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Abstract: Entropy and extropy are emerging concepts in machine learning and computer science.
Within the past decade, statisticians have created estimators for these measures. However, associated
variability metrics, specifically varentropy and varextropy, have received comparably less attention.
This paper presents a novel methodology for computing varentropy and varextropy, drawing inspi-
ration from Bayesian nonparametric methods. We implement this approach using a computational
algorithm in R and demonstrate its effectiveness across various examples. Furthermore, these new
estimators are applied to test uniformity in data.
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1. Introduction

In this section, we begin by reviewing the concepts of entropy and extropy, along with
some existing estimators from the literature. Subsequently, we introduce estimators of
varentropy and varextropy developed using a frequentist approach.

Entropy is a fundamental concept in information theory that was originally introduced
in [1]. It has found numerous applications in various fields, such as thermodynamics,
communication theory, reliability, computer science, biology, economics, and statistics [2,3].
Let X be a continuous random variable with support on S , cumulative distribution function
(CDF) F, and probability density function (PDF) f . The entropy H(F) of X is defined as

H(F) = E f (− log f (x)) = −
∫
S

f (x) log f (x)dx, (1)

where log is the natural logarithm.
Extropy, a concept introduced by [4], represents a relatively recent development in

the field of statistics that serves as a dual counterpart to entropy. Its significance has been
demonstrated in various studies, including those conducted by [5,6], where it has found
applications in the context of goodness-of-fit tests.

For a continuous random variable X supported on S with CDF F and PDF f , the ex-
tropy of X, denoted by J(F), is defined as

J(F) = −1
2

E f ( f (x)) = −1
2

∫
S

f 2(x)dx (2)

In most practical scenarios, the true PDF f is unknown, and hence, we need to
estimate the entropy (1) and extropy (2) from the available data, which can be a challenging
task. Several frequentist methods are available for entropy estimation in the literature.
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Among different approaches, Ref. [7] estimator has gained wide popularity due to its
simplicity. Ref. [7] derived the expression for (1) in terms of the inverse of the distribution
function F, given by

H(F) =
∫ 1

0
log
(

d
dt

F−1(t)
)

dt.

Using the empirical distribution function Fn instead of the unknown F, Ref. [7] proposed
an estimator for H(F) based on the difference operator rather than the differential operator.
The derivative of F−1(t) is estimated using a function of the order statistics. Specifically,
if X1, X2, . . . , Xn is a sample from F, then [7] estimator is given by

H1m,n = n−1
n

∑
i=1

log
(X(i+m) − X(i−m)

2m/n

)
, (3)

where m is a positive integer smaller than n/2, and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order
statistics of X1, X2, . . . , Xn with X(i−m) = X(1) if i ≤ m and X(i+m) = X(n) if i ≥ n−m. [7]

showed that H1m,n
p→ H(F) as n→ ∞, m→ ∞, and m

n → 0, where
p→ denotes convergence

in probability. Note that the expression inside the log in (3) is the slope of the straight line
that passes through the points

(
i+m

n , X(i+m)

)
and

(
i−m

n , X(i−m)

)
, where Fn(X(i+m)) =

i+m
n

and Fn(X(i−m)) =
i−m

n . Ref. [8] proposed a modification to the estimator (3) as it does not
provide the correct formula for the slope when i ≤ m or i ≥ n− m + 1. The proposed
estimator, denoted by H2m,n, is given by

H2m,n = n−1
n

∑
i=1

log
(X(i+m) − X(i−m)

cim/n

)
, (4)

where

ci =


m+i−1

m if 1 ≤ i ≤ m
2 if m + 1 ≤ i ≤ n−m
n+m−i

m if n−m + 1 ≤ i ≤ n
. (5)

As for extropy estimation, Ref. [5] noticed that the extropy, first defined in (2) can be
rewritten as

J(F) = −1
2

∫ 1

0

[
d
dt

F−1(t)
]−1

dt

and proposed the following estimator for J(F):

J1m,n = − 1
2n

n

∑
i=1

2m/n
X(i+m) − X(i−m)

,

As in H1m,n, Ref. [5] found that J1m,n gives incorrect estimates for i ≤ m or i ≥
n−m + 1. Therefore, they proposed the revised estimator J2m,n, where

J2m,n = − 1
2n

n

∑
i=1

cim/n
X(i+m) − X(i−m)

.

