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Abstract: In this paper, a modified high-efficiency Convolutional Neural Network (CNN) with a
novel Supervised Contrastive Learning (SCL) approach is introduced to estimate direction-of-arrival
(DOA) of multiple targets in low signal-to-noise ratio (SNR) regimes with uniform linear arrays
(ULA). The model is trained using an on-grid setting, and thus the problem is modeled as a multi-
label classification task. Simulation results demonstrate the robustness of the proposed approach
in scenarios with low SNR and a small number of snapshots. Notably, the method exhibits strong
capability in detecting the number of sources while estimating their DOAs. Furthermore, compared to
traditional CNN methods, our refined efficient CNN significantly reduces the number of parameters
by a factor of sixteen while still achieving comparable results. The effectiveness of the proposed
method is analyzed through the visualization of latent space and through the advanced theory of
feature learning.

Keywords: array signal processing; convolution neural network; direction-of-arrival estimation;
feature learning; supervised contrastive learning

MSC: 68T07; 94A12; 62R07

1. Introduction

Precise direction-of-arrival (DOA) estimation using an antenna or sensor array is
critical in various applications, such as microphone, sonar, source localization, and radar.
Numerous algorithms have been invented to tackle the DOA estimation problem, and
among them, the subspace-based estimation algorithms are well known for their capacity to
give a high-resolution estimation. These include MUSIC (Multiple SIgnal Classification), ES-
PRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), Root-MUSIC
(R-MUSIC) [1–3], homotopy method [4,5], multigrid method [6,7], and multigrid-homotopy
method [8]. However, in low signal-to-noise ratio (SNR) environments, they suffer from
significant biases. To address this issue, deep learning methods have been employed.

Deep learning (DL) methods have recently emerged as promising approaches for
direction-of-arrival (DOA) estimation, offering significant advantages over traditional sub-
space and sparse methods [9,10]. For DOA estimation of multitarget in harsh environments,
multi-layer perceptron (MLP) method focuses on the robustness to array imperfections [11];
however, the model is trained at each individual SNR and fixed on a two-source target.
The deep Convolutional Neural Networks (CNN) have achieved superior on-grid accuracy
in low SNR regimes where the number of sources is unknown, but obtained a relatively
large fully connected layer size and increased the number of parameters [12]. The authors
in [13] leverage the eigenvalues from Full-row Toeplitz Matrices Reconstruction (FTMR)
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to enumerate the number of sources, but the error rate is still around 10% at −10 dB.
Another approach proposed in [14] is a grid-less method that exploits the Toeplitz property
and does not suffer from grid mismatch, but its performance is not sufficient in limited
source numeration.

This paper proposes the CNN with Supervised Contrastive Learning (CNN-SCL) for
multi-target DOA estimation in low SNR regimes, which is combined with Supervised
Contrastive Learning (SCL) for pretraining. SCL is an extension of contrastive learning [15]
in supervised task, which encourages the clustering of similar examples in the latent space
while promoting the separation of different samples [16]. In this work, SCL is introduced to
improve the performance of the model in detecting the number of sources and their DOAs,
while also enabling the use of fewer parameters compared to prior work [12]. We make
both our demo page and source-code publicly available in https://github.com/Meur3ault/
Contrastive-Learning-for-Low-SNR-DOA on 12 September 2023.

2. Signal Model and Data Setting

This study focuses on the following scenario: K far-field and narrowband signals s(t)
impinge on an array of antennas from direction angle θ = [θ1, θ2, θ3, · · · θk] with L antennas
placed uniformly linear in spacing of d. Signals received at the l th sensor is given by:

yl(t) =
K

∑
k=1

sk(t)e−j 2π
λ (l−1)dsin θk + nl(t) (1)

where 1 ≤ l ≤ L and nl(t) is the additive white noise at l th sensors. They can be
conveniently expressed in the following matrix form:

y(t) = [y1(t), y2(t), . . . , yL(t)]
T

= [a(θ1), a(θ2), . . . , a(θK)]s(t) + n(t)
= As(t) + n(t)

