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Abstract: Within the recent wave of research advancements, mathematical inequalities and their prac-
tical applications play a notably significant role across various domains. In this regard, inequalities
offer a captivating arena for scholarly endeavors and investigational pursuits. This research work
aims to present new improvements for the integral majorization inequalities using an interesting
aproach. Certain previous improvements have been achieved for the Jensen inequality as direct
outcomes of the main results. Additionally, estimates for the Csiszár divergence and its cases are
provided as applications of the main results. The circumstances under which the principal outcomes
offer enhanced estimations for majorization differences are also underscored and emphasized.
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1. Introduction

The importance of mathematical inequalities and their practical applications lies in
their ability to describe and tackle real-world problems, particularly in scenarios where
the relationships are usually ambiguous or uneven [1–3]. The beauty of mathematical
inequalities is found not just in their capacity to measure relationships between numbers
but also in their power to reveal the intricacies of complex systems [4–6]. Because of their
widespread applicability across various mathematical domains and real-world situations,
mathematical inequalities serve as a focal point for launching new investigations [7–9]. A
critical factor contributing to the advancement and widespread acceptance of inequalities
lies in the robust and influential concept known as convexity [10–12]. It has been observed
that convex functions and inequalities share a closely intertwined relationship, as many
achievements would be challenging or even unattainable without the guiding principles
provided by convexity [13–15]. The Hermite-Hadamard [16], Jensen-Mercer [17], Slater [18],
and Jensen-Steffensen [19] inequalities are striking examples where the concept of convexity
plays a pivotal role, providing a solid foundation for their formulation and proof. One of
the most captivating inequalities that emerge with the aid of convexity is the renowned
Jensen inequality [20]. The beauty of the Jensen inequality lies not only in its elegance
and simplicity but also in its versatility and widespread applicability [21–23]. It serves
as a cornerstone for numerous mathematical proofs and has paved the way for deeper
exploration and understanding of convexity and related concepts [24–26].
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The continuous form of the Jensen inequality is defined as follows [27]:
Suppose that p, f : [α1, α2] → [β1, β2] are integrable functions with p ≥ 0 on [α1, α2]

and p∗ :=
∫ α2

α1
p(ϱ)dϱ > 0. Further, let ψ : [β1, β2] → R be a convex function and ψ ◦ f be

integrable. Then

ψ

(
1
p∗

∫ α2

α1

p(ϱ) f (ϱ)dϱ

)
≤ 1

p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ. (1)

The concave function ψ reverses the validity of the inequality (1).
Jensen’s inequality offers a straightforward and uncomplicated approach to under-

standing and proving various concepts. Due to these facts and figures, it’s evident that
Jensen’s inequality is a highly studied topic in the realm of research activities. Kian [28] in-
troduced an operator-based representation of the Jensen inequality specifically designed for
super-quadratic functions, along with a discussion on the applications stemming from the
obtained results. Matković et al. [29] presented a variant of Jensen’s inequality for operators
by applying the notion of convexity, which serves as a generalization of Mercer’s result. In
2008, Zhu and Yang [30] utilized Jensen’s inequality to analyze and discuss the stability
of discrete-time delay systems. Ullah et al. [31] introduced some improvements of the
discrete as well as integral Jensen’s inequality by implementing 4−convexity. You et al. [32]
utilized the integral version of Jensen’s inequality and established improvements of the
Slater inequality in both discrete and integral forms.

In the remaining part of the current section, we want to divert our attention to the
concept of majorization.

Majorization is a mathematical concept that quantifies the comparison of two vectors
or sequences in a specific order based on certain criteria [33,34]. In essence, majorization
compares the “spread” or arrangement of elements in one vector with that of another,
determining if one vector is more spread out than the other according to a particular
criterion [35]. At this moment, we give the definition of majorization [36]: Let x =
(ϱ1, ϱ2, · · · , ϱn) and y = (σ1, σ2, · · · , σn) be any two n−tuples, and

ϱ[1] ≥ ϱ[2] ≥ · · · ≥ ϱ[n], σ[1] ≥ σ[2] ≥ · · · ≥ σ[n]

be the decreasing order of the tuples x and y respectively. Then y is said to be majorized by
x, if

k

∑
i=1

ϱ[i] ≥
k

∑
i=1

σ[i], k = 1, 2, · · · , n − 1,

n

∑
i=1

ϱi =
n

∑
i=1

σi.

