) ≤ (zI(t))TCRzI(t) + (eI(t))TχIeI(t), (38)

2(zI(t))TCI𭟋R(eR(t)) ≤ (zI(t))TCIzI(t) + (eR(t))TχReR(t), (39)

2(zI(t))T DR𭟋I(eI(t)) ≤ (zI(t))T DRzI(t) + (eI(t))TχIeI(t), (40)

2(zI(t))T DI𭟋R(eR(t)) ≤ (zI(t))T DIzI(t) + (eR(t))TχReR(t), (41)

(eI(t))Tsign(eI(t))|eI(t)|β ≥ ((eI(t))TeI(t))
β+1

2 , (42)

(zI(t))Tsign(zI(t))|zI(t)|β ≥ ((zI(t))TzI(t))
β+1

2 . (43)

What is more,

2(zI(t))TW𭟋I(eI(t)) ≤ 2|(zI(t))T |WFI , (44)

2(zI(t))TQ𭟋I(eI(t)) ≤ 2|(zI(t))T |QFI . (45)

Because of (30)–(35), it is arranged by

V̇1(t) ≤(eR(t))T(−2H − 2λR + 2χR + 2χRΛ)eR(t)

+ (eR(t))T [2(E − A)]zR(t) + (zR(t))T(−2B + CR + CI

+ DR + DI − 2φR)zR(t) + 2|(zR(t))T |(WFR + QFR

− GR) + 2(zR(t))T IR − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eR(t))TeR(t))
β+1

2 − 2ε((zR(t))TzR(t))
β+1

2 , (46)

and

V̇2(t) ≤(eI(t))T(−2H − 2λI + 2χI + 2χIΛ)eI(t)

+ (eI(t))T [2(E − A)]zI(t) + (zI(t))T(−2B + CR + CI

+ DR + DI − 2φI)zI(t) + 2|(zI(t))T |(WFI + QFI

− GI) + 2(zI(t))T I I − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eI(t))TeI(t))
β+1

2 − 2ε((zI(t))TzI(t))
β+1

2 . (47)

Furthermore,

V̇(t)−
((

IR(t)
)T

gR(t) +
(

I I(t)
)T

gI(t)

)
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≤
(

ΓR(t)
)T


ΦR

1 δR
1 ϕR

1

(δR
1 )

T ϖR
1 ΞR

1

(ϕR
1 )

T (ΞR
1 )

T θR
1

ΓR(t)− 2ε

((
eR(t)

)T
eR(t)

) β+1
2

−2ε

((
zR(t)

)T
zR(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)
)2

1−ζ ds
) β+1

2

+
(

ΓI(t)
)T


ΦI

1 δI
1 ϕI

1

(δI
1)

T ϖ I
1 ΞI

1

(ϕI
1)

T (ΞI
1)

T θ I
1

ΓI(t)− 2ε

((
eI(t)

)T
eI(t)

) β+1
2

−2ε

((
zI(t)

)T
zI(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)
)2

1−ζ ds
) β+1

2

+2
∣∣∣(zR(t)

)T∣∣∣(WFR + QFR − GR) + 2
∣∣∣(zI(t)

)T∣∣∣(WFI + QFI − GI)

≤− 2ε

((
eR(t)

)T
eR(t) +

(
zR(t)

)T
zR(t) +

(
eI(t)

)T
eI(t) +

(
zI(t)

)T
zI(t)

+
n

∑
j=1

( ∫ t

t−τj(t)

ηR
j eR

j (s)
)2

1 − ζ
ds +

n

∑
j=1

( ∫ t

t−τj(t)

ηR
j eR

j (s)
)2

1 − ζ
ds

) β+1
2

=− 2ε
(

V1(t) + V2(t)
) β+1

2

=− 2ε(V(t))
β+1

2 , (48)

where

ΓR(t) =
(

eR(t), zR(t), (IR(t)
)T

and ΓI(t) =
(

eI(t), zR(t), (I I(t)
)T

.

Consequently, it concludes that(
IR(t)

)T
gR(t) +

(
I I(t)

)T
gI(t) ≥ V̇(t) + 2ε(V(t))

β+1
2 = V̇(t) + ε̃(V(t))β̃. (49)

where ε̃ = 2ε, β̃ = β+1
2 , 0 < ε̃ ∈ R and 0 < β̃ < 1.

