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Abstract: The standard pantograph delay equation (SPDDE) is one of the famous delay models.
This standard model is basically homogeneous in nature and it has been extensively studied in the
literature. However, the studies on the general inhomogeneous form of such a model seem rare. This
paper considers the inhomogeneous pantograph delay equation (IPDDE) with a kind of arbitrary
inhomogeneous term. This arbitrary inhomogeneous term is used in different forms to generate
various classes of IPDDEs. The solutions of the present classes are obtained in closed series forms
which satisfy the criteria of convergence. Also, the exact solutions are determined for these classes
under a certain relation between the given initial condition of the model and the initial value of
the inhomogeneous term. Several classes are generated and solved when the inhomogeneous term
takes the form of trigonometric, exponential, and hyperbolic functions. Some existing results in the
literature are recovered as special cases of the present ones. Moreover, the behaviors of the obtained
solutions are demonstrated through graphs for various kinds of IPDDEs.
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1. Introduction

Real-life phenomena are often modeled by means of ordinary differential equations
(ODEs). However, the ODEs are not effective to model natural systems with memory effect
as a consequence of locality of the ordinary derivative. Thus, physical phenomena with
memory/hereditary properties are usually modeled by incorporating nonlocal components,
such as delays, in the form of delay differential equations (DDEs). A famous DDE is known
as the pantograph delay differential equation (PDDE). The standard pantograph delay
differential equation (SPDDE) is in the form: w′(r) = aw(r) + bw(cr), w(0) = λ. This
model has a particular application in the interaction between the pantograph device and
the overhead wire when controlling the electric trains.

The pantograph problem gained the interest of many researchers and it has been
solved utilizing different numerical techniques such as the Chebyshev polynomials [1],
the collocation method [2,3], the Bernstein polynomials [4], and the spectral methods [5,6].
Furthermore, the SPDDE has been solved very recently using two analytical techniques
based on the Adomian decomposition method (ADM) [7] and the homotopy perturbation
method (HPM) [8]. In addition, a high-order version of the pantograph equation was inves-
tigated by the authors [9] in which a new rational approximation is proposed. Particular
types of the SPDDEs have been addressed in [10]. Moreover, a novel closed solution is
determined for the SPDDE by El-Zahar and Ebaid [11] using an ansatz method that was
based on assuming the solution in a specific form. Also, the SPDDE was analyzed using the
Laplace transform (LT) by Alrebdi and Al-Jeaid [12]. When a = −1, b = c = 1/γ (γ > 1),
the SPDDE reduces to the Ambartusmian delay model, which has been studied by several
authors [13–15].
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In this paper, an inhomogeneous version of the pantograph delay differential equation
(IPDDE) is considered in the form:

w′(r) = aw(r) + bw(cr)− a f (r)− b f (cr) + f ′(r), c ̸= 0, 1, 0 ≤ r ≤ 1, (1)

under the initial condition (IC):
w(0) = λ. (2)

This class reduces to some models in the literature [10,16,17] at particular choices of
λ, a, b, c, and f (r) (should be continuous and differentiable on [0,1]).

The objective of our work is to find the general solution of the problem (1)–(2) in terms
of f (r) via a straightforward analysis. Our approach is mainly based on transforming
the IPDDE (1)–(2) to the SPDDE by the aide of a suitable transformation. Accordingly,
the solution of the present class will be constructed in a general closed series form in terms
of f (r). It will also be shown that the current closed series form satisfies the convergence
criteria. Furthermore, it will be declared in a subsequent section that the results in the
literature can be directly recovered as special cases of the current ones.

2. Analysis

Theorem 1. The problem (1)–(2) reduces to:

y′(r) = ay(r) + by(cr), c ̸= 0, 1, (3)

with the IC:
y(0) = λ − f (0), (4)

under the transformation:
w(r) = y(r) + f (r). (5)

Proof. Let us rewrite Equation (1) as

w′(r) = a[w(r)− f (r)] + b[w(cr)− f (cr)] + f ′(r). (6)

Assume that
y(r) = w(r)− f (r), (7)

then
w′(r) = y′(r) + f ′(r), y(cr) = w(cr)− f (cr), (8)

and hence Equation (6) becomes

y′(r) = ay(r) + by(cr). (9)

Substituting (2) into (7) gives

y(0) = λ − f (0), (10)

which completes the proof.