Here, ci is defined as specified in Equation (5). Ref. [5] proved that J1m,n and J2m,n
converges in probability to J(F) under the same conditions as for H1m,n or H2m,n.

Other frequentist nonparametric estimators of entropy include those proposed by [9–14].
A comprehensive review of nonparametric entropy estimators can be found in [15]. For ex-
tropy estimation, alternative approaches are provided by [16] as well as [17].

Bayesian estimation of entropy has not received as much attention as the frequentist
approach. However, Ref. [18] developed a Bayes estimator of H(F) based on the Dirichlet
process [19]. Recently, Refs. [6,20,21] proposed an estimator of entropy and extropy based
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on an approximation of the Dirichlet process DP(a, G) introduced by [22], where a > 0 and
G is a known CDF. The approximation is defined as

PN(·) =
N

∑
i=1

wi,NδYi (·), (6)

In this equation, the weights (w1,N , . . . , wN,N) follow a Dirichlet distribution with
parameters (a/N, . . . , a/N), while Y1, . . . , YN are independent and identically distributed
from the distribution G. The notation δYi represents the Dirac measure at the point Yi. The se-
quences (Wi,N)1 ≤ i ≤ N and (Yi)1 ≤ i ≤ N are independent. We refer to (Yi)1 ≤ i ≤ N
as the data points of PN . Let

Hm,N,a =
1
N

N

∑
i=1

log
(Y(i+m) −Y(i−m)

ci,a

)
(7)

and

Jm,N,a = −
1

2N

N

∑
i=1

ci,a

Y(i+m) −Y(i−m)
, (8)

where

ci,a =


∑i+m

k=2 wk,N 1 ≤ i ≤ m,
∑i+m

k=i−m+1 wk,N m + 1 ≤ i ≤ N −m,
∑N

k=i−m+1 wk,N N −m + 1 ≤ i ≤ N.
(9)

As N → ∞, m→ ∞, m
N → 0 and a→ ∞, Refs. [6,20] showed that

Hm,N,a
p→ H(G) = −

∫
S

g(x) log g(x)dx

and

Jm,N,a
p→ J(G) = −1

2

∫
S

g2(x)dx,

where G′(x) = g(x). Observe that the slope of the straight line connecting the two points(
PN(Y(i−m)), Y(i−m)

)
and

(
PN(Y(i+m)), Y(i+m)

)
is

Y(i+m) −Y(i−m)

PN(Y(i+m))− PN(Y(i−m))
=

Y(i+m) −Y(i−m)

ci,a
.

Let X = (X1, X2, . . . , Xn) be a sample from F and DP(a, G) be a prior of F. Consider
Hm,N,a|X to be the posterior version of Hm,N,a as defined in (7) with PN replaced by PN |X,
an approximation of DP(a + n, GX), where

GX = a(a + n)−1G + n(a + n)−1Fn. (10)

Then, as N → ∞, m→ ∞, n→ ∞, m
N → 0, and a

n → 0, we have [6,20]

Hm,N,a|X
p→ H(F) = −

∫
S

f (x) log f (x)dx,

and

Jm,N,a|X
p→ J(F) = −1

2

∫
S

f 2(x)dx,
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where F′(x) = f (x).
Recently, there has been significant interest in studying the variability of information

measures in the literature. In certain situations, it is possible to encounter two random
variables with identical entropy or extropy. As a result of these circumstances, researchers
ponder whether entropy or extropy would be the most suitable criterion for measuring
uncertainty. One way of determining which probability distribution is more suitable is to
check its variance. This scenario serves as a motivation for exploring two variance measures
associated with entropy and extropy, known as varentropy and varextropy, respectively.

For a random variable X, the varentropy, denoted by VH(F), is defined as follows:

VH(F) = Var f (log( f (X))) =
∫

S
f (x)[log f (x)]2dx−

[∫
S

f (x)log f (x)dx
]2

= E f

(
log(( f (x))2)

)
− [H(F)]2.