In symbols, majorization can be represented as x ≻ y.
In 1932, Karamata [37] formulated a relation for majorized tuples utilizing principles

of convexity, and this relation is well-recognized as the majorization inequality in literature.
The Karamata relation for majorized tuples can be expressed as:

Suppose that x = (ϱ1, ϱ2, · · · , ϱn), y = (σ1, σ2, · · · , σn) ∈ [α1, α2]
n are n−tuples such

that x ≻ y, and further presume that ψ : [α1, α2] → R is a convex function. Then

n

∑
i=1

ψ(ϱi) ≥
n

∑
i=1

ψ(σi). (2)

The inequality (2) flips when considering the concave function ψ.
The discrete majorization inequality plays a vital role in comparing, ordering, and

analyzing discrete sequences or vectors, making it a valuable tool in various mathematical
and applied domains [38,39].

Now, we give the definition of majorization for functions [40]:
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Assume that f and g are any functions on [α1, α2], then function f is said to majorizes
g (abbreviated as f ≻ g), if both f and g are decreasing and satisfy:∫ σ

α1

f (ϱ)dϱ ≥
∫ σ

α1

g(ϱ)dϱ, σ ∈ [α1, α2]

and ∫ α2

α1

f (ϱ)dϱ =
∫ α2

α1

g(ϱ)dϱ.

Inequality (2) can be used for comparing individual elements. However, in recent
years, a question has been posed regarding how to effectively compare function values
over a set using the concept of majorization. This question is answered by developing the
integral version of majorization inequality. The integral majorization inequality can be
verbalized as follows [40]:

Let f , g : [α1, α2] → [β1, β2] be decreasing functions such that their integral exists, and
f ≻ g. If ψ is convex on [β1, β2], then∫ α2

α1

ψ
(

f (ϱ)
)
dϱ ≥

∫ α2

α1

ψ
(

g(ϱ)
)
dϱ. (3)

In the case of a concave function ψ, inequality (3) is satisfied in the reverse direction.
In 1995, Maligranda et al. [41] gave the weighted version of (3), which states that:

Assume that ψ : [β1, β2] → R is convex and p, f , g : [α1, α2] → [β1, β2] are continuous
functions such that p(ϱ) ≥ 0, ϱ ∈ [α1, α2] with∫ σ

α1

p(ϱ) f (ϱ)dϱ ≥
∫ σ

α1

p(ϱ)g(ϱ)dϱ, σ ∈ [α1, α2] (4)

and ∫ α2

α1

p(ϱ) f (ϱ)dϱ =
∫ α2

α1

p(ϱ)g(ϱ)dϱ.

If g is decreasing, then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ ≥

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ. (5)

If f is increasing, then (5) true in reverse direction.
Several mathematicians have focused on majorization inequality and used different

approaches for the derivation of results for majorization inequality. In [36,40], Dragomir
used a new approach of applying Chebyshev’s inequality with the help of synchronous
functions as well as sequences without using condition (4) and obtained the weighted
version of majorization inequality. Niezgoda was inspired by the idea of Dragomir and
utilized the generalized Chebyshev’s inequality for separable sequences [42]. These gen-
eralized results of majorization have been discussed for certain orthogonal bases. Also,
Niezgoda [43] used the concept of majorization and presented enhanced results for the
Jensen-Mercer inequality, while these results have been further applied for the derivation
of interesting conticrete Hermite-Hadarmard type inequalities [44] which attracted the
attention of other mathematicians. The book [45] contains numerous results on majorization
and its applications. Particularly, these results are associated with different interpolation
polynomials and Green functions. Several identities for majorization difference have been
obtained that contain the nth derivative of the function. By virtue of n–convexity and some
features of interpolation polynomials, several generalized majorization inequalities have
been derived. Further, these results have been discussed for certain tuples and functions
which have been utilized for obtaining the classical majorization inequalities. Generalized
mean value theorems, log convexity, and exponential convexity have also been proved for
the generalized results of majorization. Moreover, the generalized results of majorization
have been devoted to applications in information theory. In 2021, Bradanović [46] obtained
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some improvements of majorization inequalities with the help of superquadratic functions,
which is in fact the generalized concept of convexity. The results are also associated with dif-
ferent entropies. The work of Chin and Huh is very remarkable with respect to applications
of majorization for linear optical networks [47]. Very recently, the integral majorization
inequalities have been studied and derived the Hermite-Hadamard-Fejér-Type inequalities
and several applications have presented in information theory [48].