Theorem 2. The power series solution (PSS) of the problem (3)–(4) is given by

y(r) = (λ − f (0))
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0, (11)
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where
(
− b

a : c
)

i
is given by the product:

(
− b

a
: c
)

i
=

i

∏
k=1

(
1 +

b
a

ck−1
)

. (12)

Proof. Following the authors [7,8], one can obtain the PSS of the problem (3)–(4) in the
form:

y(r) = (λ − f (0))

[
1 +

∞

∑
i=1

(
i

∏
k=1

(
a + bck−1

)) ri

i!

]
, (13)

which can be written as

y(r) = (λ − f (0))
∞

∑
i=0

(
i

∏
k=1

(
a + bck−1

)) ri

i!
, (14)

where the product ∏i
k=1

(
a + bck−1

)
= 1 for i = 0. To express the solution y(r) in terms of

quantum calculus notation we can write

y(r) = (λ − f (0))
∞

∑
i=0

(
i

∏
k=1

a ×
i

∏
k=1

(
1 +

b
a

ck−1
))

ri

i!
, a ̸= 0. (15)

Using the definition:

(p : q)i =
i−1

∏
k=0

(
1 − pqk

)
or (p : q)i =

i

∏
k=1

(
1 − pqk−1

)
, (16)

for p = − b
a and q = c, then

i

∏
k=1

(
1 +

b
a

ck−1
)
=

(
− b

a
: c
)

i
. (17)

From (15) and (17) we obtain

y(r) = (λ − f (0))
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0, (18)

where the equality ∏i
k=1 a = ai is used, this completes the proof.

Remark 1. The convergence of the series in the right hand side of Equations (11) or (18) can be easily

justified by ratio test as follows. The series can be written as ∑∞
i=0 di, where di =

(
− b

a : c
)

i

(ar)i

i! .
Following [16] and applying the ratio test we have

lim
i→∞

∣∣∣∣di+1

di

∣∣∣∣ = lim
i→∞

∣∣∣∣∣∣ ar
i + 1

∏i+1
k=1

(
1 + b

a ck−1
)

∏i
k=1

(
1 + b

a ck−1
)
∣∣∣∣∣∣ = lim

i→∞

∣∣∣∣ ar
i + 1

(
1 +

b
a

ci
)∣∣∣∣ = 0 if |c| < 1,

and accordingly the series converges for all 0 < r < 1.
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Lemma 1. The solution of the problem (1)–(2) is given by

w(r) = f (r) + (λ − f (0))
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0. (19)

Proof. The proof follows immediately by substituting the result of Theorem 2 given in
Equation (11) into the transformation given by Equation (5).

3. Solution for a Cass with f (r) in Trigonometric Form

Lemma 2. For all a ∈ R− {0}, b ∈ R and c ∈ R− {0, 1}, the solution of the IPDDE:

w′(r) = aw(r) + bw(cr)− a sin(r)− b sin(cr) + cos(r), w(0) = λ, (20)

is given by

w(r) = sin(r) + λ
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
. (21)

Proof. Comparing Equation (20) with Equation (1) implies that f (r) = sin(r) which yields
f (0) = 0. On inserting these values into the result of Lemma 1 gives Equation (21).

Lemma 3. The exact solution of the IPDDE:

w′(r) = aw(r) + bw(cr)− a sin(r)− b sin(cr) + cos(r), w(0) = 0, (22)

is given by
w(r) = sin(r). (23)

Proof. Since w(0) = 0, then λ = 0 and hence the proof follows immediately by substituting
this value into the result of Lemma 2 given by Equation (21).

Remark 2. The initial value problem (IVP) (22) has been analyzed in Ref. [10] using an efficient
numerical method. However, the current analysis determined the exact solution of this IVP in a
straightforward/direct manner.

Examples in Generalized Trigonometric Forms

The above results can be generalized as follows. The class (20) with arbitrary argument
for the trigonometric functions reads

w′(r) = aw(r) + bw(cr)− a sin(ϖr)− b sin(cϖr) + ϖ cos(ϖr), w(0) = λ, (24)

where the solution takes the form:

w(r) = sin(ϖr) + λ
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, ϖ ∈ R. (25)