Ref. [23] introduced varentropy as a compelling alternative to the kurtosis measure,
particularly for comparing heavy-tailed distributions. In fact, varentropy has proven
to be a valuable tool for assessing heavy-tailed distributions instead of relying solely
on kurtosis. Subsequently, varentropy has found diverse applications across various
fields. In computer science, varentropy plays an instrumental role in data compression,
studying the variability of uncertainty measures [24], testing uniformity [25], and analyzing
statistical issues [26]. Moreover, researchers have effectively employed varentropy to
explore the variability of interval entropy measures [27]. Additionally, varentropy has
proven valuable in applications related to proportional hazard rate models [24] and residual
lifetime distributions [26].

Ref. [25] presented six estimators for computing varentropy. In this context, we will
focus on two specific estimators based on the estimators (3) and (4). Specifically, VH(F)
can be expressed as

VH(F) =
∫ 1

0
log2

(
d
dt

F−1(t)
)

dt−
[∫ 1

0
log
(

d
dt

F−1(t)
)

dt
]2

, (11)

the two estimators of [25] are

VH1mn =
1
n

n

∑
i=1

log2
(X(i+m) − X(i−m)

2m/n

)
− [H1m,n]

2

=
1
n

n

∑
i=1

log2
(

X(i+m) − X(i−m)

)
−
[

1
n

n

∑
i=1

log(X(i+m) − X(i−m))

]2

(12)

and

VH2mn =
1
n

n

∑
i=1

log2
(X(i+m) − X(i−m)

cim/n

)
− [H2m,n]

2,

where H1m,n, H2m,n, and ci are defined in (3), (4), and (5), respectively. Noughabi and
Noughabi (2023) showed that VH1mn and VH2mn converge in probability to VH(F) under
the same conditions as for H1m,n or H2m,n.

Another measure of information variability is the varextropy. Let X be an abso-
lutely continuous random variable, then its varextropy, denoted as V J(X), is defined as
follows [28]:

V J(X) = Var f (−
1
2

f (X)) =
1
4

E f (( f (X))2)− (J(X))2 (13)

=
1
4

∫
S

f 3(x)dx− 1
4

[∫
S

f 2(x)dx
]2

. (14)
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Unlike the varentropy VH(F), the estimation of V J(F) has not been intensively dis-
cussed in the literature. Notice that

V J(F) =
1
4

∫ 1

0

[
d
dt

F−1(t)
]−2

dt− 1
4

[∫ 1

0

[
d
dt

F−1(t)
]−1

dt

]2

. (15)

Accordingly, our proposed estimators of V J(X) based on the two estimator of [5] are:

V J1mn =
1

4n

n

∑
i=1

[
2m/n

x(i+m) − x(i−m)

]2

− [J1m,n]
2 (16)

and

V J2mn =
1

4n

n

∑
i=1

[
cim/n

x(i+m) − x(i−m)

]2

− [J2m,n]
2, (17)

where ci is defined in (5). The convergence in probability of V J1mn and V J2mn to V J(F)
straightforwardly follows from the consistency of J1m,n and J2m,n.

The rest of this paper is structured as follows. Section 2 presents the proposed Bayesian
estimator based on the Dirichlet process. Section 3 details the proposed approach, including
a computational algorithm. In Section 4, a test for uniformity is developed. Section 5
presents several examples to illustrate the approach. Finally, Section 6 contains concluding
remarks and discussions.

2. Bayesian Estimation of Varentropy and Varextropy

In this section, we derive Bayesian nonparametric estimators for varentropy and
varextropy. Define the following two quantities:

VHm,N,a =
1
N

N

∑
i=1

log2
(Y(i+m) −Y(i−m)

ci,a

)
− [Hm,N,a]

2 (18)

and

V Jm,N,a =
1

4N

N

∑
i=1

[
ci,a

Y(i+m) −Y(i−m)

]2

− [Jm,N,a]
2, (19)

where ci,a, Hm,N,a, and Jm,N,a are defined in (9), (7), and (8), respectively. The following
proposition presents the prior formulation of varentropy and varextropy. The proof follows
from the consistency of Hm,N,a and Jm,N,a.

Lemma 1. Let VHm,N,a and V Jm,N,a be defined as in (18) and (19), respectively. Let PN be an
approximation of the DP(a, G) as defined (6). As N → ∞, m→ ∞, m

N → 0 and a→ ∞, we have

VHm,N,a
p→ VH(G)

and

V Jm,N,a
p→ V J(G),

where G′(x) = g(x).

