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Abstract: A stochastic predator–prey system with group cooperative behavior, white noise, and
Lévy noise is considered. In group cooperation, we introduce the Holling IV interaction term to
reflect group defense of prey, and cooperative hunting to reflect group attack of predator. Firstly, it is
proved that the system has a globally unique positive solution. Secondly, we obtain the conditions of
persistence and extinction of the system in the sense of time average. Under the condition that the
environment does not change dramatically, the intensity of cooperative hunting and group defense
needs to meet certain conditions to make both predators and preys persist. In addition, considering
the system without Lévy jump, it is proved that the system has a stationary distribution. Finally, the
validity of the theoretical results is verified by numerical simulation.
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1. Introduction

The predator–prey model is one of the most interesting and important topics in
mathematical ecology, and has attracted many mathematicians and ecologists to study it. In
the mid-20th century, Leslie and Gower [1,2] proposed a Leslie–Gower-type predator–prey
model, which is characterized by the decrease in the number of predators being inversely
proportional to its per capita preference for food availability. Considering that the number
of predators was limited by the most important food, AzizAlaoui and Okiye [3] proposed
the modified Leslie–Gower-type model. As far as we know, there are many articles on
the Leslie–Gower model, most of which are deterministic equations. There are not many
studies on Leslie–Gower with white noise and Lévy noise, and almost no research on the
Leslie–Gower model with cooperative hunting and group defense functions.

In the predator–prey model, the predation rate intuitively reflects the relationship
between the two populations. Scholars have proposed a series of functional responses to
describe the predation rate [4–8]. Ali et al. [9] numerically studied the effects of nonlinear
reaction–diffusion equations on the dynamics of prey–predator interactions. In nature,
cooperation between species of the same species is common, and many scholars have
introduced cooperation items into the modeling of functional responses for predation rates.
Among them, there is cooperative hunting, such as lions hunting faster animals [10,11]
and wolves hunting collectively against animals larger than themselves [12], and many
scholars have studied the significance of hunting cooperation [13,14]. Chow and Jang [15]
studied a predator–prey system with ay

1+ay as the cooperative hunting term, where a is the
coefficient related to cooperation strength. The results show that large-scale cooperative
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hunting may promote the persistence of predators. If there is no cooperation, predators
will become extinct. Of course, species at the bottom of the food chain usually carry
out group defense through mass reproduction. Andrews [16] proposed the so-called
Monod–Haldane function and used it to model the inhibitory effect at high concentrations.
Then, Sokol and Howell [17] proposed a simplified Monod–Haldane function of the form

K1S
K2+S2 . After that, Shen [18] used a simple Holling IV to describe the group defense of
prey for research. Bai [19] studied the global dynamics of a predator–prey system with
cooperative hunting, and found that cooperative hunting is beneficial to the coexistence of
prey and predator. Du [20] considered the cooperative hunting and group defense of the
system without random perturbations, and the effect of predator cooperative hunting and
predation aggregation on the stability of coexistence and system dynamics. Recently, many
scholars have studied the models with group defense [21–24].

Inspired by the above articles, we add the Holling IV type function and cooperative
hunting term into the Leslie–Gower model to show the cooperation of prey and predator.

dx(t) =x(t)
[

a− bx(t)− qy2(t)
(m + y(t))(c + x2(t))

]
dt,

dy(t) =y(t)
[

δ− hy(t)
l + x(t)

]
dt,

(1)

with initial values x(0) = x0 and y(0) = y0. x(t) and y(t) denote the number of prey and
predators at time t. It should be noted that a, δ, b, q, m, c, h, and l are all positive numbers.
The parameters a and δ are the growth rate of the prey and the predator, respectively. b
represents the intensity of competition between individuals of the prey. l describes the
degree of protection provided by the environment to the predator. h denotes the maximum
per capita reduction rate of the prey. x(t)

c+x2(t) is the simplified Holling IV functional response

function, where c describes the degree of group defense. qy(t)
m+y(t) is the cooperative hunting

term, where q and m are cooperative coefficients, reflecting the intensity of cooperative
hunting between predators.

