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Abstract: This study focuses on investigating the oscillatory properties of a particular class of
perturbed differential equations in the noncanonical case. Our research aims to establish more
effective criteria for evaluating the absence of positive solutions to the equation under study and
subsequently investigate its oscillatory behavior. We also perform a comparative analysis, contrasting
the oscillation of the studied equation with another equation in the canonical case. To achieve
this, we employ the Riccati technique along with other methods to obtain several sufficient criteria.
Furthermore, we apply these new conditions to specific instances of the considered equation, assessing
their performance. The significance of our work lies in its extension and broadening of the existing
body of literature, contributing novel insights into this field of study.
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1. Introduction

Natural and technological phenomena are usually described by differential equations
(DEs): inevitable relationships that include continuous variables (as functions) and their
rate of change in time (as derivatives). DEs appear in applied mathematics such as in
classical mechanics where the motion of objects is described by speed and acceleration,
which are the rates of the change in distance with respect to time. DEs are crucial for
actually modeling technical, physical, ecological, biological, and epidemiological processes,
such as celestial motion, bridge construction, interactions between neurons, relationships
between species, disease spread within a population, etc., see for example [1–6].

Applications in the domains of biology, population, chemistry, medicine dynamics,
social sciences, genetic engineering, economy, and others were made possible by science’s
incredibly rapid development in the 20th century. With the aid of this type of mathematical
modeling, all of these disciplines advanced, and new discoveries were made. Under-
standing these problems and phenomena—or at the very least knowing the features of
the solutions to these equations—requires knowing the equation’s solution. However, it
is possible that DEs employed to address real-world issues are not always directly solv-
able, i.e., do not have closed-form solutions. Only the simplest equations allow for clear,
formulaic solutions. However, it is possible to determine some aspects of a solution to a
specific DE without knowing their precise form. If there is not a self-contained formula
for the solution, it could be numerically approximated by computers. In this situation, a
recurrence relation—an equation that recursively defines a series—is required, in which
each term in the sequence is defined as a function of the terms that came before it.

These numerous applications stimulated the study of the qualitative theory of DEs.
The qualitative behaviors—stability, boundedness, periodicity and oscillatory, etc.—of the
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solutions of DEs give very important impressions and information when studying the
various natural models.

In the first half of the 20th century, Fite [7] produced a ground-breaking paper that
established the oscillation theory of DEs with divergent justifications. The basic principles
of oscillation theory are to test the existence of oscillatory or nonoscillating solutions or
to study the asymptotic behavior of nonoscillatory solutions. Oscillation theory generally
follows one of two main streams. The first of them relies on the analysis of the zero
distribution laws in order to establish the minimal distance between consecutive zeros.
The second stream investigates the number of zeros in a given interval along with the
relation between the oscillatory qualities and oscillatory processes in systems with different
physical parameters. This interest is reflected in numerous studies, many of which are
compiled in monographs [8–14].

In this study, using several techniques, we obtain new conditions that test the oscilla-
tory properties of the solution of the perturbed DE

d
dt

(
a ·
(

d
dt

u
)β
)
+ F1(t, u) = F2

(
t, u,

d
dt

u
)

, (1)

where t ∈ I0, Ii := [ti, ∞) and β ≥ 1 is a ratio of odd natural numbers. In addition, we
assume the following constraints:

H1. a ∈ C1(I0,R+), and η(t0) < ∞, where

η(t) :=
∫ ∞

t
a−1/β(v)dv;

H2. F1 ∈ C(I0 ×R,R), F2 ∈ C
(
I0 ×R2,R

)
, uF1(t, u) > 0 and uF2(t, u, y) > 0 for u 6= 0;

H3. There exist functions φ, ϕ ∈ C(I0,R) and h ∈ C(R,R) such that φ(t) < ϕ(t) for
t ∈ I0, uh(u) > 0 for u 6= 0, h is nondecreasing, h(uy) ≥ h(u)h(y), F1(t, u) ≥ ϕ(t)h(u)
and F2(t, u, y) ≤ φ(t)h(u), for u, y ∈ R\{0} and t ∈ I0.