The following proposition demonstrates that as the sample size increases (with the
concentration parameter a being relatively small compared to the sample size n), the pos-
terior distributions of VHm,N,a and V Jm,N,a converge in probability to VH(F) and V J(F),
respectively. The proof follows from consistency of Hm,N,a|X and Jm,N,a|X.
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Lemma 2. Let X = (X1, . . . , Xn) be a sample from F. Let the prior on F be DP(a, H). Let
VHm,N,a and V Jm,N,a be as defined in (18) and (19), respectively. As N → ∞, m → ∞, n → ∞,
m
N → 0, and a

n → 0, we have

VHm,N,a|X
p→ VH(F)

and

V Jm,N,a|X
p→ V J(F),

where VH(F) and V J(F) are defined in (11) and (14), respectively, with F′(x) = f (x).

3. Computational Algorithms

Let X = (X1, . . . , Xn) be a sample from a continuous distribution F. The objective is to
approximate VH(F) and JH(F) using the approximation discussed in Section 2. To proceed
with this approximation, it is important to determine the values of m, a, and G. We begin
by considering the choice of m. A commonly used formula, proposed by [29], is given by

m = b
√

N + 0.5c, (20)

where byc denotes the largest integer less than or equal to y. Note that the value of m in (20)
is used for the prior. For the posterior, the value of N should be replaced with the number
of distinct data points in PN |X, an approximation of F|X. It is worth noting that, from (10),
if a/n is close to zero, the number of distinct data points in PN |X will be approximately n.

Regarding the hyperparameters a and G of the Dirichlet process, their selection de-
pends on the specific application of interest. For varentropy and varextropy estimation,
any choice of a such that a/n is close to zero should be suitable, regardless of the choice of
G. This property is evident from (10), as when a/n approaches 0, the sample will dominate
the prior guess G. Consequently, the approach becomes invariant to the choice of G. As an
illustrative example, by setting a = 0.01 and n = 20 in (10), we obtain

GX = 0.0005G + 0.9995Fn.

This suggests a 99.95% likelihood of selecting a sample from the gathered data rather
than drawing a new sample from G. To facilitate estimation, we will consider G as the
uniform distribution over (0, 1) and set a = 0.01, although alternative choices are certainly
possible. Within Section 4, we will include an example that investigates the sensitivity of
the approach to the choices of a and G.

For a given observed data set X = (X1, X2, . . . , Xn), we employ the following compu-
tational algorithm to estimate VH(F) and V J(F) based on Equations (18) and (19).

Algorithm 1. (Nonparametric Estimation of Varentropy and Varextropy):

(i) Generate a sample from PN , where PN is an approximation of DP(a = 0.01, G = U(0, 1)).
(ii) Generate a sample from PN |X, where PN |X is an approximation of ∼DP(a + n, GX).
(iii) Compute VHm,N,a|X and V Jm,N,a|X as specified in Lemma 2.
(iv) Repeat steps (i) and (iii) to obtain a sample of r values from VHm,N,a|X and V Jm,N,a|X.

As r increases, the average of the generated r values becomes the estimator for varentropy
and varextropy.

4. Testing for Uniformity

Suppose that X = (X1, . . . , Xn) is a sample from an unknown continuous distribution
F. The objective is to test the hypothesis H0 : F(x) = F0(x), for all x ∈ R, where F0
represents a fully specified distribution. By utilizing the probability integral transform
property, we can deduce that F(X1), . . . , F(Xn) follows the uniform distribution on the
interval (0, 1). Therefore, testing the null hypothesis is equivalent to testingH0 : U(x) = x
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for all x ∈ (0, 1), where U(x) represents the CDF of a uniform (0, 1) random variable.
For further details on testing uniformity, please consult the work of [30].

For any random variable X, it holds that VH(F) ≥ 0 and V J(F) ≥ 0. The following
proposition demonstrates that equality is achieved when F corresponds to the CDF of a
uniform distribution on the interval (0, 1). This property plays a crucial role in testing the
hypothesis H0.

Proposition 1. Let f be a probability density function with support in [0, 1], we have

(i) VH(F) = 0 if and only if f (x) = 1 for all x ∈ (0, 1) (i.e., f is the PDF of the uniform
random variable on (0, 1)).