What we know is that there are endless noise disturbances in nature. In the past,
random biological models [25–28] have been a hot topic for biologists. In the study of
stochastic interference, there are both white noise [29,30] and Lévy jump [31,32] consid-
ering sudden environmental disturbance. Random perturbations described by Brownian
motion describe continuous effects, and Lévy jumps are considered to describe sudden and
violent environmental changes well. Therefore, considering both white noise and Lévy
noise is more realistic, so we obtain the following stochastic model:

dx(t) =x(t)
[

a− bx(t)− qy2(t)
(m + y(t))(c + x2(t))

]
dt

+ σ1x(t)dB1(t) +
∫

Γ
x(t−)γ1(u)Ñ(du, dt),

dy(t) =y(t)
[

δ− hy(t)
l + x(t)

]
dt + σ2y(t)dB2(t)

+
∫

Γ
y(t−)γ2(u)Ñ(du, dt),

(2)

where B1(t) and B2(t) are mutually independent standard Brownian motions, and x(t−),
y(t−) denote the left limits of x(t) and y(t). N(du, dt) is a Poisson counting measure
defined on λ(du). The characteristic measure λ on the measure subset Γ of [0,+∞] is such
that λ(Γ) < ∞. N(du, dt) is defined on R+ × (R− {0}). Ñ(dt, du) = N(dt, du)− λ(du)dt
is the corresponding martingale measure. In addition, γi(u)(γi(u) > −1, ∀u ∈ Γ) represents
the intensity of Lévy noise changing the prey and predator populations.

Throughout this paper, we give an Assumption 1 that there is a positive constant
P > 0 such that
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Assumption 1.∫
Γ
[ln(1 + γi(u))]2λ(du) < P,

∫
Γ

γi(u)2λ(du) < P, i = 1, 2. (3)

We will frequently use the following inequality:

k− 1− ln k ≥ 0, k > 0.

The rest of the paper is organized as follows. In Section 2, we prove that system 2 has
a unique global positive solution. In Section 3, we give the conditions for the extinction and
persistence of the prey and predator in the sense of time average. In Section 4, we prove
that a systemwithout Lévy noise has ergodic stationary distribution. In Section 5, we give
appropriate parameters for numerical simulation to verify the correctness of our theorem.
In the end, we summarize this article.

2. Existence and Uniqueness of a Global Positive Solution

The existence and uniqueness of global positive solutions is the basis for studying the
dynamic properties of stochastic differential systems. In this section, we will first prove the
existence and uniqueness of the local positive solution; then, we prove the global existence
and uniqueness of the positive solution of the system.

Lemma 1 ([33]). Denote by Σ(t) a local martingale vanishing at t = 0. Define

Σ̄(t) =
∫ t

0

d〈Σ〉(s)
(1 + s)2 , t ≥ 0,

where 〈Σ〉(t) = 〈Σ, Σ〉(t) stands for the Meyer’s angle bracket process. If lim sup
t→+∞

Σ̄ < +∞, then

lim
t→+∞

t−1Σ(t) = 0, a.s.

Lemma 2. For t ∈ [0, τe)(τe is the explosion time), model (2) has a unique solution for any initial
value (x0, y0) ∈ R2

+.

Proof. Consider the following equation:

dM(t) = d ln x(t) =
[

a− beM(t) − qe2N(t)

(m + eN(t))(c + e2M(t))
− 1

2
σ2

1

+
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

]
dt + σ1dB1(t) +

∫
Γ

ln(1 + γ1(u))Ñ(dt, du),

dN(t) = d ln y(t) =
[

δ− heN(t)

l + eM(t)
− 1

2
σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
dt

+ σ2dB2(t) +
∫

Γ
ln(1 + γ2(u))Ñ(dt, du),

(4)

with initial values M(0) = ln x0, N(0) = ln y0. Obviously, (4) satisfies the local Lipschitz
condition. Therefore, for t ∈ [0, τe), there is a local solution (ln x(t), ln y(t)) to (4) with the
initial value (ln x0, ln y0). It can be known from Itô′s formula that (x(t), y(t)) is the unique
local positive solution of (2) with initial value (x0, y0).

Theorem 1. For ∀t ∈ [0,+∞), model (2) has a unique global positive solution for any initial value
(x0, y0) ∈ R2

+.
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Proof. From Lemma 2, we can prove that τe = ∞ a.s. to prove that the solution is global. If
k0 > 0 is sufficiently large such that x0, y0 ∈ [ 1

k0
, k0], the following stopping time sequence

is defined for each integer k > k0.

τk = inf
{

t ∈ [0, τe) : min{x(t), y(t)} ≤ 1
k

or max{x(t), y(t)} ≥ k
}

.

Denote τ∞ = lim
k→∞

τk. Then, we can obtain τ∞ ≤ τe, a.s. We can obtain τe = ∞ a.s.

by proving τ∞ = ∞ a.s. If τ∞ 6= ∞, there are constants T ≥ 0 and ε ∈ (0, 1) such that
P(τe ≤ T) > ε. Then, ∃k1 ≥ k0 such that the following holds:

P(τe ≤ T) ≥ ε for all k > k1.

Define a C2-function V : R2
+ → R+

V(x, y) = (x− 1− ln x) + (y− 1− ln y).