2. Main Results

This section focuses on the key results, which will offer estimations for majorization
and Jensen differences. The primary aim of this section is to obtain estimates for the ma-
jorization difference through the use of functions that are twice differentiable. The estimates
we aim to obtain can be achieved by utilizing the concepts of convexity, Hölder’s inequality,
the well-recognized Jensen’s inequality, and the renowned power mean inequality. We will
examine the direct consequences of each outcome with respect to the Jensen differences.
We commence this section with the subsequent lemma, which introduces an identity linked
to the majorization difference.

Lemma 1. Let ψ : (β1, β2) → R be a twice differentiable function such that ψ
′′

is integrable and
f , g : [α1, α2] → (β1, β2), p : [α1, α2] → [0, ∞) be integrable functions. Then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2 ∫ 1

0
tψ

′′(
tg(ϱ) + (1 − t) f (ϱ)

)
dtdϱ

−
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)

ψ
′(

g(ϱ)
)
dϱ. (6)

Proof. By avoiding unnecessary generalizations, let us suppose that g(ϱ) and f (ϱ) are
distinct for every ϱ in [α1, α2]. Employing the technique of integration by parts, we can
deduce the following identity:∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2 ∫ 1

0
tψ

′′(
tg(ϱ) + (1 − t) f (ϱ)

)
dtdϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(

t
g(ϱ)− f (ϱ)

ψ
′(

tg(ϱ) + (1 − t) f (ϱ)
)∣∣∣1

0

− 1
g(ϱ)− f (ϱ)

∫ 1

0
ψ

′(
tg(ϱ) + (1 − t) f (ϱ)

)
dt
)

dϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(

ψ
′ (

g(ϱ)
)

g(ϱ)− f (ϱ)
− 1(

g(ϱ)− f (ϱ)
)2 ψ

(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣∣1
0

)
dϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(

ψ
′ (

g(ϱ)
)

g(ϱ)− f (ϱ)
− 1(

g(ϱ)− f (ϱ)
)2

(
ψ
(

g(ϱ)
)
− ψ

(
f (ϱ)

)))
dϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)

ψ
′ (

g(ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)
(

ψ
(

g(ϱ)
)
− ψ

(
f (ϱ)

))
dϱ.

(7)

We arrive to the identity (8) by rearranging the terms of (7):∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

=
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2 ∫ 1

0
tψ

′′(
tg(ϱ) + (1 − t) f (ϱ)

)
dtdϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ. (8)

Without a doubt, (6) and (7) are one and the same.
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We leverage the Hölder inequality and the notion of a convex function to establish
an improvement concern to the majorization inequality, which is verbalized in the upcom-
ing theorem.

Theorem 1. Let ψ : (β1, β2) → R be a twice differentiable function such that ψ
′′

is integrable and
|ψ′′ |q is convex for q > 1. Also, assume that f , g : [α1, α2] → (β1, β2), p : [α1, α2] → [0, ∞) are
integrable functions. Then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
((q + 1

)∣∣∣ψ′′(
g(ϱ)

)∣∣∣q + ∣∣∣ψ′′(
f (ϱ)

)∣∣∣q(
q + 1

)(
q + 2

) ) 1
q

dϱ. (9)

Proof. Since, ψ(ϱ) ≤ |ψ(ϱ)| holds true for all ϱ in [α1, α2]. Therefore, from the identity (6),
we can infer the following expression:∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2 ∫ 1