(2)

and where s(t), y(t), n(t) are the transmit signal vector, received signal vector, and noise
vector, respectively. Moreover, a(θ), denotes a steering vector represented as:

a(θk) =


e−j 2π

λ ·0·dsin θk

e−j 2π
λ ·1·dsin θk

...
e−j 2π

λ ·(L−1)·dsin θk

 =


e−jω0τ1i

e−jω0τ21

...
e−jω0τLi

 (3)

that represents the phases of i th transmit signal in L sensors. The w0 is angular frequency
of transmit signal and τli is the delay of i th signal at l th sensor or antenna. The matrix A
or A(θ) is L× K array manifold matrix with steering vectors in columns. The ideal array
covariance matrix or spatial covariance is given by:

Ry = E
[
y(t)yH(t)

]
= A(θ)RsAH(θ) + σ2IL (4)

where E[•] and
(
•)H denote the expectation and conjugate transpose. In addition, noises

are regarded as circularly-symmetric Gaussian white noises with the same variance inde-
pendent of each other, while noise covariance matrix σ2IL is with diagonal elements only.
The Rs = E

[
s(t)sH(t)

]
represents signal covariance matrix with zero means. Ry is the array

received signal covariance matrix or spatial covariance matrix, which is complex and Her-
mitian. In practice, the ideal matrix is unknown and usually substituted by its T-snapshots

unbiased estimation
∼
Ry = 1

T

T
∑

t=1
y(t)yH(t). Here the model is trained with both sample

∼
Ry

and ideal Ry. The input data X (generated by Ry) and
∼
X (generated by

∼
Ry) in proposed

https://github.com/Meur3ault/Contrastive-Learning-for-Low-SNR-DOA
https://github.com/Meur3ault/Contrastive-Learning-for-Low-SNR-DOA
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model CNN-SCL are L× L× 3 matrices, containing the real part, imaginary part, and phase
of the spatial covariance matrices, i.e., X:,:,1 = Re

{
Ry
}

, X:,:,2 = Im
{

Ry
}

, and X:,:,3 = ∠
{

Ry
}

.
During both the pretraining and training phases, the generated data X(i) is obtained
by selecting the discretized angles across the range {−60◦, . . . ,−1◦, 0◦, 1◦, . . . , 60◦} with
121 grids. The label set H contains the i th label H(i) for data X(i), which is sum one-hot
121 × 1 vector of multiple or single discretized angles with respect to X(i), e.g., the data X(i)

generated by {−60◦, −59◦, 60◦} angles corresponds to 121 × 1 vector H(i)=
[
1, 1, 0, . . . , 1]T .

Thus, the data set is D =
{(

X(1), H(1)

)
,
(

X(2), H(2)

)
, . . . ,

(
X(N), H(N)

)}
of size N. In this

paper, the inter-element distance d is set to half the wavelength (d = λ/2) and the number
of array elements L is 16.

3. The Proposed Model

The layout of our proposed model is depicted in Figure 1, in which the backbone is
modified upon the conventional convolutional structure [17]. The model comprises two
distinct components: a feature extractor, denoted as f, consisting of four convolutional
layers, and a classifier, denoted as g, consisting of six fully connected (FC) layers. The
first four FC layers of the classifier have their weights shared to enhance generalization
and reduce the number of parameters [18]. The proposed model is trained in two stages,
namely pretraining and training. The total number of learnable parameters in our model is
1,740,457, which is significantly less than the 28.2 million in the current CNN model [12].
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Figure 1. The SCL-based architecture, including pretraining and training. Dropout probability is set
to 0.2 and the stride of all convolution filters is 1. The LeakyReLU applies 0.01 negative slope. The
first four fully connected layers of Classifier share the same weights. After the pretraining stage, the
pretrained feature extractor will be trained with an initialized classifier. The numbers of neurons of
fully connected layers are labeled above.