Since s− 1− ln s ≥ 0, for all s > 0, V(x, y), is nonnegative. Applying Itô′s formula to
V(x, y), we can obtain

dV(x, y) =LV(x, y)dt + σ1(x− 1)dB1(t) + σ2(y− 1)dB2(t)

+
∫

Γ
[x(t−)γ1(u)− ln(1 + γ1(u))]Ñ(dt, du)

+
∫

Γ
[y(t−)γ2(u)− ln(1 + γ2(u))]Ñ(dt, du),

(5)

where

LV(x, y) = (x− 1)
(

a− bx(t)− qy2(t)
(m + y(t))(c + x2(t))

)
+ (y− 1)

(
δ− hy(t)

l + x(t)

)
+

1
2

σ2
1 +

1
2

σ2
2 +

∫
Γ

[
γ1(u)− ln(1 + γ1(u))

]
λ(du)

+
∫

Γ

[
γ2(u)− ln(1 + γ2(u))

]
λ(du).

Applying Assumption 1 , we obtain

LV(x, y) =ax− bx2 − qy2

(m + y)(c + x2)
− (a− bx− qy2

(m + y)(c + x2)
)+

δy− hy2

l + x
− (δ− hy

l + x
) +

∫
Γ

[
γ1(u)− ln(1 + γ1(u))

]
λ(du)

+
∫

Γ

[
γ2(u)− ln(1 + γ2(u))

]
λ(du)

≤− bx2 + (a + b)x +
hy
l
+ (

q
c
+ δ)y +

1
2

σ2
1 +

1
2

σ2
2 − a− δ

+
∫

Γ

[
γ1(u)− ln(1 + γ1(u))

]
λ(du) +

∫
Γ

[
γ2(u)− ln(1 + γ2(u))

]
λ(du)

=M1 + M2y,

where

M1 =max
x≥0

{
− bx2 + (a + b)x +

hy
l
+ (

q
c
+ δ)y +

1
2

σ2
1

+
1
2

σ2
2 − a− δ +

∫
Γ

[
γ1(u)− ln(1 + γ1(u))

]
λ(du)

+
∫

Γ

[
γ2(u)− ln(1 + γ2(u))

]
λ(du)

}
,
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M2 =
a
c
+ δ +

h
l

,

are positive constants. And because y ≤ 2(y− 1− ln y) + 2 ln 2 ≤ 2V(x, y) + 2 ln 2, the
following equation is true:

LV(x, y) ≤ M1 + M2(2V(x, y) + 2 ln 2)

= M1 + 2 ln 2 + 2M2V(x, y)

≤ M(1 + V(x, y)),

(6)

where M = max{M1 + 2M2 ln 2, 2M2}. Combining (5) and (6), we can obtain that

dV(x, y) ≤M(1 + V(x, y))dt + σ1(x− 1)dB1(t) + σ2(y− 1)dB2(t)

+
∫

Γ
[x(t−)γ1(u)− ln(1 + γ1(u))]Ñ(dt, du)

+
∫

Γ
[y(t−)γ2(u)− ln(1 + γ2(u))]Ñ(dt, du).

(7)

Integrating the two sides of (7) from 0 to τk ∧ T, and then taking the expectation, we
can obtain

EV(x(τk ∧ T), y(τk ∧ T)) ≤ V(x0, y0) + ME
∫ τk∧T

0
(1 + V(x, y))dt

≤ V(x0, y0) + MT + ME
∫ τk∧T

0
V(x, y)dt.

Applying the Gronwall’s inequality to the above equation, we obtain

EV(x(τk ∧ T), y(τk ∧ T)) ≤ (V(x0, y0) + MT)eMT.

Let Ωk = τk ≤ T; we have P(Ωk) ≥ ε. Therefore, for ∀ω ∈ Ωk, there is at least one
value equal to k or 1

k in x(τk, Ω) or y(τk, Ω). Note that V(x(τk), y(τk)) ≥ (k− 1− ln m) ∧
( 1

k − 1− ln 1
k ). Consequently,

(V(x0, y0) + MT)eMT ≥ E(IΩk(ω), V(x(τk), y(τk)))

≥ ε(k− 1− ln m) ∧ (
1
k
− 1− ln

1
k
),

where IΩk(ω) is the characteristic function of ωk. When k→ ∞, we infer that

ε(k− 1− ln k) ∧ (
1
k
− 1− ln

1
k
)→ +∞.

We derive the contradiction, so we can obtain τ∞ = ∞, and the theorem is proved.

3. Existence and Demise of Biological Populations

In this section, we derive the conditions for the extinction and persistence of prey
and predators.