For a solution of Equation (1), we denote a function u ∈ C1(Iu) for tu ∈ I0, which
a · (u′)β ∈ C1(Iu) and u satisfies (1) for t ∈ Iu. We take into account these solutions u of
Equation (1) such that sup{|u(t)| : t ≥ T} > 0 for T ∈ Iu. A solution u of Equation (1) is
said to be nonoscillatory if it is eventually positive or eventually negative; otherwise, it is
said to be oscillatory.

In this paper, we obtain conditions that test the oscillation of solutions of perturbed
DE Equation (1). Equations of this type have not received as much attention as other types
of equations, such as half-linear equations or equations of the Emden–Fowler type. We use
more than one approach to obtain the oscillation criteria. We couple the oscillation of DE
Equation (1) with a canonical equation of the second-order. We further extend the approach
used in [15] to obtain a new oscillation criterion for DE Equation (1). Furthermore, we use
a generalized Riccati substitution to obtain sharper criteria. Finally, we present examples to
support the theoretical results.

Relevant Literature Review

In the following, some of the previous works that are relevant to our study are reviewed.
In 1980, Grace and Lalli [16] investigated the oscillatory properties of the perturbed DE

d
dt

(
a · d

dt
u
)
+ p · d

dt
u + F1(t, u) = F2

(
t, u,

d
dt

u
)

.
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For a DE with alternating coefficients

d
dt

(
a · [ψ ◦ u] · d

dt
u
)
+ p · d

dt
u + q · [F ◦ u] = 0, (2)

Grace and Lalli [17] analyzed the convergence of its oscillatory solutions and developed
some standards for the asymptotic behavior of this equation. Shortly before the previous
works, Kartsatos [18] studied the oscillatory behavior of the n-order perturbed DE

dn

dtn u + F1(t, u) = F2(t, u).

Kirane and Rogovchenko [19] investigated the oscillatory properties of the DE Equation (2).
To determine the oscillation criteria, they employed a method based on the average behavior
of the integral of the coefficient q.

By using Riccati transformation, Jianchu and Xiaoping [20] created Philos-type stan-
dards that guarantee the oscillation of the perturbed DE

d
dt

(
a ·
(

d
dt

u
)β
)
+ p ·

(
d
dt

u
)β

+ F1(t, u) = F2

(
t, u,

d
dt

u
)

.

Bohner and Saker [21] studied the oscillation of Equation (1) in the canonical and
noncanonical case. They used Riccati substitution to constrain the coefficients to ensure
that each solution of Equation (1) oscillates or approaches zero.

In 2005, Mustafa and Rogovchenko [22] discussed the oscillatory properties of solu-
tions of

d2

dt2 u + F(t, u) = p(t)

under the constraint ∫ ∞

t0

v|p(v)|dv < ∞.

Recently, Moaaz et al. [23] studied the oscillatory properties of the damped DE

d
dt

(
a · d

dt
u
)
+ p · d

dt
u + q · [u ◦ τ] = 0,

where p change their sign and q are nonnegative. They presented criteria of an iterative
nature and that are characterized by having one condition. The iterative nature allows it to
be used repeatedly even if it fails at first.

Despite the large number of recent works that discussed the oscillation of the solutions
of DEs, this theory was and still is rich in interesting analytical issues and open problems.

In the noncanonical case η(t0) < ∞, one of the interesting problems in studying
the oscillation of DEs is obtaining a single criterion that guarantees the oscillation of all
solutions. In 2017, Bohner et al. [24] presented one-condition criteria for the oscillation of
neutral DE

d
dt

(
a ·
(

d
dt

(u + p · (u ◦ τ))

)β
)
+ q · (u ◦ σ)β = 0. (3)

By iterative improvement of the monotonic properties, Bohner et al. [25] introduced
sharp oscillation criteria for Equation (3).

In the neutral equations, one of the interesting issues is also obtaining sharp in-
equalities that link the solution to its associated function. The conventional inequality
u > (1− p)z is usually used when η(t0) = ∞. On the other hand, for positive decreas-
ing solutions, the inequality u > z(1− p((η ◦ τ)/η)) is used when η(t0) < ∞, see [26].
Moaaz et al. [27] improved the last relationship and considered both cases p < 1 and p > 1.
Nevertheless, the results in [27] were constrained by the condition p(t) = p0 (a constant).
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Very recently, Bohner et al. [28] improved the relationship u > z(1− p((η ◦ τ)/η)) in both
delay and advanced cases.