Case 2. When ∥z(t)∥ = 0, the Lyapunov function is

Ṽ(t) =
(

eR(t)
)T

eR(t) +
(

eI(t)
)T

eI(t). (50)

Arranging the derivative of Ṽ(t), one has

˙̃V(t) = 2
(

eR(t)
)T

(−HeR(t)− λReR(t)− εsign(eR(t))|eR(t)|β)

+ 2
(

eI(t)
)T

(−HeI(t)− λIeI(t)− εsign(eI(t))|eI(t)|β)

≤
(

eR(t)
)T

(−2H − 2λR)eR(t) +
(

eI(t)
)T

(−2H − 2λI)eI(t)
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− 2ε

((
eR(t)

)T
eR(t)

) β+1
2

− 2ε

((
eI(t)

)T
eI(t)

) β+1
2

. (51)

Moreover,

˙̃V(t)−
((

IR(t)
)T

gR(t) +
(

I I(t)
)T

gI(t)

)

= ˙̃V(t)−
((

IR(t)
)T

M2eR(t) +
(

IR(t)
)T

M3 IR(t))

+
(

I I(t)
)T

M2eI(t) +
(

I I(t)
)T

M3 I I(t)

)

≤
(
R(t)ג

)T
 ΠR

1 ϕR
1

(ϕR
1 )

T θR
1

גI(t)− 2ε

((
eR(t)

)T
eR(t)

) β+1
2

+
(
I(t)ג

)T
 ΠI

1 ϕI
1

(ϕI
1)

T θ I
1

גI(t)− 2ε

((
eI(t)

)T
eI(t)

) β+1
2

≤ −2ε

((
eR(t)

)T
eR(t) +

(
eI(t)

)T
eI(t)

) β+1
2

= V̇(t) + ε̃(Ṽ(t))β̃, (52)

where R(t)ג =
(

eR(t), (IR(t)
)T

and I(t)ג =
(

eI(t), (I I(t)
)T

.
Based on the above analysis, according to Definition 1, system (11) can realize FTP

under controller (19). At the instant time t when ∥z(t)∥ = 0, we also can infer that system
(11) achieves FTP by controller (20). Therefore, system (9) can reach FTP under control
schemes (19) and (20).

Theorem 2. Under the condition of Theorem 1, the network (11) can realize FTISP through
controllers (19) and (20) if there are

WFR + QFR − GR ≤ 0, WFI + QFI − GI ≤ 0, (53)
ΦR

1 δR
1 ϕR

1

(δR
1 )

T ϖR
1 ΞR

1

(ϕR
1 )

T (ΞR
1 )

T θR
2

 ≤ 0 and


ΦI

1 δI
1 ϕI

1

(δI
1)

T ϖ I
1 ΞI

1

(ϕI
1)

T (ΞI
1)

T θ I
2

 ≤ 0, (54)

 ΠR
1 ϕR

1

(ϕR
1 )

T θR
2

 ≤ 0 and

 ΠI
1 ϕI

2

(ϕI
1)

T θ I
2

 ≤ 0, (55)

where ΦR
1 , ΦI

1, δR
1 , ϕR

1 , ϖR
1 , ϖR

1 , ΞR
1 , ΠI

1, ΠR
1 have the same meanings as in Theorem 1,

and θR
2 = θ I

2 = γ1E + θR
1 .

Proof. Building the same Lyapunov function as (25), combining with (46) and (47), we can
carry out

V̇(t)− (IR(t))T gR(t) + (I I(t))T gI(t)

+ γ1

(
(IR(t))T IR(t) + (I I(t))T I I(t)

)
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≤(eR(t))T(−2H − 2λR + 2χR + 2χRΛ)eR(t)

+ (eR(t))T [2(E − A)]zR(t) + (zR(t))T(−2B + CR + CI

+ DR + DI − 2φR)zR(t) + 2|(zR(t))T |(WFR + QFR

− GR) + 2(zR(t))T IR − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eR(t))TeR(t))
β+1

2 − 2ε((zR(t))TzR(t))
β+1

2

+ (eI(t))T(−2H − 2λI + 2χI + 2χIΛ)eI(t)