Theorem 2. Suppose that (x(t), y(t)) is a positive solution of (2) with initial value (x0, y0). If
Assumption 1 is satisfied and

a >
1
2

σ2
1 −

∫
Γ
[ln(1 + γ1(u))− γ1(u)]λ(du),

δ <
1
2

σ2
2 −

∫
Γ
[ln(1 + γ2(u))− γ2(u)]λ(du),
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then the prey population x persists in the sense of time average, and the predator population y is
extinct, i.e.,

lim inf
t→+∞

t−1
∫ t

0
x(s)ds > 0, lim

t→+∞
y(t) = 0.

Proof. Using Itô’s formula in (2) gives

d ln x(t) =
[

a− bx(t)− qy2(t)
(m + y(t))(c + x2(t))

− 1
2

σ2
1

+
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

]
dt

+ σ1dB1(t) +
∫

Γ
ln(1 + γ1(u))Ñ(dt, du),

(8)

d ln y(t) =
[

δ− hy(t)
l + x(t)

− 1
2

σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
dt

+ σ2dB2(t) +
∫

Γ
ln(1 + γ2(u))Ñ(ds, du).

(9)

It follows from (9) that

d ln y(t) ≤
[

δ− 1
2

σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
dt + σ2dB2(t)

+
∫

Γ
ln(1 + γ2(u))Ñ(ds, du).

(10)

We take the integral of 0 to t on both sides of (10), and the following holds:

ln y(t) ≤ ln y0 +
∫ t

0

[
δ− 1

2
σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
dt + σ2B(t)

+
∫ t

0

∫
Γ

ln(1 + γ2(u))Ñ(ds, du).

Then, we obtain

ln y(t)
t
≤
[

δ− 1
2

σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
+

σ2B(t)
t

+
Σ1(t)

t
+

ln y0

t
.

where Σ1(t) =
∫ t

0

∫
Γ ln(1 + γ2(u))Ñ(ds, du), according to Lemma 1.

〈Σ1, Σ1〉(t) = t
∫

Γ
[ln(1 + γi(u))]2λ(du) < Kt i = 1, 2.

In view of Lemma 1, we obtain

lim
t→+∞

Σ1(t)
t

= 0.

In other words, we have shown that

lim
t→+∞

t−1 ln y(t) ≤ δ− 1
2

σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du) < 0.
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According to the conclusion of the third section in [34], we can obtain

lim
t→+∞

y(t) = 0.

Therefore, for ∀ε > 0, there exist t0 and Ωε such that P(Ωε) ≥ 1− ε, qy2(t)
(m+y)(c+x2(t)) ≥ ε

when t > t0 and ω ∈ Ωε; thus,

x(t)(a− bx(t)− ε)dt + σ1x(t)dB1(t) +
∫

Γ
x(t−)γ1(u)Ñ(du, dt) ≤ d(x)

≤ x(t)(a− bx(t))dt + σ1x(t)dB1(t) +
∫

Γ
x(t−)γ1(u)Ñ(du, dt).

By using the comparison theorem, we can obtain

lim inf
t→∞

t−1
∫ t

0
x(s)ds ≥

a− ε− 1
2 σ2

1 +
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

b
,

lim sup
t→∞

t−1
∫ t

0
x(s)ds ≤

a− 1
2 σ2

1 +
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

b
.

By the arbitrariness of ε,

lim
t→∞

t−1
∫ t

0
x(s)ds =

a− 1
2 σ2

1 +
∫

Γ [ln(1 + γ1(u))− γ1(u)]λ(du)
b

> 0.

Theorem 3. Suppose that (x(t), y(t)) is a positive solution of (2) with initial value (x0, y0). If
Assumption 1 is satisfied and

a <
1
2

σ2
1 −

∫
Γ
[ln(1 + γ1(u))− γ1(u)]λ(du),

δ >
1
2

σ2
2 −

∫
Γ
[ln(1 + γ2(u))− γ2(u)]λ(du),

then x is extinct, and y persists in the sense of time average, i.e.,

lim
t→+∞

x(t) = 0, lim inf
t→+∞

t−1
∫ t

0
y(s)ds > 0.

Proof. Similar to the proof of Theorem 2, we can obtain

lim
t→+∞

t−1 ln x(t) ≤ a− 1
2

σ2
1 +

∫
Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du) < 0.

Then, we have
lim

t→+∞
x(t) = 0.