3.1. Pretraining Stage

In the pretraining phase, where SCL is applied, we built up a data set including single-

source data in both ideal data X and sampled
∼
X of T snapshot. As data augmentation

increases the amount of training data to avoid overfitting, the sampled version
∼
X are

considered as the augmentation of X , i.e., X are generated directly from Equation (4),

while
∼
X is unbiasedestimationversion. The purpose of data augmentation is to impose

consistency regularization, which encourages the model to produce the same classification
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even when inputs are perturbed [19]. The inclusion of uncertainty in
∼
X makes it a suitable

option for this purpose. After inputs are fed into the feature extractor f , the features

Z = f (X) and
∼
Z = f (

∼
X) are generated in latent space. To achieved better robustness and

stability in harsh environments, the supervised contrastive loss is introduced [16], namely
supervised contrastive learning objective, denoted by:

Lsup = −∑
i∈I

log

 1
|P(i)| ∑

p∈P(i)

exp
(

Z(i) · Z(p)/τ
)

∑a∈A(i) exp
(

Z(i) · Z(a)/τ
)
 (5)

where i∈ I ≡ {1 ... 2N} is the index of an arbitrary sample in data set combined
∼
X and X ,

A(i) ≡ I\i, and τ ∈ R+ is a scalar temperature parameter. P(i) =
{

p ∈ A(i) : H(p) = H(i)

}
is the set of indices of all other samples that are same class with i th sample (and thus in

equation (5), the
∼
Z and Z are indiscriminately denoted as Z cause indexes already involve

both). |P(i)| is its cardinality. The supervised contrastive loss encourages the clustering
of similar examples in the latent space while also promoting the separation of different
samples 16. In pretraining, all the data are single-source and so are the labels, which are one-
hot among {−60◦, . . . ,−1◦, 0◦, 1◦, . . . , 60◦}. Pretraining can be regarded as a supervised
contrastive learning process involving 121 classes. The size of the output feature is 32 ×
32. For convenience, we dispatched Z(i) or

∼
Z(i) into length 32 with 32 views in contrastive

training [20].
To generate data, consider K = 1 and generate on-grid data and label in low SNRs

among {−15, −10, −5, 0} dB. The number of angle pairs of ideal X is
(

121
1

)
× 4 = 484

so as
∼
X, leading to a double size of data set to D0 = 484 × 2, where

∼
X is the unbiased

estimation of X with 100 snapshots. To increase the diversity of data pairs in each randomly
split batch, we generated the data set D0 ten times, resulting in a final data set size of
D = 484 × 2 × 10 = 9680. The data set was randomly split into a validation set (10%) and a
training set (90%) with a batch size of 130. The feature extractor was trained for 100 epochs
using Adam optimization [21] with an initial learning rate of 0.001, β1 = 0.9, and β2 = 0.999.
To achieve convergence, the learning rate was decayed by a factor of 1/

√
2 every 10 epochs,

and the model was saved when the validation loss reached its minimum. The loss curve is
shown in Figure 2a, with a minimum loss of 5.5927.
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3.2. Training Stage

In the training phase after pretraining, the feature extractor would be trained with
initialized classifier together. The final layer in classifier is sigmoid to retain the value in
[0, 1] through 121 × 1 output vector Ĥ(i):

Ĥ(i) = g
(

f
(∼

X(i)

))
=

 p̂−60
...

p̂60

 (6)

The value p̂i indicates the probability spectrum of incident signals with on-grid angles.
The sigmoid function allows for the prediction of multiple sources and enables the model

to handle data beyond that of a single source, thereby input
∼
X differs from the pretraining

stage. In the training stage, the
∼
X are sampled version inputs, as with those in pretraining.

Instead of a single source,
∼
X here were generated from multiple sources. Finally, the loss LT

for training is:

LT =
1
N

N

∑
i=1

L
(

Ĥ(i); H(i)

)
(7)

while L is the binary cross-entropy loss:

L
(

Ĥ(i); H(i)

)
= − 1

121 ∑121
n=1

[
H(i)(n)log

(
Ĥ(i)(n)

)
+
(

1−H(i)(n)
)

log
(

1− Ĥ(i)(n)
)] (8)

For the input in the training phase, data were generated from varying numbers of
source K at low SNRs among −15 dB, −10 dB, −5 dB, and 0 dB using the combinations
of K source(s) pairs among 121 on-grid angle pair(s), where Kmax = 3 and Kmin = 1, with
1000 snapshots. To cover all the possible incident scenarios and alleviate the problem of un-
balanced dataset, the training dataset was composed of 1,212,420 examples, which included

∑Kmax =3
k=1

(
121

k

)
× 4 = 1, 181, 444 samples (in 4 SNR setting) and

(
121
1

)
× 4×64 = 30,976

random single-source examples. The validation set consisted of 100,000 independent ex-
amples with random angles and number of sources. The proposed feature extractor and
classifier were trained for 50 epochs using the same optimizer and learning schedule as
mentioned before. The model was saved when the validation loss reached its minimum.
The loss curve is shown in Figure 2b, with a minimum loss of 0.00556.