Third-order DEs have also not received the same attention as the equations of the even
orders, and the study of the oscillation of these equations contains many open problems.
Works [29–31] presented interesting results in the study of fluctuating solutions of third-
order DEs.

On the other hand, for the higher-order equations, Onose [32] studied the oscillation
of DE

d2

dt2

(
a · d2

dt2 u
)
+ F((u ◦ g), t) = 0

and
d2

dt2

(
a · d2

dt2 u
)
+ q · F(u ◦ g) = h,

under the restriction ∫ ∞

T
a−1(ν)dν = ∞, for some T > 0.

The oscillatory characteristics of solutions for distinct classes of equations were dis-
covered by utilizing a wide range of methodologies. Agarwal et al. [33] presented some
oscillation results for the DE

d
dt

[
a−1

3

(
d
dt

[
a−1

2

(
d
dt

[
a−1

1

(
d
dt

u
)α1
])α2

])α3
]
± q · F(u ◦ g) = 0,

under the restrictions ∫ ∞

t0

a1/αi
k (ν) dν = ∞, k = 1, 2, 3.

Grace et al. [34] devised theorems that test the oscillation of the DE

d3

dt3

(
a ·
(

d
dt

u
)α)

+ q · F(u ◦ g) = 0,

For the DE
d2

dt2

(
a ·
∣∣∣∣ d2

dt2 u
∣∣∣∣α−1 d2

dt2 u

)
+ q · |u|β−1 · u = 0,

the oscillatory behavior of its solutions was tested by the results in [35,36]. In [37],
Zhang et al. discussed the asymptotic properties of the solutions of the DE

d
dt

(
a ·
(

dn−1

dtn−1 u
)α
)
+ q ·

(
uβ ◦ σ

)
= 0, (4)

where β ≤ α.

2. Main Results

We start by defining some functions and notations that make it easier to present the results.

2.1. Notation and Preliminary Results

Lemma 1 ([24]). Suppose that H(s) = Ks − L(s−M)1+1/β, where L > 0, K and M are
constants. Then, at s∗ = M + (βK/((β + 1)L))β, H reaches its maximum value on R, and

max
s∈R

H(s) = H(s∗) = KM +
ββ

(β + 1)β+1
Kβ+1

Lβ
.
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Notation 1. During the paper, we refer to the composition operation with the symbol (◦), so
that [ f ◦ g](t) := f (g(t)). We denote the class of all eventually positive decreasing solutions of
Equation (1) with the symbol Ps.

Lemma 2. Assume that
a1/β · ηβ+1 · (ϕ− φ) ≥ βκβ, (5)

for some κ > 0. Then each nonoscillatory solution of Equation (1) is decreasing and converges
to zero.

Proof. Assuming that Equation (1) has a nonoscillatory solution necessarily means that it
has an eventually positive one, say u. Using assumption (H3), Equation (1) becomes(

a ·
(
u′
)β
)′

= F2
(
t, u, u′

)
− F1(t, u)

≤ −(ϕ− φ) · [h ◦ u]. (6)

Then, a · (u′)β is nonincreasing, and so u′ is of one sign. Before proceeding to prove the
required equation, we need to calculate the following integral:∫ ∞

t1

(ϕ(v)− φ(v))dv,

for t1 ∈ I0. Based on assumption Equation (5), we conclude that∫ t

t1

(ϕ(v)− φ(v))dv ≥ βκβ
∫ t

t1

1
a1/β(v)ηβ+1(v)

dv

= κβ

(
1

ηβ(t)
− 1

ηβ(t1)

)
. (7)

Since η → 0 as t → ∞, we find eventually that η−β(t) ≥ λη−β(t) + η−β(t1) for all
λ ∈ (0, 1).

Therefore, ∫ t

t1

(ϕ(v)− φ(v))dv ≥ κβλ
1

ηβ(t)
, (8)

and so

lim
t→∞

∫ t

t1

(ϕ(v)− φ(v))dv = ∞. (9)

Suppose, conversely, that u′ is positive. Then, u → c0 > 0 as t → ∞, which leads to
u(t) ≥ c0 for all t ∈ I1 for some t1 ∈ I0. It follows from Equation (6) that(

a ·
(
u′
)β
)′
≤ −h(c0)(ϕ− φ).