Therefore, for ∀ε > 0, there exist t0 and Ωε such that P(Ωε) ≥ 1− ε, x(t) ≤ ε when
t > t0 and ω ∈ Ωε; thus,

y(t)
[

δ− hy(t)
l

]
dt + σ2y(t)dB2(t) +

∫
Γ

y(t−)γ2(u)Ñ(du, dt) ≤ dy(t)

≤ y(t)
[

δ− hy(t)
l + ε

]
dt + σ2y(t)dB2(t) +

∫
Γ

y(t−)γ2(u)Ñ(du, dt).
(11)
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Using the comparison theorem, we obtain

lim inf
t→∞

t−1
∫ t

0
y(s)ds ≥

l(δ− 1
2 σ2

2 +
∫

Γ [ln(1 + γ2(u))− γ2(u)]λ(du))
h

,

lim sup
t→∞

t−1
∫ t

0
y(s)ds ≤

l(δ− ε− 1
2 σ2

2 +
∫

Γ [ln(1 + γ2(u))− γ2(u)]λ(du))
h

.

From the arbitrariness of ε, the following equation can be given:

lim
t→∞

t−1
∫ t

0
y(s)ds =

l
h
{δ− 1

2
σ2

2 +
∫

Γ
[ln(1 + γ2(u))− γ2(u)]λ(du)} > 0.

Theorem 4. Suppose that (x(t), y(t)) is a positive solution of (2) with initial value (x0, y0). If
Assumption 1 is satisfied and

a <
1
2

σ2
1 −

∫
Γ
[ln(1 + γ1(u))− γ1(u)]λ(du),

δ <
1
2

σ2
2 −

∫
Γ
[ln(1 + γ2(u))− γ2(u)]λ(du),

then x and y are all extinct, i.e.,

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0.

Proof. By the proof of Theorems 2–3, this is obviously true.

Theorem 5. Suppose that(x(t), y(t)) is a positive solution of (2) with initial value (x0, y0). If
Assumption 1 is satisfied and

δ >
1
2

σ2
2 −

∫
Γ
[ln(1 + γ2(u))− γ2(u)]λ(du), q2 − 4(c− ql) ≤ 0,

h
[

a− 1
2

σ2
1 +

∫
Γ
[ln(1 + γ1(u))− γ1(u)]λ(du)

]
>

[
δ− 1

2
σ2

2 +
∫

Γ
[ln(1 + γ2(u))− γ2(u)]λ(du)

]
,

then x and y both persist in the sense of time average, i.e.,

lim inf
t→+∞

t−1
∫ t

0
x(s)ds > 0, lim inf

t→+∞
t−1

∫ t

0
y(s)ds > 0.

Proof. Integrating both sides of (9), we obtain

ln y(t) = ln y0 +

[
δ− 1

2
σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
t + σ2B(t)

−
∫ t

0

hy(s)
l + x(s)

ds +
∫ t

0

∫
Γ

ln(1 + γ2(u))Ñ(ds, du),
(12)

and

ln y(t) ≥ ln y0 +

[
δ− 1

2
σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
t + σ2B(t)

−
∫ t

0

hy(s)
l

ds +
∫ t

0

∫
Γ

ln(1 + γ2(u))Ñ(ds, du).
(13)
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Define ỹ(t) as the solution of the following equation:dỹ(t) = ỹ(t)
[

δ− hỹ(t)
l

]
dt + σ2ỹ(t)dB2(t) +

∫
Γ

ỹ(t−)γ2(u)Ñ(du, dt),

ỹ(0) = y0.

Then, we can obtain

lim
t→∞

t−1
∫ t

0
ỹ(s)ds =

l(δ− 1
2 σ2

2 +
∫

Γ [ln(1 + γ2(u))− γ2(u)]λ(du))
h

> 0.

Using comparison theorem in (11), we obtain y(t) ≥ ỹ(t). Then, there is

lim
t→∞

t−1 ln y(t) ≥ lim
t→∞

t−1 ln ỹ(t) = 0. (14)

Divide t on both sides of (12) and take the inferior limit, yielding

lim inf
t→∞

t−1 ln y(t) =δ− 1
2

σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

− lim inf
t→∞

t−1
∫ t

0

hy(s)
l + x(s)

ds.

Bringing (14) into the above formula, we observe that

lim inf
t→∞

t−1
∫ t

0

y(s)
l + x(s)

ds ≤
δ− 1

2 σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

h
. (15)

Similarly, for (13) we can obtain

lim inf
t→∞

t−1
∫ t

0
y(s)ds ≥

l(δ− 1
2 σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du))

h
. (16)

Because q2 − 4(c− ql) ≤ 0, we can deduce that

qy2

(m + y(t))(c + x2(t))
≤ qy(t)

c + x2(t)
≤ y(t)

l + x(t)
. (17)

Integrating both sides of (8) and using (17), then we can obtain

ln x(t) ≥ ln x0 +

[
a− 1

2
σ2

1 +
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

]
t + σ1B1(t)

−
∫ t

0

y(s)
l + x(s)

ds− b
∫ t

0
x(s)ds +

∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(ds, du).
(18)

From (15), we can obtain

t−1
∫ t

0

y(s)
l + x(s)

ds ≤
δ− 1

2 σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

h
+ ε, (19)

where ε is an any small positive real number. Similar to the proof of inequality (14), we
can obtain

lim
t→∞

t−1 ln x(t) ≤ 0.
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Then divide t on both sides of inequality (18); then, from (19), we have

ln x(t)
t
≥ ln x0

t
+

[
a− 1

2
σ2

1 +
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

]
+

σ1B1(t)
t

−
δ− 1

2 σ2
2 +

∫
Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

h
− ε− b

t

∫ t

0
x(s)ds

+
1
t

∫ t

0

∫
Γ

ln(1 + γ1(u))Ñ(ds, du).