4. Simulation Results
4.1. Unknown Number of Sources

In this section, the tests were performed on an uncertain number of sources, a common
scenario encountered in real life application of DOA algorithm. Inspired by CFAR (Constant
false alarm rate) [22], we first set up threshold p0 to filter the noises, and then searched the
peaks K in the resulting probability spectrum to obtain the predicted angles. However, the
mismatch of predicted target numbers will render the RMSE loss metric futile. To address
this issue, the Hausdorff distance dH was introduced in [12], which measures distance
between two sets without equal cardinality. It is denoted by:

dH(A,B) = max{d(A,B), d(B,A)} (9)

d(A,B) = sup{d(α,B) | α ∈ A} (10)

d(α,B) = in f {|α− β|| β ∈ B} (11)
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when the cardinalities are same, it behaves like max absolute error in penalizing deviation,
but when the cardinalities are different, it penalizes elements that significantly deviate
from overlapping distribution between sets A and B. For example, if A = {20◦, 30◦, 60◦}
and B = {20◦, 30◦}, then dH(A,B) = 30◦. Similarly, if A = {20◦, 30◦, 30.5◦}, then
dH(A,B) = 0.5◦.

The tests were performed using fixed off-grid angles ranging from source number
K = 1 to K = 3. For each K, 10,000 test samples were independently generated with
1000 snapshots to form test sets at 0 dB, −10 dB, and −15 dB, respectively. The angles of
first signal, second, and third were −3.74◦, 11.11◦, and 2.12◦, respectively. The predicted
K and their DOAs are obtained by filtering with a threshold p0 and identifying peaks on
probability spectrum output Ĥ(i) in Equation (6). The results are reported in Table 1, which
evaluates the performance of CNN-SCL with mean and max Hausdorff distance. When
the SNR is 0 dB, the model firmly predicts {−4◦, 11◦, 2◦}, resulting in the mean and max
Hausdorff distance being fixed on 0.26◦. At−10 dB, the errors are slightly increased but still
small, considering the low SNR, while the state-of-the-art CNN approaches obtains high
max dH of 10.8◦ in similar situation [12]. In the −15 dB SNR scenario, the maximum value
of the Hausdorff distance increases significantly, and it varies with the number of sources.
To avoid falsely identifying a zero target, the threshold value for the one-source scenario
is set to 0.2 instead of 0.4, as the latter would result in a 0.53% probability of predicting
zero targets. Additionally, Figure 3 indicates the confusion matrix (probability) of source
predicted results with respect to 0 dB and −10 dB SNR. When predicting source number in
low SNR environments, the model achieves this with only a 0.07% error rate in two-sources
scenarios {−3.74◦ , 11.11◦} in −10 dB SNR, indicating that our approach achieves high
accuracy low SNR environments. In contrast to our CNN-SCL approach, the AIC method
has proven to be ineffective in low SNRs [23]. Moreover, the only-CNN-based method
retains an error rate of 22.47% for three-source scenario with a similar separation of angles
at −10 dB SNR [12]. Compared to the current learning-based spectrum reconstruction
method outlined in [13], our approach demonstrates superior accuracy, reducing the error
rate significantly. However, our method does have its limitations. First, it is heavily data-
driven, which substantially increases the volume of data required. This means hugely
increasing the amount of required data. For instance, to predict four targets, we need to

add extra
(

121
4

)
samples to the dataset, and

(
121
5

)
for five targets. Furthermore, as the

array’s element count grows, the matrix size of every data point grows at a quadratic rate.
In contrast, learning-based spectrum methods can more seamlessly adapt to various target
counts and array sizes.

Table 1. Unknown target estimation in 0 dB, −10 dB, and −15 dB.