(ii) V J(F) = 0 if and only if f (x) = 1 for all x ∈ (0, 1) (i.e., f is the PDF of the uniform random
variable on (0, 1)).

Proof. For the proof of (i), see Theorem 4.1 of [25]. For (ii), if f (x) = 1 for all x ∈ (0, 1),
then V J(F) = Var(−0.5 f (X)) = 0. Also, if V J(F) = 0, then f (x) = c, for all x ∈ (0, 1).
Since

∫ 1
0 f (x)dx = 1, we have c = 1. Hence, f (x) = 1 for all x ∈ (0, 1).

The proposed test for uniformity involves comparing VHm,N,a|X and VJm,N,a|X. When
the null hypothesis H0 is true, it is expected that VHm,N,a|X ≈ VJm,N,a|X ≈ 0. Conversely,
if there is evidence that VHm,N,a|X or VJm,N,a|X deviates significantly from zero,H0 is rejected.

5. Examples
5.1. Simulation Study

In this subsection, we focus on investigating the efficiency and robustness of the
proposed estimator for varentropy and varextropy. Additionally, we demonstrate the
implementation of the uniformity test using these estimations. To evaluate the performance
of our proposed Bayesian estimator, we compare it with the non-Bayesian counterparts
obtained from (12), (13), (16), and (17). The comparison between Bayesian and non-Bayesian
methods holds particular significance in this context, particularly when we consider the
scenario where a = 0.01. In this case, the estimator remains unaffected by the selection of
the prior guess G, as demonstrated in Section 4.

To carry out the computations, we implemented the required program codes in the
programming language R, and these codes are made available by the authors. For demon-
stration purposes, we constructed a demo for the algorithms and presented them using
R Shiny, as shown here: https://annaly.shinyapps.io/BayesianVarentropyVarextropy/
(accessed on 15 July 2023). In Algorithm 1, we set the parameters r = 1000 and N = 500
to ensure accurate and sufficient evaluations. Additionally, to ensure reproducibility,
the set.seed(100) function in R was utilized for all examples.

Throughout this section, we use the following notation: N(µ, σ2) denotes the normal
distribution with mean µ and standard deviation σ, tr represents the t distribution with r
degrees of freedom, Exp(λ) corresponds to the exponential distribution with mean 1/λ,
U(a, b) signifies the uniform distribution over the interval (a, b), and beta(α, β) denotes the
beta distribution with parameters α and β.

In Tables 1 and 2, for each sample size (n = 20, 50, 100), 1000 samples were generated.
We have considered three distributions: uniform on (0, 1) (exact varentropy and varex-
topy are both 0), exponential with mean 1 (exact varentropy and varextropy are 1 and
1/48 ≈ 0.0208, respectively), N(0, 1) (exact varentropy and exact varextropy are 0.5 and
(2−

√
3)/16π

√
3 ≈ 0.0031, respectively). The estimators and their root mean squared

errors are computed and reported in Tables 1 and 2. The reported value of the estimator
(Est) is the average of the 1000 estimates. On the other hand, the root mean squared

error (RMSE) is computed as follows:
√

∑1000
i=1 (Esti − true value)2/1000, where Esti is the

estimated value based on the ith sample.

https://annaly.shinyapps.io/BayesianVarentropyVarextropy/
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Table 1. Varentropy Measure Estimates.

V Hm,n,a|X V H1m,n V H2m,n

Distribution n m Est(RMSE)

U(0,1)

20 4 0.2055(0.2248) 0.1749(0.218) 0.1099(0.1465)

50 7 0.1266(0.1334) 0.1059(0.1214) 0.0641(0.0769)

100 10 0.0919(0.0954) 0.0783(0.0873) 0.0469(0.0536)

Exp(1)

20 4 0.7446(0.4699) 0.6663(0.5105) 0.6586(0.5258)

50 7 0.9025(0.3148) 0.7929(0.3454) 0.8344(0.3396)

100 10 0.9671(0.2315) 0.8641(0.2533) 0.9203(0.2417)

N(0, 1)

20 4 0.2646(0.2621) 0.1221(0.3885) 0.1620(0.3574)

50 7 0.3051(0.2245) 0.1449(0.3633) 0.2351(0.2864)

100 10 0.3666(0.1677) 0.2136(0.2971) 0.319(0.2076)

Table 2. Varextropy Measure Estimates.