(20)

Take the inferior limit on both sides of (19) at the same time, then using the arbitrariness
of ε results in

lim
t→∞

t−1
∫ t

0
x(s)ds ≥1

b

[
a− 1

2
σ2

1 +
∫

Γ

[
ln(1 + γ1(u))− γ1(u)

]
λ(du)

]
− 1

bh

[
δ− 1

2
σ2

2 +
∫

Γ

[
ln(1 + γ2(u))− γ2(u)

]
λ(du)

]
> 0.

4. Stationary Distribution without Lévy Noise

Furthermore, when γi(u) = 0 (i = 1, 2), this means excluding drastic environmental
changes. System (2) becomes the following system:

dx(t) =x(t)
[

a− bx(t)− qy2(t)
(m + y(t))(c + x2(t))

]
dt + σ1x(t)dB1(t),

dy(t) =y(t)
[

δ− hy(t)
l + x(t)

]
dt + σ2y(t)dB2(t).

(21)

We consider the stationary distribution and ergodicity of this system. Let X(t) be a
homogeneous Markov process in Ek (Ek denotes the k-dimensional Euclidean space), which
can be described by the following stochastic process:

dX(t) = h(X)dt +
m

∑
η=1

σηdBη(t).

Its diffusion matrix is as follows:

Ψ(x) =
(
aij(x)

)
, aij(x) =

m

∑
η=1

σi
ησ

j
η .

Assume that there exists a bounded domain U ⊂ Ek with regular boundary; then,
according to the conclusion in the second section of [35], we can prove that there exists
a neighborhood U and a nonnegative function g(x, y) such that Lg is negative for any
Eh\U, which can be used as a sufficient condition to prove that the system has a stationary
distribution.

Theorem 6. For any initial value (x0, y0), if the following conditions hold, then System (21) has
an ergodic stationary distribution.

δ−
(ϕ + 1)σ2

2
2

> 0, a + δ− 1
2

σ2
1 −

1
2

σ2
2 6= 0.

Proof. We define a C2− function g(x, y) as follows:

g(x, y) = x− F ln x + y− F ln y + y−ϕ − G(x∗, y∗), 0 < ϕ < 1,
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where G(x, y) = x − F ln x + y − F ln y + y−ϕ, and G(x∗, y∗) is the minimum value of
G(x, y). F is a undetermined constant; we will determine its value in the proof process.
According to Itô’s formula,

Lg(x, y) =x
[

a− bx− qy2

(m + y)(c + x2)

]
− F

[
a− bx− qy2

(m + y)(c + x2)

]
+ y(δ− hy

m + x
)− F(δ− hy

m + x
)− ϕy−ϕ−1 · y(δ− hy

m + x
)

+
F
2

σ2
1 +

F
2

σ2
2 +

ϕ(ϕ + 1)
2

σ2
2 y−ϕ

=− bx2 + (a + Fb)x +
qFy2

(m + y)(c + x2)
− qxy2

(m + y)(c + x2)

+ δy− Fa− Fδ +
−hy2 + Fhy + ϕhy−ϕ+1

m + x
+

F
2

σ2
1 +

F
2

σ2
2

−ϕ(δ−
(ϕ + 1)σ2

2
2

)y−ϕ.

Consider the following bounded regions:

U =

{
(x, y) ∈ R2

+| ε < x <
1
ε

, ε < y <
1
ε

}
.

We have R2
+\U = U1 ∪U2 ∪U3 ∪U4, where

U1 =

{
(x, y) ∈ R2

+, x > 1
ε

}
, U2 =

{
(x, y) ∈ R2

+, ε > x > 0
}

,

U3 =

{
(x, y) ∈ R2

+, x > ε, y > 1
ε

}
, U4 =

{
(x, y) ∈ R2

+, ε > y > 0
}

.