Number of Sources K 1 Threshold p0 Mean dH (Degree) Max dH (Degree)

SNR = 0 dB

1 0.4 0.2600 0.2600
2 0.4 0.2600 0.2600
3 0.4 0.2600 0.2600

SNR = −10 dB

1 0.4 0.2659 0.7400
2 0.4 0.2789 1.2600
3 0.4 0.3052 1.1200
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Table 1. Cont.

Number of Sources K 1 Threshold p0 Mean dH (Degree) Max dH (Degree)

SNR = −15 dB

1 0.2 0.4062 23.74
2 0.4 0.4737 15.11
3 0.4 0.7463 10.11

1 We further tested the false alarm rate of zero target on standard white noise with the same snapshots, 10,000 sam-
ples, and Threshold p0 = 0.4. Under zero-target conditions, there is only a 0.09% chance of mistakenly counting it
as one target signal source while 99.91% counting correct.
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4.2. Known Number of Sources

In the given sources number setting, the experiments were conducted on two-source
scenarios with varying SNRs and snapshots. In this case, the output selection approach
is modified to choose the two highest values in the probability spectrum without prior
filtering. The loss metric used is the RMSE. The performance of the proposed approach
is evaluated against existing classical and state-of-the-art methods, and the Cramér–Rao
lower bound (CRLB) [24] is provided as benchmark. Additionally, to examine the influence
of SCL in proposed approach, the framework without SCL pretraining was evaluated and
denoted as CNN-SCL w/o. All the on-grid approaches were set with resolution for one
degree of every integer on [−60 ◦, 60◦].

4.2.1. RMSE under Varying SNRs

The objective of this experiment is to estimate the DOAs of two sources at differ-
ent SNRs while keeping the snapshots fixed at 1000. Each data point was tested with
1000 samples. The directions are 10.11◦ and 12.7◦, respectively. The results are shown on
Figure 4a. The proposed model exhibits relatively good performance when compared with
the CNN in low-SNR regime, with RMSE values of 1.9910◦, 0.6253◦, and 0.5885◦ for−20 dB,
−15 dB, and −10 dB, respectively. In the high-SNR regime, on-grid methods suffer from
grid mismatch and exhibit high RMSE values, while grid-less methods, such as ESPRIT
and R-MUSIC, approach the CRLB.
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4.2.2. RMSE versus Varying Snapshots

In this experiment, tests were conducted with two sources at −10 dB SNR while the
snapshots ranged from 100 to 10,000. Each datapoint was tested with 1000 samples, with
the directions being 9.58◦ and 12.82◦, respectively. Figure 4b illustrates the results. The
proposed model achieved superior accuracy at 100 and 200 snapshots, with error of 1.922◦

and 0.7451◦, respectively.

5. Analysis
5.1. Latent Space Visualization

In both experiments conducted with varying SNRs and Snapshots, the framework
CNN-SCL w/o without SCL pretraining was found to be difficult to converge. The pre-
training was identified as the key factor causing this difference. To investigate the impact of
pretraining, t-SNE [25] was employed to visualize the features distribution in latent space
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Z = f (X) during both the pretraining stage and training stage by mapping distribution into
low-dimensional space while retaining relative distance between data points as much as
possible. The values and colors represent the distributions and DOAs of input matrices X.
Figure 5a depicts the messy distribution of data processed by the feature extractor without
pretraining, whereas the distribution of different classes of angles is well separated by the
SCL-pretrained feature extractor, as Figure 5b illustrates. Furthermore, after the training
stage with classifier, SCL-pretrained feature extractor separates the features more clearly,
forming gradual and continuous distribution, as shown in Figure 5c. As the model only
utilizes nearly one-sixteenth of parameters compared with CNN [12], the direct training
is hard to fit the data. However, the SCL pretraining provides the feature extractor with
a good starting point, as shown in Figure 5b, which enables the training step to proceed
more smoothly. This results in the stripe pattern being stretched, as shown in Figure 5c,
thus leading to a clear and robust decision boundary. The SCL pretraining enhances param-
eter efficiency, performance, and generalization in low-SNR DOA estimation. In Figure 6,
we visualize the distribution of DOA data after processing through the CNN extractor
under various SNR conditions. The findings indicate that the SCL-CNN extracts DOA
information based on an amplitude-phase pattern. As illustrated in Figure 6a, when the
angle approaches 0, implying minimal phase difference between the array elements, the
distribution tends to be closer to the inner side of the center. In Figure 6b, we differentiated
data points based on varying SNR levels. It was observed that features extracted from
DOA data with lower SNR tend to be located closer to the center. This observation implic-
itly corroborates the assertions made in the paper [26], suggesting that the information
extraction from CNN follows the pattern of pseudospectrum construction in the MUSIC
method, where features are extracted based on amplitude and phase and then arranged in
ascending order.