After integrating this inequality, we obtain

a(t1)
(
u′(t1)

)β ≥ h(c0)
∫ ∞

t1

(ϕ(v)− φ(v))dv. (10)

Hence, taking limt→∞ and using Equation (9), we obtain that a(t1)(u′(t1))
β → ∞, which

is a contradiction.
Now, we have that u′(t) < 0, and so u→ c1 ≥ 0 as t→ ∞.
Suppose, conversely, that c1 is positive. Then, u(t) ≥ c1 for all t ∈ I1 for some t1 ∈ I0.
Integrating Equation (6) from t1 to t, we conclude that
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a(t)
(
u′(t)

)β ≤ a(t1)
(
u′(t1)

)β −
∫ t

t1

(ϕ(v)− φ(v))h(u(v))dv

≤ −h(c1)
∫ t

t1

(ϕ(v)− φ(v))dv,

which, with Equation (8), gives

u′ ≤ −κ[λh(c1)]
1/β 1

a1/β · η
.

Then,

u(t1) ≥ κ[λh(c1)]
1/β

∫ t

t1

1
a1/β(v)η(v)

dv

= κ[λh(c1)]
1/β log

η(t1)

η(t)
,

which tends to ∞ as t→ ∞, which is a contradiction. Then, c1 = 0.

2.2. Oscillation Criteria

Using an approach that is an extension of the approach taken in Koplatadze et al. [15], we
present through the next theorem, a new condition to ensure the oscillation of Equation (1).

Theorem 1. Assume that Equation (5) holds for some κ > 0, and

lim
w→0

wβ

h(w)
= µ0 < ∞. (11)

If

lim sup
t→∞

[
ηβ(t)

∫ t

t1

(ϕ(v)− φ(v))dv

+ h
(

1
η(t)

) ∫ ∞

t
(ϕ(v)− φ(v))ηβ(v)h(η(v))dv

]
> βµ0, (12)

then DE Equation (1) is oscillatory.

Proof. Conversely, assuming that Equation (1) has a nonoscillatory solution necessarily
means that it has an eventually positive one, say u. Assume that u(t) > 0 for t ≥ t1 ∈ I0.
Since a1/β · u′ is decreasing, we obtain

−u(t) =
∫ ∞

t

1
a1/β(v)

a1/β(v)u′(v)dv ≤ a1/β(t)u′(t)η(t), (13)

and so (
u
η

)′
=

1
η2

(
η · u′ + a−1/β · u

)
≥ 0.

From Equation (6), we have

−(ϕ− φ) · [h ◦ u] ≥
(

a ·
(
u′
)β
)′

= β
(

a1/β · u′
)β−1(

a1/β · u′
)′

. (14)
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It follows from Equation (13) that

(
a1/β · u′

)′
≤ − 1

β
(ϕ− φ) ·

(
u
η

)1−β

· [h ◦ u]. (15)

This inequality can be written in the form

(
η · a1/β · u′ + u

)′
≤ − 1

β
η · (ϕ− φ) ·

(
u
η

)1−β

· [h ◦ u] ≤ 0. (16)

Note that η · a1/β · u′ + u is positive and decreasing. Then,

η(t)a1/β(t)u′(t) + u(t) ≥ 1
β

∫ ∞

t
η(v)(ϕ(v)− φ(v))

(
u(v)
η(v)

)1−β

h(u(v))dv. (17)

Moreover, integration Equation (15) from t1 to t gives

−a1/β(t)u′(t) ≥ 1
β

∫ t

t1

(ϕ(v)− φ(v))
(

u(v)
η(v)

)1−β

h(u(v))dv,

which, with Equation (17), gives

βu(t) ≥ η(t)
∫ t

t1

(ϕ(υ)− φ(υ))h(u(υ))
(

u(υ)
η(υ)

)1−β

dv

+
∫ ∞

t
η(υ)(ϕ(υ)− φ(υ))h(u(υ))

(
u(v)
η(v)

)1−β

dv (18)

Using the facts that u′(t) < 0 and (u(t)/η(t))′ ≥ 0, we arrive at

β
uβ(t)

h(u(t))
≥ ηβ(t)

∫ t

t1

(ϕ(v)− φ(v))dv

+h
(

1
η(t)

) ∫ ∞

t
(ϕ(v)− φ(v))ηβ(v)h(η(v))dv,

This contradicts assumption Equation (12).