+ (eI(t))T [2(E − A)]zI(t) + (zI(t))T(−2B + CR + CI

+ DR + DI − 2φI)zI(t) + 2|(zI(t))T |(WFI + QFI

− GI) + 2(zI(t))T I I − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eI(t))TeI(t))
β+1

2 − 2ε((zI(t))TzI(t))
β+1

2

+ γ1

(
(IR(t))T IR(t) + (I I(t))T I I(t)

)
−
[(

IR(t)
)T

M1zR(t)

+
(

IR(t)
)T

M2eR(t) +
(

IR(t)
)T

M3 IR(t) +
(

I I(t)
)T

M1zI(t)

+
(

I I(t)
)T

M2eI(t) +
(

I I(t)
)T

M3 I I(t)
]

≤
(

ΓR(t)
)T


ΦR

1 δR
1 ϕR

1

(δR
1 )

T ϖR
1 ΞR

1

(ϕR
1 )

T (ΞR
1 )

T θR
2

ΓR(t)− 2ε

((
eR(t)

)T
eR(t)

) β+1
2

−2ε

((
zR(t)

)T
zR(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)
)2

1−ζ ds
) β+1

2

+
(

ΓI(t)
)T


ΦI

1 δI
1 ϕI

1

(δI
1)

T ϖ I
1 ΞI

1

(ϕI
1)

T (ΞI
1)

T θ I
2

ΓI(t)− 2ε

((
eI(t)

)T
eI(t)

) β+1
2

−2ε

((
zI(t)

)T
zI(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)
)2

1−ζ ds
) β+1

2

+2
∣∣∣(zR(t)

)T∣∣∣(WFR + QFR − GR) + 2
∣∣∣(zI(t)

)T∣∣∣(WFI + QFI − GI)

≤− 2ε

((
eR(t)

)T
eR(t) +

(
zR(t)

)T
zR(t) +

(
eI(t)

)T
eI(t) +

(
zI(t)

)T
zI(t)

+
n

∑
j=1

∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds +

n

∑
j=1

∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds

) β+1
2

=− 2ε(V(t))
β+1

2 = −ε̃(V(t))β̃. (56)
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Then, one attains(
IR(t)

)T
gR(t) +

(
I I(t)

)T
gI(t)− γ1

(
(IR(t))T IR(t) + (I I(t))T I I(t)

)
≥ V̇(t) + ε̃(V(t))β̃,

where ε̃ = 2ε, β̃ = β+1
2 , 0 < ε̃ ∈ R, 0 < β̃ < 1. Consequently, system (11) can achieve

FTISP under controller (19). When ∥z(t)∥ = 0, the proving procedure has a resemblance to
Theorem 1 and is omitted here. So, based on Definition 2, the system (11) can obtain FTISP
through controller (19) and (20).

Theorem 3. Under the condition of Theorem 1, the network (11) can realize FTOSP through
controllers (19) and (20) if there are

WFR + QFR − GR ≤ 0, WFI + QFI − GI ≤ 0, (57)
ΦR

2 δR
2 ϕR

2

(δR
2 )

T ϖR
2 ΞR

2

(ϕR
2 )

T (ΞR
2 )

T θR
3

 ≤ 0 and


ΦI

2 δI
2 ϕI

2

(δI
2)

T ϖ I
2 ΞI

2

(ϕI
2)

T (ΞI
2)

T θ I
3

 ≤ 0, (58)

 ΠR
2 ϕR

2

(ϕR
2 )

T θR
3

 ≤ 0 and

 ΠI
2 ϕI

2

(ϕI
2)

T θ I
3

 ≤ 0, (59)

where ΦR
2 = ΦR

1 + γ2MT
2 M2, ΦI

2 = ΦI
2 + γ2MT

2 M2, δR
2 = δI

1 = δR
1 +

γ2 MT
1 M2

2 , ϕR
2 =

ϕI
1 = ϕR

1 +
γ2 MT

2 M3−M2
2 , ϖR

2 = ϖR
1 + γ2MT

1 M1, ϖ I
2 = ϖ I

1 + γ2MT
1 M1, ΞR

2 = ΞI
2 =

ΞR
1 +

γ2 MT
1 M3−M1

2 , θR
3 = θ I

3 = θR
1 + γ2MT

3 M3 − M3. ΠR
2 = ΠR

1 + γ2MT
2 M2, ΠI

2 =
ΠI

1 + γ2MT
2 M2.