0

∣∣tψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣dtdϱ. (10)

Upon applying the Hölder inequality to the second term on the right-hand side of (10), we
arrive at the following inequality:∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0
tq
∣∣∣ψ′′(

tg(ϱ) + (1 − t) f (ϱ)
)∣∣∣qdt

) 1
q

dϱ. (11)

Now, by making use of convexity of the function |ψ′′ |q on the right-hand side of (11),
we obtain:∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

≤ −
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ +

∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2

×
(∣∣ψ′′

(g(ϱ))
∣∣q ∫ 1

0
tq+1dt +

∣∣ψ′′
( f (ϱ))

∣∣q ∫ 1

0
tq(1 − t)dt

) 1
q

dϱ. (12)

Through the evaluation of integrals given in inequality (12), we are led to the improvement
presented in (9).

The following corollary stems from Theorem 1, presenting an improvement to the
Jensen inequality.

Corollary 1. Let ψ : (β1, β2) → R be a twice differentiable function such that ψ
′′

is integrable
and |ψ′′ |q is convex for q > 1. Also, assume that f : [α1, α2] → (β1, β2), p : [α1, α2] → [0, ∞) are
integrable functions and p∗ :=

∫ α2
α1

p(ϱ)dϱ > 0, f := 1
p∗
∫ α2

α1
p(ϱ) f (ϱ)dϱ. Then

1
p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ − ψ( f )

≤
∫ α2

α1

p(ϱ)( f − f (ϱ))2
(
(q + 1)

∣∣ψ′′
( f )
∣∣q + ∣∣ψ′′

( f (ϱ))
∣∣q

(q + 1)(q + 2)

) 1
q

dϱ. (13)
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Proof. Replacing g(ϱ) with f in inequality (9) leads us directly to the anticipated out-
come (13).

Remark 1. In inequality (4), Khan et al. [49] demonstrated an enhancement similar to the improve-
ment outlined in Corollary 1, which provides an estimate for the absolute Jensen difference.

The upcoming theorem presents an inequality for majorization, potentially attainable
through the utilization of the Hölder inequality and the convex function formulation.

Theorem 2. Let us assume that all the conditions of Theorem 1 hold true, and additionally, consider
the scenario that 1

p + 1
q = 1, p, q > 1. Then

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(∣∣ψ′′

(g(ϱ))
∣∣q + ∣∣ψ′′

( f (ϱ))
∣∣q

2

) 1
q

dϱ. (14)

Proof. We can easily reach to (15), by employing the Hölder inequality on the right side of
inequality (10):∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0
tpdt

) 1
p
( ∫ 1

0

∣∣∣ψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣∣qdt
) 1

q

dϱ

=

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0

∣∣∣ψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣∣qdt
) 1

q

dϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ. (15)

Simply applying the convex function definition to the right side of (15), we drive∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(∣∣(g(ϱ))∣∣q ∫ 1

0
tdt +

∣∣ψ′′(
f (ϱ)

)∣∣q ∫ 1

0
(1 − t)dt

) 1
q

dϱ. (16)

Now, upon evaluating the integrals in (16), we obtain (14).

The following corollary establishes an improvement for the Jensen inequality, which
can be followed straightly from Theorem 2.

Corollary 2. Presume that the hypotheses of Corollary 1 are fulfilled, and additionally, let 1
p + 1

q = 1.
Then

1
p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ − ψ( f ) ≤ 1

p∗

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)( f − f (ϱ))2

×
(∣∣ψ′′

( f )
∣∣q + ∣∣ψ′′

( f (ϱ))
∣∣q

2

) 1
q

dϱ. (17)

Proof. By choosing g(ϱ) as substitute of f in (14), we arrive at the inequality (17).

Remark 2. A comparable improvement to the one presented on the right side of (17) is also achieved
in inequality (9) by Khan et al. in [49].
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The ensuing theorem elegantly provides an improvement for the integral majorization
inequality by harnessing the power of the Hölder’s and Jensen’s inequalities.