It is clear that the IVP (24) reduces to the IVP (20) at ϖ = 1 and also the solution (25)
agrees with the solution (21) in this case. One can also find that the solution of the class:

w′(r) = aw(r) + bw(cr)− a cos(Ωr)− b cos(cΩr)− Ω sin(Ωr), w(0) = λ, (26)

is given by

w(r) = cos(Ωr) + (λ − 1)
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, Ω ∈ R. (27)
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Another advantage of the class (24) arises when ϖ → 0. In this case, the class (24)
becomes the SPDDE:

w′(r) = aw(r) + bw(cr), w(0) = λ, (28)

with the solution:

w(r) = λ
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
. (29)

4. Solution for a Class with f (r) in Exponential Form

Theorem 3. For a, b ∈ R− {0} and c ∈ R− {0, 1}, the solution of the IPDDE:

w′(r) = aw(r) + bw(cr)− heacr, w(0) = λ, (30)

is given by

w(r) =
h
b

ear +

(
λ − h

b

) ∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
. (31)

Proof. Assume that f (r) satisfies the equation

−a f (r) + f ′(r) = 0, (32)

then the class in Equations (1) and (2) reduces to

w′(r) = aw(r) + bw(cr)− b f (cr), w(0) = λ. (33)

Solving Equation (32) for f (r) gives

f (r) = ξear, (34)

where ξ is arbitrary constant. Accordingly, Equation (33) becomes

w′(r) = aw(r) + bw(cr)− bξeacr, w(0) = λ. (35)

The solution of the model (35) is determined by inserting (34) into the general solution
(19), hence

w(r) = ξear + (λ − ξ)
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
. (36)

Note that f (0) = ξ in this case. The model (35) and its solution (36) can be written in
the following equivalent forms

w′(r) = aw(r) + bw(cr)− heacr, w(0) = λ, (37)

and

w(r) =
h
b

ear +

(
λ − h

b

) ∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, b ̸= 0, (38)

where h = bξ, this completes the proof.

Remark 3. If the IC w(0) = λ is chosen such that λ = h
b , then the class:

w′(r) = aw(r) + bw(cr)− heacr, w(0) =
h
b

, (39)

has the exact solution:
w(r) =

h
b

ear, b ̸= 0. (40)

This remark is useful to derive the exact solution of the following examples.
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Examples of Exponential Order

In Ref. [10], the authors considered the IPDDE:

w′(r) = −w(r) +
1
2

w(cr)− 1
2

e−cr, w(0) = 1, (41)

where a numerical approach has been applied to solve the IVP (41). In addition, the au-
thors [10] compared their numerical results with an available exact solution given by
w(r) = e−r. Here, we show that such an exact solution can be directly obtained through the
current work. On comparing Equation (41) with Equation (39), we obtain a = −1, b = 1

2
and h = 1

2 . Substituting these values into Equation (40), we directly obtain w(r) = e−r

which is the desired exact solution.
Another example was discussed by the authors [17] in the form:

w′(r) = −w(r) +
c
2

w(cr)− c
2

e−cr, w(0) = 1, (42)

which has been solved using Taylor method. In [17], the authors mentioned that the Taylor
method has far better results than the collocation method through comparisons with the
exact solution w(r) = e−r. However, this exact solution can also be evaluated in a similar
manner. This case yields a = −1, b = c

2 and h = c
2 . Implementing such values, one can

find from Equation (40) that w(r) = e−r, which is also the same exact solution.
In view of Remark 3, it is clear that the model given by the IVP:

w′(r) = aw(r) + bw(cr)− beacr, w(0) = 1, (43)

has the exact solution:
w(r) = ear, (44)

∀ a, b ∈ R and c ∈ R− {0, 1}. Similarly, one can find the exact solution for the IVP:

w′(r) = aw(r) + bw(cr) + beacr, w(0) = −1, (45)

in the form:
w(r) = −ear. (46)

A final observation is about the case of trivial solution for the model (33) in the absence
of the inhomogeneous term. If the coefficient h of the exponential function vanishes, it can
be easily deduced that the IVP:

w′(r) = aw(r) + bw(cr), w(0) = 0, (47)

has the trivial solution w(0) = 0 ∀ a, b ∈ R.

5. Solution for a Class with f (r) in Hyperbolic Form

Following the analysis of the previous sections, one can determine the solution of the
IPDDE:

w′(r) = aw(r) + bw(cr)− a sinh(r)− b sinh(cr) + cosh(r), w(0) = λ, (48)

as

w(r) = sinh(r) + λ
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
. (49)

This result is achieved via Lemma 1 and through comparing Equation (48) with
Equation (1), this yields f (r) = sinh(r) and f (0) = 0.