5.2. Feature Learning for Analysis

From the theoretical perspective, the recent advancement [27–29] of neural network
approximation also provides some intuition for explaining the shift of distribution in
Figure 5. In paper [27], Allen-Zhu and Li (2020) demonstrated a novel theoretical framework
that characterized the feature learning process of neural networks, which is adopted in
paper [28], where Cao et al. (2022) leveraged that framework to analyze the behavior of
neural networks under various SNR. Furthermore, in paper [29], Chen Y et al. (2023) go
further in analyzing the learning processing of model between spurious and invariant
features. The convolutional neural network model analyzed by papers [28,29] is only
comprised of two layers at any width, and the deeper neural networks still need further
study and investigation. However, as the deeper networks are always more powerful than
shallow neural networks in practice, and because they need fewer parameters or units to
achieve the same effect as shallow networks [30], we assume that our network can easily
fulfill the equivalent conditions that paper [28,29] requests. Thus, the lemmas shall be
reasonable to be applied in explaining the effect of pretrain in Figure 5 intuitively.

We consider the simplified model and data set for analysis, which is adopted from
papers [28,29]. The analysis focuses on how to suppress the spurious feature and learn the
invariant feature in order to achieve Out-of-Distribution (OOD) generalization, namely
generalization to other distributions other than the training data set. The spurious features
are always correlated with the invariant feature but with contribute negligible information
for prediction or estimation. In contrast to the spurious feature, the invariant feature points
out the characteristics that are informative and stable inside data. Considering the form
of DOA estimation data and matrices are similar to a picture with multiple channels, it is
plausible to assume the existence of spurious features.
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5.2.1. Preliminary and Ideal Model

Suppose the data set for the ideal model is D = {xi, yi}n
i=1, where n is the number of

samples, d is the dimension x ∈ R2d, and y ∈ {−1, 1}. The input data instances (xi, yi)
conform to the following distribution:

1. The label y is generated as a Rademacher random variable.
2. Given y , each input x = {x1, x2} include a feature patch x1 and a noise patch x2, that

are sampled as:
x1 = y · Rad(α) · v1 + y · Rad(β) · v2x2 = ξ (12)

where Rad(x) presenting the random variable taking value 1 with probability 1-x and
−1 with probability x. v1 =

[
1, 0, 0, . . . 0]> and α is usually constant, representing the

invariant feature; v2 =
[
0, 1, 0, . . . 0]> and β is usually uncertain with different data,

representing the spurious feature with unreliable information.
3. The noise vector conforms to the Gaussian distributionN

(
0, σ2

p ·
(
Id − v1v>1 − v2v>2

))
,

indicating a noise orthogonal with both spurious and invariant features.
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An ideal two-layer CNN model is trained to classify the label with sigmoid and cross-
entropy loss function, the network can be written as f (W, x) = F+1(W+1, x)− F−1(W−1, x),
with:

Fj
(
Wj, x

)
=

1
m

m

∑
r=1

[
σ
(

w>j,rx1

)
+ σ

(
w>j,rx2

)]
(13)

where σ(x) is the activation function.

5.2.2. Theorem and Intuition

Lemma 1 (Cao et al. [28]; Chen et al. [29]). Let wj,r(t) for j ∈ {+1,−1} and r ∈ {1, 2, 3, ...m}
be the convolution filters of the CNN at t-th iteration of gradient descent. Then there exists unique
coefficients γj,r,1(t), γj,r,2(t) ≥ 0 and ρj,r,i(t) s.t.:

wj,r(t) = wj,r(0) + j · γj,r,1(t) · v1 + j · γj,r,2(t) · v2 + ∑ ρj,r,i(t) · ‖ ξ i ‖−2
2 · ξ i (14)

Lemma 1 is the basis for following lemmas. It reveals the behavior of neural networks
when updated. The weights are the time-varying linear combination of initialized weights
wj,r(0), invariant signal v1, spurious signal v2, and noise ξ i. As wj,r(0) ≈ 0 and the rest
of the components are orthogonal to each other, γj,r,1 ≈

〈
wj,r, v1

〉
and γj,r,2 ≈

〈
wj,r, v2

〉
learning progress of invariant feature and spurious feature.