Theorem 3. Let ψ : (β1, β2) → R be a twice differentiable function such that ψ
′′

is integrable and
|ψ′′ | is concave. Also, assume that f , g : [α1, α2] → (β1, β2), p : [α1, α2] → [0, ∞) are integrable
functions. Then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

≤ 1
2

∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
∣∣∣∣ψ′′
(

2g(ϱ) + f (ϱ)
3

)∣∣∣∣dϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ. (18)

Proof. By employing the property of the absolute function, we can rewrite identity (6) as:∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

≤
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2 ∫ 1

0

∣∣tψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣dtdϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ. (19)

At the moment, leveraging Jensen’s inequality on the right side of (19), we achieve:∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
1
2

∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
∣∣∣∣ψ′′
(∫ 1

0 t
(

tg(ϱ) + (1 − t) f (ϱ)
)

dt∫ 1
0 tdt

)∣∣∣∣dϱ. (20)

Upon simplification of the inequality (20), we attain the improvement articulated in (18).

A further improvement of the Jensen inequality is outlined in the forthcoming corollary,
which can directly be followed from Theorem 3.

Corollary 3. Presume that the hypotheses of Corollary 1 are fulfilled but instead of |ψ′′|q convexity,
assume that |ψ′′ | is a concave function. Then

1
p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ − ψ( f ) ≤ 1

2p∗

∫ α2

α1

p(ϱ)( f − f (ϱ))2
∣∣∣∣ψ′′
(

2 f + f (ϱ)
3

)∣∣∣∣dϱ. (21)

Proof. By substituting f for g(ϱ) in the inequality (18), we arrive at (21).

Remark 3. The improvement of the Jensen inequality derived in inequality (12) in the article [49]
will resemble the improvement presented in (21), when we consider q = 1 in (12).

The upcoming theorem offers a further refinement of the majorization inequality,
which can be derived by employing both the Hölder inequality and Jensen’s inequality.

Theorem 4. Let us suppose that all statements in Theorem 2 hold true but instead of |ψ′′|q
convexity assume that |ψ′′ |q is concave function for q > 1. Then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ



Axioms 2024, 13, 21 8 of 14

+

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
∣∣∣∣ψ′′
(

g(ϱ) + f (ϱ)
2

)∣∣∣∣dϱ. (22)

Proof. The inequality (23) can be deduced by employing the Hölder inequality to the
expression on the right-hand side of (19):∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0
tpdt

) 1
p
( ∫ 1

0

∣∣∣ψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣∣qdt
) 1

q

dϱ

=

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0

∣∣∣ψ′′(
tg(ϱ) + (1 − t) f (ϱ)

)∣∣∣qdt
) 1

q

dϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ. (23)

To arrive at (24), simply apply Jensen’s inequality to the expression on the right-hand side
of (23):∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
∣∣∣∣ψ′′
( ∫ 1

0

(
tg(ϱ) + (1 − t) f (ϱ)

)
dt
)∣∣∣∣dϱ. (24)

By evaluating the integral on the right-hand side of (24), we reach to (22).

The subsequent corollary articulates another improvement of the Jensen inequality
stemming from Theorem 4.

Corollary 4. Presume that all the hypotheses of Corollary 2 are fulfilled but instead of |ψ′′|q
convexity, assume that |ψ′′ |q is concave function. Then

1
p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ − ψ( f )

≤ 1
p∗

(
1

p + 1

) 1
p ∫ α2

α1

p(ϱ)( f − f (ϱ))2
∣∣∣∣ψ′′
(

f + f (ϱ)
2

)∣∣∣∣dϱ. (25)

Proof. By simply changing g(ϱ) with f in inequality (22), we acquire (25).

Remark 4. Khan et al. [49] presented an improvement of the Jensen inequality in (16) in the
absolute sense, which is alike to our improvement of the Jensen inequality stated in (25).

Theorem 5 elegantly leverages the definition of convex functions along with the power
mean inequality, furnishing an improvement for the discernible majorization inequality.