It is easy to see that the oscillation criteria of the canonical DEs have been established
using many methods and techniques, and these equations have received most attention in
the past. Therefore, it is useful to compare the oscillation of the solutions of Equation (1)
with another equation in the canonical case, as in the following theorem.

Theorem 2. Assume that Equation (5) holds for some κ > 0, and h(w) = wβ. If the DE(
η2 · a1/β · y′

)′
+

1
β

ηβ+1 · (ϕ− φ) · y = 0 (19)

is oscillatory, then DE Equation (1) is oscillatory.

Proof. Conversely, assuming that Equation (1) has a nonoscillatory solution necessarily
means that it has an eventually positive one, say u. Assume that u(t) > 0 for t ≥ t1 ∈ I0.
Then, it follows from Lemma 2 that u′(t) < 0 for t ≥ t1. Proceeding as in the proof of
Theorem 1, we arrive at Equation (16). Thus,(

η · a1/β · u′ + u
)′

+
1
β

ηβ · (ϕ− φ) · u ≤ 0,
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which, with the fact that
η · a1/β · u′ + u

a1/β · η2
=

(
u
η

)′
,

gives (
η2 · a1/β ·

(
u
η

)′)′
+

1
β

ηβ · (ϕ− φ) · u ≤ 0. (20)

Now, if we set y = u/η > 0, then Equation (20) becomes(
η2 · a1/β · y′

)′
+

1
β

ηβ+1 · (ϕ− φ) · y ≤ 0.

Using Corollary 1 in [38], the associated Equation (19) also has a positive solution.
This contradicts the hypotheses of the theorem.

One of the well-known criteria that guarantee the oscillation of the solutions of DE(
r(t)y′(t)

)′
+ Q(t)y(t) = 0,

in the canonical case, is

lim inf
t→∞

(∫ t

t0

r−1(v)dv
) ∫ ∞

t
Q(υ)dυ >

1
4

,

see for example [39]. Using this criterion, we obtain the following corollary:

Corollary 1. Assume that Equation (5) holds for some κ > 0, and h(w) = wβ. If

lim inf
t→∞

(∫ t

t0

1
η2(v)a1/β(v)

dv
) ∫ ∞

t
ηβ+1(υ)(ϕ(υ)− φ(υ))dυ >

β

4
,

then DE Equation (1) is oscillatory.

The Riccati substitution technique is a popular method when studying the oscillation
of DEs. In the following, using a generalized Riccati substitution, we establish another
criterion for the oscillation of Equation (1).

Theorem 3. Assume that Equations (5) and (11) hold for some κ > 0. If

lim sup
t→∞

ηβ(t)
ρ(t)

∫ t

t0

(
1

µ0
ρ(υ)(ϕ(υ)− φ(υ))− a(υ)(ρ′(υ))1+β

(1 + β)1+βρβ(υ)

)
dυ > 1, (21)

then DE Equation (1) is oscillatory.

Proof. Conversely, assuming that Equation (1) has a nonoscillatory solution necessarily
means that it has an eventually positive one, say u. Assume that u(t) > 0 for t ≥ t1 ∈ I0.

Now, we define the function

R := ρ ·
(

a ·
(

u′

u

)β

+
1

ηβ

)
. (22)

It follows from Equation (13) thatR ≥ 0, for t ∈ I1. Then,

R′ = ρ′

ρ
· R+ ρ ·


(

a · (u′)β
)′

uβ
− βa ·

(
u′

u

)β+1

+
β

a1/β · ηβ+1

,
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which, with Equation (6), gives

R′ ≤ ρ′

ρ
· R − ρ · (ϕ− φ) · [h ◦ u]

uβ
− β

ρ1/β · a1/β
·
(
R− ρ

ηβ

)1+1/β

+
βρ

a1/β · ηβ+1 . (23)

Using Equation (11) and the fact that u → 0 as t → ∞, there is t2 ∈ I1 such that
[h ◦ u]/uβ ≥ 1

µ0
for t ∈ I2. Thus, Equation (23) becomes

R′ ≤ ρ′

ρ
· R − 1

µ0
ρ · (ϕ− φ)− β

ρ1/β · a1/β
·
(
R− ρ

ηβ

)1+1/β

+
βρ

a1/β · ηβ+1 .