Axioms 2024, 13, 1 7 of 12

Proceeding as above, the class (48) with arbitrary argument θ for the hyperbolic
functions becomes

w′(r) = aw(r) + bw(cr)− a sinh(θr)− b sinh(cθr) + θ cosh(θr), w(0) = λ, (50)

and the solution reads

w(r) = sinh(θr) + λ
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, θ ∈ R. (51)

When θ = 1, the IVP (50) is equivalent to the IVP (48) while the solution (51) takes the
form (49). Moreover, the solution of the class:

w′(r) = aw(r) + bw(cr)− a cosh(ρr)− b cosh(cρr)− ρ sinh(ρr), w(0) = λ, (52)

is given by

w(r) = cosh(ρr) + (λ − 1)
∞

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, ρ ∈ R. (53)

Remark 4. Although the solutions in this section are obtained for classes containing two specific
hyperbolic functions, sinh and cosh, the solutions for additional classes containing other types of
hyperbolic functions can also be generated by following the same procedure explained above.

6. Main Results

In the previous sections, we showed that the exact solutions of several classes can be
obtained under certain constraints of the parameters contained in each of these classes.
If such constraints are not satisfied, then the exact solutions will not be available. In these
cases, the approximate solutions can be employed instead of the exact ones which may not
be available. For the numerical purpose, the general series solution given by Equation (19)
for the problem (1)–(2) with the arbitrary function f (r) should contains a finite number of
terms instead of infinity. By this, the infinity in Equation (19) is replaced by a finite number
n of the series. Hence, the n-term approximate solution Φn(r) for the problem (1)–(2) is
expressed as

Φn(r) = f (r) + (λ − f (0))
n−1

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0. (54)

Here, it should be noted that Φn(r) (n > 1) represents the approximations for the class:

w′(r) = aw(r)+ bw(cr)− a f (r)− b f (cr)+ f ′(r), c ̸= 0, 1, w(0) = λ, 0 ≤ r ≤ 1, (55)

where Φn(r) transforms to exact solution if the function f (r) is chosen to satisfy the condi-
tion f (0) = λ. So, this section aims to extract samples of numerical solutions for the classes
discussed in the previous sections such that f (0) ̸= λ. It may be also important to point
out that the values of the parameters a, b, and c are specified to extract numerical solutions
such that they ensure the convergence of the series (54), see remark 1 for such conditions.

Let us begin with the case of the trigonometric function f (r) = sin(r). In this case the
approximations Φn(r) for the class:

w′(r) = aw(r) + bw(cr)− a sin(r)− b sin(cr) + cos(r), w(0) = λ, (56)

is

Φn(r) = sin(r) + λ
n−1

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0, n > 1. (57)

The curves of the approximations Φn(r) at n = 4, 5, 6, 7 are displayed in Figure 1
which shows the satisfaction of convergence of these curves to a certain one. Similarly,
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the approximations Φn(r) at n = 5, 6, 7, 8 are depicted in Figure 2 for the problem (55) with
f (r) = sin(ϖr), where

Φn(r) = sin(ϖr) + λ
n−1

∑
i=0

(
− b

a
: c
)

i

(ar)i

i!
, a ̸= 0, n > 1, (58)

for the IVP:

w′(r) = aw(r) + bw(cr)− a sin(ϖr)− b sin(cϖr) + ϖ cos(ϖr), w(0) = λ. (59)

0.2 0.4 0.6 0.8 1.0
r

2

4

6

8

10

12

14
FnHrL

F7HtL

F6HtL

F5HtL

F4HtL

Figure 1. Plots of the approximations Φn(r) (n = 4, 5, 6, 7) in Equation (54) when a = 2, b = 1, c = 1
2 ,

λ = 1, and f (r) = sin(r).

0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

1.0

FnHrL

F8HtL

F7HtL

F6HtL

F5HtL

Figure 2. Plots of the approximations Φn(r) (n = 5, 6, 7, 8) in Equation (54) when ϖ = π
2 , a = −2,

b = 1, c = − 1
2 , λ = 1, and f (r) = sin(ϖr).

The convergence of the approximations Φ5(r), Φ6(r), Φ7(r), and Φ8(r) is also clear in
Figure 2.