Proof. Considering the same Lyapunov function as (25), combined with (46) and (47), it
follows that

V̇(t)− (IR(t))T gR(t) + (I I(t))T gI(t)

+ γ2

(
(wR(t))TwR(t) + (wI(t))TwI(t)

)
≤(eR(t))T(−2H − 2λR + 2χR + 2χRΛ)eR(t)

+ (eR(t))T [2(E − A)]zR(t) + (zR(t))T(−2B + CR + CI

+ DR + DI − 2φR)zR(t) + 2|(zR(t))T |(WFR + QFR

− GR) + 2(zR(t))T IR − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eR(t))TeR(t))
β+1

2 − 2ε((zR(t))TzR(t))
β+1

2

+ (eI(t))T(−2H − 2λI + 2χI + 2χIΛ)eI(t)

+ (eI(t))T [2(E − A)]zI(t) + (zI(t))T(−2B + CR + CI

+ DR + DI − 2φI)zI(t) + 2|(zI(t))T |(WFI + QFI

− GI) + 2(zI(t))T I I − ε
n

∑
j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)

)2

1 − ζ
ds
) β+1

2

− 2ε((eI(t))TeI(t))
β+1

2 − 2ε((zI(t))TzI(t))
β+1

2
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−
[(

IR(t)
)T

M1zR(t) +
(

IR(t)
)T

M2eR(t) +
(

IR(t)
)T

M3 IR(t)

+
(

I I(t)
)T

M1zI(t) +
(

I I(t)
)T

M2eI(t) +
(

I I(t)
)T

M3 I I(t)
]

+
[
γ2

(
zR(t)

)T
MT

1 M1zR(t) + γ2

(
zR(t)

)T
MT

1 M2eR(t)

+ γ2

(
zR(t)

)T
MT

1 M3 IR(t) + γ2

(
eR(t)

)T
MT

2 M2eR(t)

+ γ2

(
eR(t)

)T
MT

2 M3 IR(t) + γ2

(
IR(t)

)T
MT

3 M3 IR(t)

+ γ2

(
zI(t)

)T
MT

1 M1zI(t) + γ2

(
zI(t)

)T
MT

1 M2eI(t)

+ γ2

(
zI(t)

)T
MT

1 M3 I I(t) + γ2

(
eI(t)

)T
MT

2 M2eI(t)

+ γ2

(
eI(t)

)T
MT

2 M3 I I(t) + γ2

(
I I(t)

)T
MT

3 M3 I I(t)
]

≤
(

ΓR(t)
)T


ΦR

2 δR
2 ϕR

2

(δR
2 )

T ϖR
2 ΞR

2

(ϕR
2 )

T (ΞR
2 )

T θR
3

ΓR(t)− 2ε

((
eR(t)

)T
eR(t)

) β+1
2

−2ε

((
zR(t)

)T
zR(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
ηR

j eR
j (s)
)2

1−ζ ds
) β+1

2

+
(

ΓI(t)
)T


ΦI

2 δI
2 ϕI

2

(δI
2)

T ϖ I
2 ΞI

2

(ϕI
2)

T (ΞI
2)

T θ I
3

ΓI(t)− 2ε

((
eI(t)

)T
eI(t)

) β+1
2

−2ε

((
zI(t)

)T
zI(t)

) β+1
2

− ε
n
∑

j=1

(
2
∫ t

t−τj(t)

(
η I

j eI
j (s)
)2

1−ζ ds
) β+1

2

+2
∣∣∣(zR(t)

)T∣∣∣(WFR + QFR − GR) + 2
∣∣∣(zI(t)

)T∣∣∣(WFI + QFI − GI)

≤− 2ε

((
eR(t)

)T
eR(t) +

(
zR(t)

)T
zR(t) +

(
eI(t)

)T
eI(t) +

(
zI(t)

)T
zI(t)

+
n

∑
j=1

( ∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds +

n

∑
j=1

( ∫ t

t−τj(t)

(
ηR

j eR
j (s)