Using Lemma 1 with

A =
ρ′

ρ
, B =

β

ρ1/β · a1/β
, C =

ρ

ηβ
, and y = R,

we obtain

R′ ≤ − 1
µ0

ρ · (ϕ− φ) +
ρ′

ηβ
+

1

(1 + β)1+β

a · (ρ′)1+β

ρβ
+

βρ

a1/β · ηβ+1

= − 1
µ0

ρ · (ϕ− φ) +

(
ρ

ηβ

)′
+

1

(1 + β)1+β

a · (ρ′)1+β

ρβ
. (24)

Integrating Equation (24) from t2 to t, we find

R(t2)−R(t) +
ρ(t)

ηβ(t)
− ρ(t2)

ηβ(t2)

≥
∫ t

t2

(
1

µ0
ρ(v)(ϕ(v)− φ(v))− a(v)(ρ′(v))1+β

(1 + β)1+βρβ(v)

)
dv. (25)

From Equations (13) and (24), we obtain

−R+
ρ

ηβ
= −ρ · a ·

(
u′

u

)β

≤ ρ

ηβ
,

which, with Equation (25), gives

ηβ(t)
ρ(t)

∫ t

t2

(
1

µ0
ρ(v)(ϕ(v)− φ(v))− a(v)(ρ′(v))1+β

(1 + β)1+βρβ(v)

)
dv ≤ 1

This contradicts assumption Equation (21).

Lemma 3. Assume that h(w) = wβ, and Equation (5) holds for some κ > 0. If u is an eventu-
ally positive solution of Equation (1), then the functions u/ηκ and u/η1−κβ

are decreasing and
increasing, respectively.
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Proof. Let u be an eventually positive solution of Equation (1). We find that integrating
Equation (6) yields

a(t)
(
u′(t)

)β ≤ a(t1)
(
u′(t1)

)β −
∫ t

t1

(ϕ(v)− φ(v))uβ(v)dv

≤ a(t1)
(
u′(t1)

)β − uβ(t)
∫ t

t1

(ϕ(v)− φ(v))dv,

and using Equation (7) implies that

a(t)
(
u′(t)

)β ≤ a(t1)
(
u′(t1)

)β − κβuβ(t)
(

1
ηβ(t)

− 1
ηβ(t1)

)
. (26)

Since u→ 0 as t→ ∞, we have that

a(t1)
(
u′(t1)

)β
+ κβ uβ(t)

ηβ(t1)
≤ 0,

eventually. Thus, Equation (10) reduces to

a1/βu′ ≤ −κ
u
η

, (27)

which leads to (
u
ηκ

)′
=

ηu′ + κa−1/βu
ηκ+1 ≤ 0. (28)

Next, by integrating Equation (16) and using Equation (5), we obtain

η(t)a1/β(t)u′(t) + u(t) ≥ 1
β

∫ ∞

t
ηβ(v)(ϕ(v)− φ(v))u(v)dv

≥ κβ
∫ ∞

t

1
a1/β(v)

u(v)
η(v)

dv

≥ κβu(t).

Thus, we obtain (
u

η1−κβ

)′
=

ηu′ +
(
1− κβ

)
a−1/βu

η2−κβ
≥ 0. (29)

The proof is now completed.

Theorem 4. Assume that h(w) = wβ, and Equation (5) holds for some κ > 0. If κ + κβ > 1, then
DE Equation (1) is oscillatory.

Proof. Conversely, assuming that Equation (1) has a nonoscillatory solution necessarily
means that it has an eventually positive one, say u. Assume that u(t) > 0 for t ≥ t1 ∈ I0.
Then, it follows from Lemma 2 that u′(t) < 0 for t ≥ t1. Proceeding as in the proof of
Lemma 3, we obtain that Equations (28) and (29) hold. Thus, we have κ + κβ ≤ 1, which is
a contradiction.

Using Lemma 3, we can improve Theorem 1.
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Theorem 5. Assume that h(w) = wβ, and Equation (5) holds for some κ > 0. If

lim sup
t→∞

[
η1− β√κ(t)

∫ t

t0

(ϕ(v)− φ(v))ηβ+ β√κ−1(v)dv

+ ηκβ−1(t)
∫ ∞

t
(ϕ(v)− φ(v))ηβ−κβ+1(v)dv

]
> β, (30)

then DE Equation (1) is oscillatory.