V Jm,n,a|X JQ1m,n JQ2m,n

Distribution n m Est(RMSE)

U(0,1)

20 4 0.0828(0.1159) 0.1698(0.3129) 0.0502(0.0875)

50 7 0.0404(0.0460) 0.0642(0.0943) 0.0217(0.0291)

100 10 0.0262(0.0283) 0.0352(0.0460) 0.0135(0.0166)

Exp(1)

20 4 0.0589(0.1451) 0.1419(0.5516) 0.0505(0.1466)

50 7 0.0370(0.0291) 0.0621(0.0696) 0.0311(0.0238)

100 10 0.0337(0.0197) 0.0514(0.0435) 0.0294(0.0161)

N(0, 1)

20 4 0.0063(0.0065) 0.0062(0.0136) 0.0043(0.0047)

50 7 0.0053(0.0034) 0.0033(0.0022) 0.0041(0.0026)

100 10 0.0069(0.0044) 0.0037(0.0018) 0.0043(0.0021)

Based on the findings presented in Tables 1 and 2, it is evident that the estimators for
varentropy and varextropy demonstrate overall good performance.

It is also of interest to examine the impact of utilizing different base measures G and
concentration parameters a on the methodology. To explore this, we consider two distinct
values for a, namely 0.01 and 5, and examine various choices for G. In our analysis, we
utilize a dataset generated from the exponential distribution with a mean of 1. Based on
the findings presented in Table 3, it can be concluded that the estimators exhibit robustness
to the choice of G when a = 0.01.

In this last example, we generated samples of sizes n = 20, 50, and 100 from the uni-
form distribution on the interval (0, 1). The goal is to test the hypothesis
H0 : F(x) = F0(x) using the proposed test of uniformity. To achieve this, we consid-
ered a range of candidate distribution functions F0(x) as outlined in Table 4, where

Ak : F0(x) = 1− (1− x)k, 0 ≤ x ≤ 1 (for k = 1.5, 2);

Bk : F0(x) =
{

2k−1xk 0 ≤ x ≤ 0.5,
1− 2k−1(1− x)k 0.5 ≤ x ≤ 1

(for k = 1.5, 2, 3);

Ck : F0(x) =
{

0.5− 2k−1(0.5− x)k 0 ≤ x ≤ 0.5,
0.5 + 2k−1(0.5− x)k 0.5 ≤ x ≤ 1

(for k = 1.5, 2).
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Table 3. Analysis of the impact of different values of a and G on the proposed estimators.

G a V Hm,n,a|X V Jm,n,a|X
N(0, 1) 0.01 0.8758 0.0663

5 2.4917 0.0255

N(3, 9) 0.01 0.8877 0.0667
5 3.2328 0.0073

t1 0.01 0.8932 0.0681
5 7.7335 0.0215

Exp(1) 0.001 0.8587 0.0657
5 1.6113 0.0725

U(0, 1) 0.01 0.8699 0.0668
5 0.7525 0.0776

These candidate distribution functions Ak, Bk, and Ck of F0(x) have been previously
studied by various authors, including [25,31]. The distributions of Exp(2) and N(0, 1) are
included here to explore cases with support different from [0, 1]. The results are presented in
Table 4, where we also included the p-values obtained from the Kolmogorov–Smirnov test.

Table 4. Goodness-of-Fit Test.

n F0 Est. of V H Est. of V J Threshold
of V H

Threshold
of V J p-Value

20 A1.5 0.1573 0.0423 0.2461 0.0955 0.2953
A2 0.2494 0.0839 0.0442
B1.5 0.1322 0.0337 0.7472
B2 0.1553 0.0421 0.4646
B3 0.2934 0.1163 0.1469

C1.5 0.3082 0.1687 0.1958
C2 0.5543 0.6276 0.0745

U(0, 1) 0.1529 0.0484 0.6307
Exp(2) 0.2604 0.1169 0.1300

beta(3, 1) 1.1438 2.6605 0.0000
N(0, 1) 0.1944 0.3892 0.0000

50 A1.5 0.2378 0.1044 0.1469 0.0475 0.0073
A2 0.6105 0.7342 0.0000
B1.5 0.1176 0.0391 0.4119
B2 0.2564 0.1421 0.0857
B3 0.7699 1.6625 0.0048