)2

1 − ζ
ds

) β+1
2

=− 2ε(V(t))
β+1

2 = −ε̃(V(t))β̃, (60)

where ε̃ = 2ε, β̃ = β+1
2 , 0 < ε̃ ∈ R, 0 < β̃ < 1. Then, one derives

(IR(t))T gR(t) + (I I(t))T gI(t) + γ2

(
(wR(t))TwR(t) + (wI(t))TwI(t)

)
≥ V̇(t) + ε̃(V(t))β̃.
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Consequently, the system (11) can achieve FTOSP under controller (19). When
∥z(t)∥ = 0, the proving procedure has a resemblance to Theorem 1 which is omitted
here. So, based on Definition 2, the system (11) can obtain FTISP through controllers (19)
and (20).

3.2. Finite-Time Synchronization

Theorem 4. Suppose that U(t): [0,+∞] → [0,+∞] is a differentiable continuous function
which has

ω(∥x(t)∥2) ≤ U(t),

where ω : [0,+∞] → [0,+∞] stands for a strictly monotonically continuous increasing function,
for r > 0, ω(r) is positive with ω(0) = 0. If network system (11) obtains FTP (FTISP, FTOSP)
through control inputs (19) and (20), the networks (9) and (10) reach FTS based on controllers (19)
and (20).

Proof. If system (11) realizes FTP under controllers (19) and (20), there exist 0 < ε̃ ∈ R and
0 < β̃ < 1, such that(

IR(t)
)T

gR(t) +
(

I I(t)
)T

gI(t) ≥ U̇(t) + ε̃(U(t))β̃. (61)

Considering I(t) = 0, we have

U̇(t) ≤ −ε̃(U(t))β̃.

From Lemma 1, we obtain U(t) = 0 for t ≥ T♯, T♯ = U(0)1−ε̃

β̃(1−ε̃)
.

Because of
ω(∥x(t)∥2) ≤ U(t),

one attains
ω(∥x(t)∥2) ≤ U(t) = 0,

where t ≥ T♯. Then, we can derive ∥x(t)∥2 = 0. Namely, the system (9) and (10) arrive at
FTS under controller (19) and (20). Similarly, when system (11) obtains FTISP and FTOSP,
we can deduce that system (9) and (10) reach FTS under control inputs (19) and (20).

Corollary 1. If there exist

λR = Diag(λR
1 , λR

2 , . . . λR
n ), λI = Diag(λI

1, λI
2, . . . λR

n ),

φR = Diag(φR
1 , φR

2 , . . . φR
n ), φI = Diag(φI

1, φI
2, . . . φI

n),

GR = Diag(GR
1 , GR

2 , . . . GR
n ), GI = Diag(GI

1, GI
2, . . . GI

n) ∈ Rn×n,

satisfying such conditions as

WFR + QFR − GR ≤ 0, WFI + QFI − GI ≤ 0, (62)
ΦR

1 δR
1 ϕR

1

(δR
1 )

T ϖR
1 ΞR

1

(ϕR
1 )

T (ΞR
1 )

T θR
1

 ≤ 0 and


ΦI

1 δI
1 ϕI

1

(δI
1)

T ϖ I
1 ΞI

1

(ϕI
1)

T (ΞI
1)

T θ1
I

 ≤ 0, (63)

 ΠR
1 ϕR

1

(ϕR
1 )

T θR
1

 ≤ 0 and

 ΠI
1 ϕI

1

(ϕI
1)

T θ I
1

 ≤ 0, (64)
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where ΦR
1 , ΦI

1, δR
1 , ϕR

1 , ϖR
1 , ϖR

1 , ΞR
1 , ΠI

1, ΠR
1 and θR

2 are same as in Theorem 1, then FICVNN
(1) is a finite-time synchronization based on controllers (19) and (20).

Remark 4. Commonly, it is not easy to deal with passivity and synchronization in real-valued
neural network systems, let alone solve the problem of FTP and FTS with complex-valued parameters.
Furthermore, owing to inertial terms and fuzzy logic, traditional ways can not directly deal with
the FTP and FTS of FICVNNs. To conquer these points, in this paper, some suitable control inputs
and novel Lyapunov functionals are divided into the real part and the imaginary part to ensure that
FICVNNs are addressed to obtain passivity and synchronization in a finite time interval.