Proof. Conversely, assuming that Equation (1) has a nonoscillatory solution necessarily
means that it has an eventually positive one, say u. Assume that u(t) > 0 for t ≥ t1 ∈ I0.

Proceeding exactly as the proof of Theorem 1, we find that Equation (18) holds. From

Lemma 3, we obtain that (u/ηκ)′ ≤ 0 and
(

u/η1−κβ
)′
≥ 0. Then, Equation (18) becomes

β ≥ η1− β√κ(t)
∫ t

t1

(ϕ(v)− φ(v))ηβ+ β√κ−1(v)dv

+ηκβ−1(t)
∫ ∞

t
(ϕ(v)− φ(v))ηβ−κβ+1(v)dv.

This contradicts assumption Equation (30).

2.3. Examples and Discussion

Example 1. Consider the perturbed DE

d
dt

(
t2 · d

dt
u
)
+ bϕu

(
u2 + 1

)
= bφu

((
d
dt

u
)2

+ 1

)−1

, (31)

where t > t0 and bϕ ≥ bφ > 0. We note that

F1(t, w) = bϕw
(

w2 + 1
)

and F2(t, w, v) =
bφw

(v2 + 1)
.

By choosing h(w) = w, we obtain

F1(t, w)

h(w)
= bϕw

(
w2 + 1

)
≥ bϕ := ϕ(t),

and
F2(t, w, v)

h(w)
=

bφ

(v2 + 1)
≤ bφ := φ(t).

It is easy to see that choosing κ =
(
bϕ − bφ

)
satisfies condition Equation (5). Applying

Theorem 1, DE Equation (31) is oscillatory if

bϕ − bφ >
1
2

.

whereas, by choosing ρ(t) = 1/t, Theorem 3 leads us to the fact that DE (31) is oscillatory if

bϕ − bφ >
1
4

.

Figure 1 shows the numerical solution to Equation (31) when bϕ = 2 and bφ = 1.

Remark 1. Bohner and Saker [21] studied an equation similar to the studied equation and obtained
criteria that guarantee that the equation is oscillating or converges to zero. As for our results, they
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guarantee that all solutions of the studied equation are oscillating, so our results are an improvement
on the results they obtained.

Figure 1. The numerical solution of DE Equation (31) when bϕ = 2 and bφ = 1.

Example 2. Consider the perturbed DE

(
eβt(u′(t))β

)′
+ eβt+b1 uβ(t) =

eβt+b2

(u2 + 1)
uβ(t). (32)

where b1 and b2 are real numbers. We note that

a(t) = eβt, F1(t, w) = eβt+b1 wβ, F2(t, w, v) =
eβt+b2

(w2 + 1)
wβ(t)

By choosing h(w) = wβ, we obtain

F1(t, w)

h(w)
= eβt+b1 := ϕ(t),

and
F2(t, w, v′)

h(w)
=

eβt+b2

(w2 + 1)
≤ eβt+b2 := φ(t).

Theorem 3 leads us to the fact that DE Equation (32) is oscillatory if

b1 > ln
[

1
4

(
1 + 4eb2

)]
.

Figure 2 shows the numerical solution to Equation (32) when b1 = 5 and b2 = 1.

Remark 2. Figures 1 and 2 represent an approximate numerical solution to the solutions to
Equations (31) and (32), respectively. As shown, we find that these numerical solutions have an
infinite number of arbitrary zeros; that is, they are oscillatory solutions.The numerical solutions of
the equations were obtained using Mathematica software.
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Figure 2. The numerical solution of DE Equation (32) when b1 = 5 and b2 = 1.

3. Conclusions

In this paper, we investigated the oscillatory behavior of perturbed DEs in the non-
canonical case. We used a technique based on pairing the studied equation with a canonical
equation. We also extended Koplatadze’s results to the perturbed DEs. On the other hand,
we used the Riccati approach to obtain more efficient criteria for oscillation. The new
criteria were tested on specific cases of the studied equation to support and clarify the
theoretical results.

It was clear from the results that the Recati technique presented more severe criteria
and also did not adhere to the condition h(w) = wβ. However, this technique is not affected
by the improvement of the monotonic properties of the solution, unlike Koplatadze’s
technique. One interesting proposed issue is to extend our results to delay and neutral DEs.
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