The other Figures 3–7 confirm the conclusion that the approximation (54) gives accurate
approximate solution for the problem (55) with other cases for the function f (r), where
f (r) = cos(Ωr) (Figures 3 and 4), f (r) = h

b ear (Figure 5), f (r) = sinh(θr) (Figure 6),
and f (r) = cosh(ρr) (Figure 7).

The last part of this discussion focuses on estimating the error through the residual
errors REn(r) defined by

REn(r) =
∣∣aΦn(r) + bΦn(cr)− a f (r)− b f (cr) + f ′(r)

∣∣, 0 ≤ r ≤ 1. (60)

Figures 8–10 display the numerical calculations of the residuals REn(r) at n = 20, 21, 22
for three different cases of the function f (r) with selected values of the other parameters.
The results show acceptable error and the advantage of the proposed approach is obvious.
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0.2 0.4 0.6 0.8 1.0
r

1

2

3

4

5

FnHrL

F8HtL

F7HtL

F6HtL

F5HtL

Figure 3. Plots of the approximations Φn(r) (n = 5, 6, 7, 8) in Equation (54) when Ω = π
8 , a = 2,

b = −1, c = − 2
3 , λ = 2, and f (r) = cos(Ωr).

0.2 0.4 0.6 0.8 1.0
r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FnHrL

F8HtL

F7HtL

F6HtL

F5HtL

Figure 4. Plots of the approximations Φn(r) (n = 5, 6, 7, 8) in Equation (54) when Ω = −π, a = 2,
b = −1, c = − 2

3 , λ = 2, and f (r) = cos(Ωr).

0.2 0.4 0.6 0.8 1.0
r

-0.8

-0.6

-0.4

-0.2

FnHrL

F6HtL

F5HtL

F4HtL

F3HtL

Figure 5. Plots of the approximations Φn(r) (n = 3, 4, 5, 6) in Equation (54) when h = 1, a = 1, b = 1
2 ,

c = − 4
5 , λ = 0, and f (r) = h

b ear.
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0.2 0.4 0.6 0.8 1.0
r

100

200

300

400

FnHrL

F11HtL

F10HtL

F9HtL

F8HtL

Figure 6. Plots of the approximations Φn(r) (n = 8, 9, 10, 11) in Equation (54) when θ = π
5 , a = 5,

b = 2, c = 3
4 , λ = 1, and f (r) = sinh(θr).

0.2 0.4 0.6 0.8 1.0
r

-2.0

-1.5

-1.0

-0.5

0.5

FnHrL

F13HtL

F12HtL

F11HtL

F10HtL

Figure 7. Plots of the approximations Φn(r) (n = 10, 11, 12, 13) in Equation (54) when ρ = π
5 , a = −5,

b = 2, c = − 3
4 , λ = 1

2 , and f (r) = cosh(ρr).

0.2 0.4 0.6 0.8 1.0
r

5. ´ 10-12

1. ´ 10-11

1.5 ´ 10-11

2. ´ 10-11

REnHrL

RE22HrL

RE21HrL

RE20HrL

Figure 8. The residual errors REn(r) (n = 20, 21, 22) in Equation (60) when a = 2, b = 1, c = 1
2 , λ = 1,

and f (r) = sin(r).
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0.2 0.4 0.6 0.8 1.0
r
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Figure 9. The residual errors REn(r) (n = 20, 21, 22) in Equation (60) when ϖ = π
2 , a = −2, b = 1,

c = − 1
2 , λ = 1, and f (r) = sin(ϖr).
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Figure 10. The residual errors REn(r) (n = 15, 16, 17) in Equation (60) when h = 1, a = 1, b = 1
2 ,

c = − 4
5 , λ = 0, and f (r) = h

b ear.

7. Conclusions

In this paper, a class of inhomogeneous pantograph delay equations (IPDDEs) with
an arbitrary inhomogeneous term was analyzed. Different forms of such arbitrary inho-
mogeneous term were implemented to generate various classes of IPDDEs. The solutions
of several classes were successfully accomplished in closed-series forms that satisfy the
convergence criteria. It was also shown that the exact solutions for the considered classes
are available if a certain relation between the given initial condition of the model and the
initial value of the inhomogeneous term is satisfied. The current approach was capable to
generate several classes for different forms of the inhomogeneous term such as trigonomet-
ric, exponential, and hyperbolic functions. One of the advantages of our analysis is that the
existing results in the literature were efficiently recovered as special cases of the present
ones. Finally, various plots were introduced for the behaviors of the obtained solutions for
various kinds of IPDDEs.
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