3.3. Example

Example 1. Think about the delayed FICVNNs as follows:

ẍk(t) =− akxk(t)− bk ẋk(t) +
2

∑
j=1

ckj f j(xj(t))

+
2

∑
j=1

dkj f j(xj(t − τj(t))) +
2∧

j=1

wkj f j(xj(t − τj(t)))

+
2∨

j=1

qkj f j(xj(t − τj(t))). (65)

Through Formulae (3) and (4), the matrix form of system (65) is demonstrated by
ẋ(t) = −Hx(t) + v(t)
v̇(t) = −Ax(t)− Bvk(t) + C f (x(t)) + D f (x(t))

W f (x(t)) + Q f (x(t)),
(66)

where A = diag(−0.3, 0.2), B = diag(1.1, 1.2), H = diag(1, 1), C = (ckj)2×2, c11 = −0.6 −
1.2i, c12 = −8.1 + 5.1i, c21 = −3.4 − 1.9i, c22 = −550 − 550i, D = (dkj)2×2, d11 = −1.8 +
1.3i, d12 = −3.9 − 6.9i, d21 = −0.3 − 4.3i, d12 = −536 − 536i, W = (wkj)2×2, w11 = 0.5,
w12 = −1, w21 = 0.1, w22 = −1, Q = (qkj)2×2, w11 = 0.1, w12 = −0.2, w21 = −0.3,

w22 = 0.1, τj(t) = et

1+et , ηR = η I = 1, f j(·) = tanh(Re(·)) + i tanh(Im(·)), j = 1, 2. The
initial conditions of the system (65) are selected as x1(0) = 10 + 10i, v1(0) = 2.5 + 0.9i,
x2(0) = 0.6 + 0.2i, v1(0) = 0.4 + 6i. Then, Figures 1–3 show the trajectories of states
xk(t), vk(t), k = 1, 2 without control. Moreover, consider system (66) as a drive system;
the response system is

u̇(t) = −Hu(t) + y(t) + ∆(t)
ẏ(t) = −Au(t)− Byk(t) + C f (u(t)) + D f (u(t))

W f (u(t)) + Q f (u(t)) + m(t) + I(t),
(67)

where ∆(t), m(t) are controllers given in formula (19), I(t) is external input, I1(t) = 3.9 cos(t) +
5.4 cos(t)i, I2(t) = 5.2 cos(t) + 9.8 cos(t)i. We select M1, M2, and M3 as follows:

M1 =

 4 0.1

2 0.5

, M2 =

 −2 0.2

−3 0.2

, M3 =

 −32 11

−18 9

.
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Figure 1. Bule line stands for transient behavior of variables Re(xk(t)), k = 1, 2 and red line stands
for transient behavior of variables Im(xk(t), k = 1, 2 of FICVNNs (65).
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Figure 2. Bule line stands for transient behavior of variables Revk(t), k = 1, 2 and red line stands for
transient behavior of variables Im(vk(t)), k = 1, 2of FICVNNs (65).
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Figure 3. Bule line stands for state trajectory of variables Re(xk(t)), Re(vk(t)), k = 1, 2 and red line
stands for state of trajectory of variables Im(xk(t)), Im(vk(t)), k = 1, 2 of FICVNNs (65) without control.
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The rest of parameters are the same as in system (66). In addition, the parameters
in (19) are selected as ε = 0.5, β = 0.5, ζ = 0.1, χ = diag(0.1 + 0.6i, 1 + 0.8i), and
G = diag(70 + 27i, 60 + 5i). Take λ = diag(5 + 2.6i, 5 + 2.6i) and φ = diag(9 + 15.6i, 9 +
15.6i), which satisfy the condition of Theorem 1. Through Theorem 1, the network in
(65) obtains FTP under controller (19). Take γ1 = 0.2, λ = diag(12 + 8.3i, 12 + 8.3i), and
φ = diag(18+ 0.5i, 18+ 0.5i), which satisfy the condition of Theorem 2; (65) achieves FTISP
under controller (19). Take γ2 = 0.8, λ = diag(21.4 + 9.1i, 21.4 + 9.1i), and φ = diag(15 +
0.9i, 15 + 0.9i), and one can satisfy the condition of Theorem 3. In terms of Theorem
3, system (65) can realize the FTOSP under controller (19). Above all, the simulation of
dynamical changes for state error e(t), z(t), input I(t), and output g(t) are given in Figure 4.
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Figure 4. The curves of error states ek(t), zk(t), external input Ik(t), and output gk(t), k = 1, 2 under
controller (19).