And ε is a small positive number satisfying the following conditions:

− b
2ε2 +41 +

42

m
< −1,

− |42|
m

+ (a + F)ε < −1,

41 +
42

m
− h

2mε2 < −1,

41 +
42

m
− ϕ(δ−

(ϕ + 1)σ2
2

2
)

1
εϕ < −1.

where

41 = sup
x∈(0,+∞)

{
− b

2
x2 + (a + Fb)x

}
− Fa− Fδ +

F
2

σ2
1 +

F
2

σ2
2 < ∞,

42 = sup
y∈(0,+∞)

{
−hy2

2
+ Fhy + mδy +

qmFy
c

+ ϕhy−ϕ+1
}

< ∞.

It is easy to prove that42 is greater than zero. Next, we will discuss it in four parts.
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(1) When (x, y) ∈ U1, we have

Lg(x, y) =− bx2 + (a + Fb)x +
qFy2

(m + y)(c + x2)
− qxy2

(m + y)(c + x2)

+ δy− Fa− Fδ +
−hy2 + Fhy + ϕhy−ϕ+1

m + x
+

F
2

σ2
1 +

F
2

σ2
2

− ϕ(δ−
(ϕ + 1)σ2

2
2

)y−ϕ

=− b
2

x2 − b
2

x2 + (a + Fb)x− Fa− Fδ +
F
2

σ2
1 +

F
2

σ2
2

− qxy2

(m + y)(c + x2)
+

qFy2

(m + y)(c + x2)
+ δy

+
−hy2

2 + Fhy + ϕhy−ϕ+1

m + x
− hy2

2(m + x)
− ϕ(δ−

(ϕ + 1)σ2
2

2
)y−ϕ

≤− b
2

x2 +41 +
42

m

<− b
2ε2 +41 +

42

m
<− 1.

(2) When (x, y) ∈ U2, we have

Lg(x, y) ≤42

m
+ (a + F)x− F(a + δ− 1

2
σ2

1 +
1
2

σ2
2 ).

Choose
F =

242

m(a + δ− 1
2 σ2

1 −
1
2 σ2

2 )
.

Therefore, we have

Lg(x, y) < −42

m
+ (a + F)ε < −1.

(3) When (x, y) ∈ U3, we have

Lg(x, y) ≤41 +
42

m
− h

2m
y2

<41 +
42

m
− h

2mε2

<− 1.

(4) When (x, y) ∈ U4, we have

Lg(x, y) ≤41 +
42

m
− ϕ(δ−

(ϕ + 1)σ2
2

2
)y−ϕ

<41 +
42

m
− ϕ(δ−

(ϕ + 1)σ2
2

2
)

1
εϕ

<− 1.

In summary, for ∀(x, y) ∈ R2
+\U, we have Lg < −1. Moreover, we can also find a

constant M = min
(x,y)∈U⊂R+

2

{σ2
1 x2, σ2

2 y2} that satisfies

σ2
1 x2ζ2

1 + σ2
2 y2ζ2

2 ≥ M|ζ2|, for all (x, y) ∈ U, ζ = (ζ1, ζ2) ∈ R2.
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At this point, we prove the sufficient condition for the existence of stationary distribu-
tion, and then System (21) has a unique stationary distribution.

5. Numerical Simulations

In this section, we choose the parameters that satisfy the conditions of the theorem
to carry out numerical simulation to verify the correctness of the theorem. We take the
determined initial values (x0, y0) = (2.9, 1.4) and let σ1 = σ2 = 0.6 , γ1 = γ2 = 0.06.

Example 1. In order to verify Theorem 2, we choose a = 4, b = 2, q = 5, m = 2, c = 5, δ = 0.1,
h = 9, l = 1; then, we have 4− 0.62

2 +
∫

Γ[ln(1 + 0.06)− 0.06] ≈ 3.81 > 0 and 0.1− 0.62

2 +∫
Γ[ln(1 + 0.06)− 0.06] ≈ −0.08 < 0. Therefore, by Theorem 2, the predator dies out and the prey

persists in the sense of time average. This is consistent with Figure 1.

0 5 10 15 20 25 30 35

Time T

0

0.5

1

1.5

2

2.5

d
e
n
si

ty

x(t)

y(t)

Figure 1. We select the following parameter values: a = 4, b = 2, q = 5, m = 2, c = 5, δ = 0.1,
h = 9, l = 1. The predator y dies out and the prey x persists in the sense of time average.

In order to verify Theorem 3, we choose a = 0.1, b = 3, q = 6, m = 5, c = 10,
δ = 5, h = 5, l = 1; then, we have 0.1− 0.62

2 +
∫

Γ[ln(1 + 0.06)− 0.06] ≈ −0.08 < 0 and

5− 0.62

2 +
∫

Γ[ln(1+ 0.06)− 0.06] ≈ 4.81 > 0. Therefore, by Theorem 3, the predator persists
in the sense of time average and the prey dies out. This is consistent with Figure 2.