C1.5 0.2449 0.1046 0.0430
C2 0.54717 0.4817 0.0045

U(0, 1) 0.0876 0.0232 0.3349
Exp(2) 0.3819 0.2553 0.0013

beta(3, 1) 1.0189 1.6964 0.0000
N(0, 1) 0.1361 0.2849 0.0000

100 A1.5 0.2073 0.0873 0.1042 0.03107 0.0019
A2 0.5906 0.8231 0.0000
B1.5 0.0958 0.0329 0.6042
B2 0.2602 0.1665 0.0764
B3 0.9135 3.0551 0.0011

C1.5 0.2877 0.1323 0.0080
C2 0.7074 0.8427 0.0001

U(0, 1) 0.0755 0.0193 0.2672
Exp(2) 0.3507 0.1926 0.0000

beta(3, 1) 1.3669 4.1632 0.0000
N(0, 1) 0.1006 0.1951 0.0000
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Using Monte Carlo simulation, we can determine an appropriate cut-off for both
VHm,n,a|X and V Jm,n,a|X in the test of uniformity under H0. We recommend using Q3,
the third quartile, as a suitable threshold. In Table 4, we present the thresholds for n = 20, 50,
and 100, based on 5000 values of VHm, n, a|X and V Jm,n,a|X. If both estimates are less than
their respective thresholds, it is advisable not to reject the null hypothesis H0. However,
if one of the estimates is greater than its threshold, it is recommended to reject H0.

For example, when n = 50 and F0 = A1.5, as VHm,n,a|X > 0.1469 (or V Jm,n,a|X >
0.0475), H0 is rejected. Conversely, when F0 = B1.5, as both VHm,n,a|X < 0.1469 and
V Jm,n,a|X < 0.0475,H0 is not rejected.

5.2. Real Data Examples

Military Personnel Carriers Dataset [32]: The following data represents mileages for
19 military personnel carriers that failed in service. The mileages are as follows:

162, 200, 271, 320, 393, 508, 539, 629, 706, 778, 884, 1003, 1101, 1182, 1463, 1603, 1984,
2355, 2880.

The aim of the study is to test whether the data follows an exponential distribution with
a mean of 998. Employing Algorithm 1 with parameters n = 19, N = 500, and r = 1000,
we obtained VHm,n,a|X = 0.1124 and V Jm,n,a|X = 0.0331. Since both of these values are
significantly lower than their respective thresholds (0.2509 for VHm,n,a|X and 0.0969 for
V Jm,n,a|X), we cannot reject the hypothesis that the failure time is exponentially distributed
with a mean of 998. This conclusion aligns with the findings of [33].

Chick Dataset [30]: The dataset below represents the weights of 20 chicks in grams:

156, 162, 168, 182, 186, 190, 190, 196, 202, 210, 214, 220, 226, 230, 230, 236, 236, 242, 246, 270.

The goal of this study is to test whether the data follow a normal distribution with a
mean of 200 and a variance of 1225. Using Algorithm 1 with parameters n = 20, N = 500,
and r = 1000, we obtained VHm,n,a|X = 0.1396 and V Jm,n,a|X = 0.0000. Both of these
values are significantly lower than their respective thresholds (0.2461 for VHm,n,a|X and
0.0955 for V Jm,n,a|X). Consequently, we cannot reject the hypothesis that the data follow a
normal distribution with a mean of 200 and a variance of 1225. This conclusion is consistent
with the findings of [30].

6. Conclusions

In this paper, we introduced a novel estimator for varentropy and varextropy, drawing
inspiration from Bayesian nonparametric statistical methods. This method exhibits flexibility
as it does not rely on any specific assumptions about the underlying distribution. Furthermore,
we also presented a goodness-of-fit test. Extensive testing and validation of our estimator
were conducted using multiple simulated examples and a real-life application. The results
clearly demonstrate that our estimator displays favorable and accurate performance.

Moreover, the applicability of our approach is not limited to varentropy and varex-
tropy alone. It is possible to extend the results presented in this paper to study other
dispersion indices. For instance, dispersion indices based on Kerridge inaccuracy mea-
sure and Kullback–Leibler divergence, as studied by [34], can be explored using a similar
Bayesian nonparametric framework.
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