Theorem 5. Presume that the stated assumptions in Theorem 1 hold true, then∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ

+

(
1
2

)1− 1
q ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
(

2
∣∣ψ′′

(g(ϱ))
∣∣q + ∣∣ψ′′

( f (ϱ))
∣∣q

6

) 1
q

dϱ. (26)
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Proof. When the power mean inequality is applied to the expression on the right side of
(10), then we reach to the below inequality:
∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ ≤ −

∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′ (

g(ϱ)
)
dϱ

+
∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0
tdt
)1− 1

q
( ∫ 1

0
t
∣∣∣ψ′′(

tg(ϱ) + (1 − t) f (ϱ)
)∣∣∣qdt

) 1
q

dϱ

=

(
1
2

)1− 1
q ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2
( ∫ 1

0
t
∣∣∣ψ′′(

tg(ϱ) + (1 − t) f (ϱ)
)∣∣∣qdt

) 1
q

dϱ

−
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′ (

g(ϱ)
)
dϱ. (27)

By leveraging the convex nature of the function |ψ′′ |q on the right side of (27), we arrive at:
∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ −

∫ α2

α1

p(ϱ)ψ
(

g(ϱ)
)
dϱ

≤ −
∫ α2

α1

p(ϱ)(g(ϱ)− f (ϱ))ψ
′ (

g(ϱ)
)
dϱ +

(
1
2

)1− 1
q ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)2

×
(∣∣ψ′′

(σ)
∣∣q ∫ 1

0
t2dt +

∣∣ψ′′
(ϱ)
∣∣q ∫ 1

0
t(1 − t)dt

) 1
q

dϱ. (28)

Now, arriving at the improvement elucidated in (26) is a straightforward process, simply
by evaluating the integrals provided in (28).

The subsequent corollary provides an improvement of the Jensen inequality as an
immediate consequence of Theorem 5.

Corollary 5. Assuming the stipulated assumptions of Corollary 1 hold, then

1
p∗

∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
)
dϱ − ψ( f ) ≤ 1

p∗

(
1
2

)1− 1
q ∫ α2

α1

p(ϱ)( f − f (ϱ))2

×
(

2
∣∣ψ′′

( f )
∣∣q + ∣∣ψ′′

( f (ϱ))
∣∣q

6

) 1
q

dϱ. (29)

Proof. Upon changing g(ϱ) with f in inequality (26), we gain (29).

Remark 5. In inequality (19), Khan and colleagues [49] achieved an improvement of the Jensen
inequality in an absolute sense, akin to the improvement outlined in (29).

Remark 6. In the article [50], Basir et al. discovered the discrete versions of the above aforemen-
tioned results.

3. Analysis of the Superiority of Key Findings

The objective of this section is to highlight the scenarios under which the main results,
given in Theorem 1 to Theorem 5 concerning majorization inequalities will become more
accurate and excellent. The discussion regarding the superiority and bitterness of the
main results primarily hinges on the integral value:

∫ α2
α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)
ψ

′(
g(ϱ)

)
dϱ. The

critical question here is under which context the results will be fine. So, the answer is
that the improvements will be attractive if the integral:

∫ α2
α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)
ψ

′(
g(ϱ)

)
dϱ

is non-negative. In this segment, we will investigate the conditions that render the integral:∫ α2
α1

p(ϱ)
(

g(ϱ)− f (ϱ)
)
ψ

′(
g(ϱ)

)
dϱ non-negative.

At this juncture, we aim to elucidate and shed light on the specific scenario in which
the integral: ∫ α2

α1

p(ϱ)
(

g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ
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leading to a state where its value is non-negative:

• A By employing the proof concept outlined in [41], one can substantiate that the
expression “

∫ α2
α1

p(ϱ)
(

g(ϱ)− f (ϱ))ψ
′(

g(ϱ)
)
dϱ” remains non-negative under specified

conditions that the function ψ is convex, with further restrictions:
(i) g(ϱ) is a monotonically decreasing function that fulfills

∫ k

α1

p(ϱ) f (ϱ)dϱ ≤
∫ k

α1

p(ϱ)g(ϱ)dϱ, k ∈ [α1, α2] (30)

and ∫ α2

α1

p(ϱ) f (ϱ)dϱ =
∫ α2

α1

p(ϱ)g(ϱ)dϱ. (31)