0 5 10 15 20 25 30 35

Time T

0

0.5

1
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3

3.5

4

d
e
n
si

ty

x(t)

y(t)

Figure 2. a = 0.1, b = 3, q = 6, m = 5, c = 10, δ = 5, h = 5, l = 1. The predator y persists in the sense
of time average and the prey x dies out.

In order to verify Theorem 4, we choose a = 0.1, b = 2, q = 5, m = 2, c = 5, δ = 0.1,
h = 9, l = 1; then, we have 0.1− 0.62

2 +
∫

Γ[ln(1+ 0.06)− 0.06] ≈ −0.08 < 0 and 0.1− 0.62

2 +
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∫
Γ[ln(1 + 0.06)− 0.06] ≈ −0.08 < 0. Therefore, by Theorem 4, both the predator and the prey

die out. This is consistent with Figure 3.

0 5 10 15 20 25 30 35

Time T

0

0.5

1

1.5

2

2.5

3

3.5

4

d
e
n
si

ty

x(t)

y(t)

Figure 3. a = 0.1, b = 2, q = 5, m = 2, c = 5, δ = 0.1, h = 9, l = 1. Then, both the predator y and the
prey x die out.

In order to verify Theorem 5, we choose a = 30, b = 3, q = 6, m = 5, c = 20, δ = 5,
h = 5, l = 1; then, we have 5− 0.62

2 +
∫

Γ[ln(1 + 0.06)− 0.06] ≈ 4.81 > 0, 62 − 4(20−
6× 1) = −20 < 0 and 5(30− 0.62

2 +
∫

Γ[ln(1 + 0.06)− 0.06])− (5− 0.62

2 +
∫

Γ[ln(1 + 0.06)−
0.06]) ≈ 144.24 > 0. Therefore, by Theorem 5, both the predator and the prey persist in
the sense of time average. This is consistent with Figure 4. In order to further explore the
influence of cooperative hunting and group defense on existence, we only change q and
c in the above parameters. Only changing q = 6 to q = 15 makes the cooperative hunting
intensity increase and does not meet the theorem conditions; Figure 5 shows that the prey
perishes. Only changing c = 30 to c = 50 reduces the population defense strength and does
not satisfy the theorem condition; Figure 6 shows that the prey perishes. This tells us that
when the intensity of cooperative hunting is too large, or the intensity of group defense is
too low, it will lead to the demise of the prey, which is also in line with our common sense.

0 5 10 15 20 25 30 35

Time T

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

d
e

n
si

ty

x(t)

y(t)

Figure 4. We select the following parameter values: a = 30, b = 3, q = 6, m = 5, c = 50, δ = 5,
h = 5, l = 1. Then, both the predator y and the prey x persist in the sense of time average.
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0 5 10 15 20 25 30
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Figure 5. a = 30, b = 3, q = 6, m = 5, c = 20, δ = 5, h = 5, l = 1. When letting c decrease so that the
group defense becomes larger, the predator perishes.
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Figure 6. a = 30, b = 3, q = 15, m = 5, c = 50, δ = 5, h = 5, l = 1. Increasing q makes the cooperative
hunting intensity increase, and the prey perishes.

To verify the condition that System (2) without Lévy jump has an ergodic stationary dis-
tribution, we assume that (x0, y0) = (0.31, 1.725), and we choose the following parameter
values: σ1 = σ2 = 0.1, a = 2, b = 0.7, q = 0.6, m = 0.12, c = 0.1, δ = 2.5, h = 0.75, l = 0.21.

Then, we have δ− (ϕ+1)σ2
2

2 > 2.5− 0.01 > 0 and a+ δ− 1
2 σ2

1 −
1
2 σ2

2 = 0.31+ 1.725− 0.01 6= 0.
As shown in Figure 7, the sample paths are concentrated in the elliptical region, indicating
that the system is stochastically stable.
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Figure 7. σ1 = σ2 = 0.1, a = 2, b = 0.7, q = 0.6, m = 0.12, c = 0.1, δ = 2.5, h = 0.75, l = 0.21. The
distribution of the sample path in the phase space.

6. Conclusions

This paper discusses the dynamic properties of a predator–prey model with coopera-
tive hunting, group defense, and Lévy noise. First, we prove the uniqueness of the global
positive solution of System (2) by constructing a suitable equation. Then, we obtain the
theorem that the intensity of white noise and Lévy noise more than a certain extent may
lead to the extinction of the population; when the intensity of white noise and Lévy noise
is small, if the intensity of cooperative hunting and group defense satisfies an inequality,
the two populations can continue to coexist. Furthermore, if the intensity of cooperative
hunting is too large or the intensity of group defense is too small, the prey will become
extinct. Finally, we conclude that the system has a stationary distribution when there is no
Lévy noise.
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