Let eR
j (t) = uR

j (t) − xR
j (t), eI

j (t) = uI
j (t) − xI

j (t), zR
j (t) = yR

j (t) − vR
j (t), zI

j (t) =

yI
j (t)− vI

j (t), j = 1, 2. Figure 5 denotes the trajectories of state error Re(ej(t)), Re(zj(t)),
j = 1, 2 and Im(ej(t)), Im(zj(t)), j = 1, 2 with controller (19) when (65) is finite-time passive.
The state trajectories of state error Re(ej(t)), Re(zj(t)), j = 1, 2 and Im(ej(t)), Im(zj(t)),
j = 1, 2, respectively, are illustrated in Figure 6.
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Figure 5. Trajectory of error states ek(t), zk(t), k = 1, 2 under controller (19).
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Figure 6. Trajectories of error ek(t), zk(t), k = 1, 2 with controller(19).

According to Corollary 1, the network (65) with the above parameters can realize
FTS under controller (19), and the setting time is computed as T∗ = 5.904. As Figure 7
reveals, when time increases to 5.904, the corresponding simulation curves of the state error
Re(ej(t)), Re(zj(t)), j = 1, 2 and Im(ej(t)), Im(zj(t)), j = 1, 2 tend to 0. This demonstrates
that network (65) can achieve finite-time synchronization.
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Figure 7. The synchronization curve of error states ek(t), zk(t), k = 1, 2 with controller (19).

Example 2. The application example of FICVNNs (65) relates to the pseudorandom number
generator (PRNG) [43]. Let a sequence of pseudorandom number k(t̆) = ϑ(o1(t̆), o2(t̆)), ť ∈
[t̆start, t̆end], and [t̆start, t̆end] stand for the operating time interval; then, one has

ϑ(o1(t̆), o2(t̆)) =
{

1, o1(t̆) ≤ o2(t̆),
0, o1(t̆) > o2(t̆),

(68)

where

o1(t̆) =
xR

1 (t̆)
maxt̆∈[t̆start ,t̆end ]

xR
2 (t̆)

,

o2(t̆) =
xI

2(t̆)
maxt̆∈[t̆start ,t̆end ]

xI
2(t̆)

.
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Consequently, by using the same parameters as in Example 1, because of the chaotic features
of the FICVNNs, the PRNG is produced in Figure 8. Then, Figure 9 explains that s(t) is the
original transmission signal. So, through the transformation p(t) = s(t)⊗ k(t), we can obtain the
encrypted signal in Figure 10.
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Figure 8. PRNG produced by FICVNNs.
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Figure 9. Original signals.
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Figure 10. Encrypted signals.

4. Conclusions

This article investigated the finite-time passivity and finite-time synchronization of
the proposed FICVNNs with time delays. By transforming the second-order complex-
valued model into first-order real-valued differential systems, the Lyapunov functional
method and some novel controllers are explored to guarantee the FTP, FTISP, and FTOSP of
FICVNNs. Furthermore, based on finite-time passive FICVNNs, finite-time synchronization
has been investigated. Finally, some numerical simulations are provided to confirm the
theory results.

Some existing works have discussed the passive properties of neural network systems
that can maintain the system’s internal stability. For example, the infinite-time passivity or
infinite-time synchronization of neural networks is generally considered by resorting to
passivity theory [24,35,49]. Compared with the above literature, the neural model built in
this paper, with inertial terms, complex-valued parameters, fuzzy logic, and time delays,
enriches and expands previous results. It is supposed to create a foundation for observing
the creative controllers for fixed-time synchronization or predefined-time synchronization
in neural networks [9,51]. Compared with [33], we can also develop the related results to fit
inertial neural networks, the parameters of the systems state-dependently switching. This
is an essential and valuable direction in investigating various kinds of neural networks
with more control methods in the future.
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