OR
(ii) g(ϱ) is a monotonically increasing function with

∫ k

α1

p(ϱ) f (ϱ)dϱ ≥
∫ k

α1

p(ϱ)g(ϱ)dϱ, k ∈ [α1, α2] (32)

and ∫ α2

α1

p(ϱ) f (ϱ)dϱ =
∫ α2

α1

p(ϱ)g(ϱ)dϱ. (33)

• B If ψ is a convex function and both g and f − g exhibit monotonicity in the same
direction and satisfy the condition expressed as∫ α2

α1

p(ϱ) f (ϱ)dϱ =
∫ α2

α1

p(ϱ)g(ϱ)dϱ, (34)

then by following the proof methodology outlined in the Theorem 6 stated in [40], it
becomes evident that the expression “

∫ α2
α1

p(ϱ)
(
g(ϱ)− f (ϱ))ψ

′(
g(ϱ)

)
dϱ” is non-negative.

• C Applying the proof methodology of Theorem 7 given in [40], considering the
stipulations that the function ψ is both increasing and convex and further assuming
that g and f − g are monotonicity functions in a similar direction, while also satisfying
the inequality given by: ∫ α2

α1

p(ϱ) f (ϱ)dϱ ≥
∫ α2

α1

p(ϱ)g(ϱ)dϱ, (35)

one can establish that
∫ α2

α1
p(ϱ)

(
g(ϱ)− f (ϱ))ψ

′(
g(ϱ)

)
dϱ ≥ 0.

4. Applications in Information Theory

Information theory is a mathematical and conceptual framework that quantifies the
storage, transmission, and processing of information. It originated with the work of Claude
Shannon in the mid-20th century and has since become a fundamental discipline in various
fields, including computer science, electrical engineering, telecommunications, linguistics,
and neuroscience.

The present section is dedicated to elucidating the practical implications of key findings
within the realm of information theory. The envisaged applications will encompass the
provisioning of rigorous bounds for the esteemed Csiszár and Kullback-Leibler divergences,
Shannon entropy, and Bhattacharyya coefficient. To present the desired estimates for the
aforementioned concepts, we first define them.

Definition 1. Let ψ : [β1, β2] → R, f : [α1, α2] → R, p : [α1, α2] → (0, ∞) be integrable
functions such that ψ ◦ f

p is integrable and f (ϱ)
p(ϱ) ∈ [β1, β2] for ϱ ∈ [α1, α2]. Then, the Csiszár

divergence is defined as follows:
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Cψ(p, f ) =
∫ α2

α1

p(ϱ)ψ
(

f (ϱ)
p(ϱ)

)
dϱ.

Definition 2. Let p, f : [α1, α2] → R be any positive probability density functions. Then

• The Shannon entropy is defined by:

Sp = −
∫ α2

α1

p(ϱ) log p(ϱ)dϱ.

• The Kullback–Liebler divergence is defined as follows:

Kp; f =
∫ α2

α1

p(ϱ) log
( p(ϱ)

f (ϱ)

)
dϱ.

• The Bhattacharyya coefficient is defined as:

Bp; f =
∫ α2

α1

√
p(ϱ) f (ϱ)dϱ.

Theorem 6. Let ψ : (β1, β2) → R be a twice differentiable function such that ψ
′′

is integrable
and |ψ′′ |q (q > 1) is convex. Also, assume that f , g : [α1, α2] → R, p : [α1, α2] → (0, ∞) are
integrable functions and f (ϱ)

p(ϱ) , g(ϱ)
p(ϱ) ∈ (β1, β2) for ϱ ∈ [α1, α2]. Then

Cψ(p, g)− Cψ(p, f )

≤
∫ α2

α1

(
g(ϱ)− f (ϱ)

)2

p(ϱ)

(
(q + 1)

∣∣∣ψ′′
(

g(ϱ)
p(ϱ)

)∣∣∣q + ∣∣∣ψ′′
(

f (ϱ)
p(ϱ)

)∣∣∣q
(q + 1)(q + 2)

) 1
q

dϱ

−
∫ α2

α1

(
g(ϱ)− f (ϱ)

)
ψ

′( g(ϱ)
p(ϱ)

)
dϱ. (36)

Proof. To arrive at the inequality (36), substitute f (ϱ)
p(ϱ) for f (ϱ) and g(ϱ)

p(ϱ) for g(ϱ) in (9).