Lemma 2 (Chen et al. [29]). For two samples xe
1, xe′

1 . With invariant risk minimization regulariza-

tion c(t), define λ0 = λmin(H∞), where H∞
e,e′ ,

1
2mnene′

ne
∑

i=1
xe>

1,i

ne′
∑

i′=1
xe′

1,i. Suppose that dimension

d = Ω(log(m/δ)), network width m = Ω(1/δ), regularization factor λ ≥ 1/σ0, noise variance

σp = O
(
d−2), weight initial scale σ0 = O

(
min

{
λ2

0m2

log(1/ε)
, λ0m√

dlog(1/ε)

})
, then with probability at

least 1− δ, after training iteration T = Ω
(

log(1/ε)
ηλλ0

)
, we have:

‖ c(T) ‖2≤ ε, γj,r,1(T) = od(1), γj,r,2(T) = od(1) (15)

The theorem demonstrates that heavy invariant risk minimization (IRM) regularization
hinders the learning process for both spurious and invariant features. The loss stays at
constant at the same time. IRM aims to find the invariant feature under whatever possible
feature distribution [31]. We observe that the strong weights-share regularization [18] of
our CNN-SCL model in the first four FC layers play similar roles as IRM, which not only
rise the generalization of the model but the difficulty of training, keeping the training and
testing loss as relatively large constant in Figure 4 term CNN-SCL w/o.

Lemma 3 (Chen et al. [29]). Suppose spurious correlations are stronger than invariant correlations
α > β, and γinv

j,r (t1) = γinv
j,r (t1 − 1) and γ

spu
j,r (t1) = γ

spu
j,r (t1 − 1) at the end of pretraining

iteration t1. Suppose that δ > 0 and n > Clog(1/δ), with C being a positive constant, then with
a high probability at least 1− δ, we have regularization loss approaches zero and γinv

j,r (t1 + 1) >

γinv
j,r (t1) while γ

spu
j,r (t1 + 1) < γ

spu
j,r (t1).

This lemma indicates that the learning processing can start learning process with the
strong and enough pretraining, even under heavy regularization. And in the training
stage after pretraining stage, the learned invariant feature would be empowered, while
the spurious feature would be suppressed. Thus, we can observe the CNN-SCL with
pretraining perform better than CNN-SCL w/o in Figure 4.

In Figure 5a–c, the manifestation of the pattern further validates the effect that
Lemma 2 and Lemma 3 point out. In Figure 5a, as Lemma 2 reveals, CNN-SCL w/o
incurs heavy regularization, performs worst feature distribution, and learns almost nothing.
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In Figure 5b, as Lemma 3 suggests, supervised contrastive learning is a very powerful
pretraining method to help the model overcome regularization and start learning both
spurious and invariant features, so the pattern begins to separate and order. Finally, as
Lemma 3 indicates, Figure 5c illustrates that with enough training after pretraining, the
invariant features have been learned and the spurious features were suppressed, from
which a clear and robust feature distribution forms.

6. Conclusions

In this paper, we introduced a new framework called CNN-SCL for on-grid multi-
target DOA estimation in low SNRs and limited snapshots. The proposed method is based
on contrastive learning, which aims to separate different features with a regular pattern.
The experimental results demonstrate the robustness and generalization capability of our
proposed method, outperforming other methods in harsh environments for both number
of source classifications and DOA estimations. The analysis confirms the necessity of SCL
pretraining in both visualization and theory. Additionally, our approach achieves compara-
ble performance with state-of-the-art methods while number of parameters significantly
decreases near 94%. Our future work will focus on exploring the potential of contrastive
learning to further reduce the parameters for DOA estimation with deep learning.
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