Corollary 6. Presume that p, g : [α1, α2] → (0, ∞) are integrable functions with
∫ α2

α1
p(ϱ)dϱ = 1

and q > 1, then

Sp −
∫ α2

α1

p(ϱ) log
( g(ϱ)

p(ϱ)

)
dϱ ≤

∫ α2

α1

(
g(ϱ)− 1

)2

p(ϱ)

(
(q + 1)

( p(ϱ)
g(ϱ)

)2q
+ x2q

j

(q + 1)(q + 2)

) 1
q

dϱ

+
∫ α2

α1

(
g(ϱ)− 1

)( p(ϱ)
g(ϱ)

)
dϱ. (37)

Proof. By taking ψ(ϱ) = − log ϱ, ϱ > 0 and f (ϱ) = 1 in (36), we receive (37).

Corollary 7. Let p, f , g : [α1, α2] → (0, ∞) be integrable functions with
∫ α2

α1
p(ϱ)dϱ =

∫ α2
α1

g(ϱ)
dϱ =

∫ α2
α1

f (ϱ)dϱ = 1. If q > 1, then

Kp,g − Kp, f ≤
∫ α2

α1

(
g(ϱ)− f (ϱ)

)2

p(ϱ)

( (q + 1)
( p(ϱ)

g(ϱ)

)2q
+
( p(ϱ)

f (ϱ)

)2q

(q + 1)(q + 2)

) 1
q

dϱ

+
∫ α2

α1

(
g(ϱ)− f (ϱ)

)( p(ϱ)
g(ϱ)

)
dϱ. (38)

Proof. By applying inequality (36) for ψ(ϱ) = − log ϱ, ϱ > 0, we derive (38).
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Corollary 8. Under the assumptions of Corollary 7, the below inequality holds:

Bp, f − Bp,g

≤ 1
4

∫ α2

α1

(
g(ϱ)− f (ϱ)

)2

p(ϱ)

( (q + 1)
(

p(ϱ)
g(ϱ)

) 3q
2
+
( p(ϱ)

f (ϱ)

) 3q
2

(q + 1)(q + 2)

) 1
q

dϱ

+
1
2

∫ α2

α1

(
g(ϱ)− f (ϱ)

)√ p(ϱ)
g(ϱ)

dϱ. (39)

Proof. Assume ψ(ϱ) = −√
ϱ, ϱ > 0 in (36), we achieve (39).

Remark 7. Likewise, we can present applications of Theorem 2, Theorem 3, Theorem 4, and
Theorem 5 for the Csiszár divergences, Kullback–Leibler divergence, Bhattacharyya coefficient, and
Shannon entropy.

5. Conclusions

Mathematical inequalities keep a fundamental and vital role in mathematical analysis,
optimization, statistics, economics, and an array of other disciplines. They serve as potent
instruments for demonstrating and addressing a diverse spectrum of both mathematical
and real-world challenges spanning different domains. The elegant and foundational
concept of convexity serves as a key catalyst for the advancement and formulation of
inequalities. In this article, we introduced a series of improvements for majorization
inequality in the continuous sense through twice differentiable functions. The principal
roles that have been played in the development of desired improvements are the notion
of convexity, Jensen inequality, Hölder inequality, and power mean inequality. It is worth
noting that certain previous enhancements of the Jensen inequality are deduced as direct
consequences of our principal findings. We have also provided criteria that define the
conditions under which these improvements yield superior and more accurate estimates
for the majorization difference. Furthermore, we have explored the applications of our
principal discovery within the realm of information theory. These applications present
bounds for the Csiszár and Kullback–Leibler divergences, Bhattacharyya coefficient and
Shannon entropy.
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