
Citation: Mainar, E.; Peña, J.M;

Rubio, B. On the Total Positivity and

Accurate Computations of r-Bell

Polynomial Bases. Axioms 2023, 12,

839. https://doi.org/10.3390/

axioms12090839

Academic Editor: Stefania Bellavia

Received: 21 July 2023

Revised: 23 August 2023

Accepted: 26 August 2023

Published: 29 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

On the Total Positivity and Accurate Computations of r-Bell
Polynomial Bases
Esmeralda Mainar , Juan Manuel Peña and Beatriz Rubio *

Department of Applied Mathematics, University Research Institute of Mathematics and its Applications (IUMA),
University of Zaragoza, 50009 Zaragoza, Spain; esmemain@unizar.es (E.M.); jmpena@unizar.es (J.M.P.)
* Correspondence: brubio@unizar.es

Abstract: A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-
Stirling matrices are totally positive and determine the linear transformation between monomial
and r-Bell polynomial bases. An efficient algorithm for the computation to high relative accuracy of
the bidiagonal factorization of r-Stirling matrices is provided and used to achieve computations to
high relative accuracy for the resolution of relevant algebraic problems with collocation, Wronskian,
and Gramian matrices of r-Bell bases. The numerical experimentation confirms the accuracy of the
proposed procedure.
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1. Introduction

The Stirling numbers form combinatorial sequences with remarkable properties and
many applications in Combinatorics, Number Theory, or Special Functions, among others.
The Stirling numbers were so named by Nielsen (cf. [1]) in honor of James Stirling, who
computed them in 1730 (cf. [2]). Interested readers are referred to [3–5] to find a nice
introduction and many nice properties of Stirling numbers. In the literature, many kinds of
generalizations of Stirling numbers have been introduced and studied ([3,6]). In this paper,
we shall focus on the r-Stirling numbers whose combinatorial and algebraic properties, in
most cases, generalize those of the regular Stirling numbers.

The r-Bell polynomials (see [7]) are considered as an efficient mathematical tool for
combinatorial analysis (cf. [5]) and can be applied in many different contexts: in the
evaluation of some integrals and alternating sums [8,9], for the analysis of the internal
relations for the orthogonal invariants of a positive compact operator [10], in the Blissard
problem [5], for the Newton sum rules for the zeros of polynomials [11], in the recurrence
relations for a class of Freud-type polynomials [12] and in many other subjects.

In this paper, a class of r-Stirling matrices will be introduced. It will be shown that these
matrices determine the linear transformations between monomial and r-Bell polynomial
bases and have the property of being totally positive and, therefore, having all of their
minors as non-negative. Several applications of the class of totally positive matrices can
be found in [13–15]. Totally positive matrices can be expressed as a particular product of
bidiagonal matrices (see [16,17]). This bidiagonal decomposition provides a representation
of the totally positive matrices that exploits their total positivity property and allows us to
derive algorithms to high relative accuracy for the resolution of relevant algebraic problems,
such as, the computation of their inverses, eigenvalues, singular values, or the solution of
some systems of linear equations.

A major issue in Numerical Linear Algebra is to obtain algorithms to high relative
accuracy, because the relative errors in their computations will have the order of the
machine precision and will not be drastically affected by the dimension or conditioning of

Axioms 2023, 12, 839. https://doi.org/10.3390/axioms12090839 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12090839
https://doi.org/10.3390/axioms12090839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-1101-6230
https://orcid.org/0000-0002-1340-0666
https://orcid.org/0000-0001-9130-0794
https://doi.org/10.3390/axioms12090839
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12090839?type=check_update&version=2


Axioms 2023, 12, 839 2 of 17

the considered matrices. Consequently, the design of algorithms adapted to the structure of
totally positive matrices and achieving computations to high relative accuracy has attracted
the interest of many researchers (see [18–24]).

Let us recall that many interpolation, numerical quadrature, and approximation
problems require algebra computations with collocation matrices of the considered bases.
When solving Taylor interpolation problems, Wronskian matrices have to be considered.
On the other hand, Gramian matrices define linear transformations to obtain orthogonal
from nonorthogonal bases. Moreover, the inversion of Gramian matrices is also required
when approximating, in the least-squares sense, curves by linear combinations of control
points and the basis functions. The large range of applications of r-Bell polynomials has
motivated us to exploit the total positivity property of r-Stirling matrices to design fast and
accurate algorithms for the resolution of algebraic problems with collocation, Wronskian,
and Gramian matrices of r-Bell polynomial bases.

The layout of this paper is as follows. Section 2 summarizes some notations and
auxiliary results. Section 3 focuses on the class of r-Stirling matrices. Their bidiagonal
decomposition is provided and their total positivity property is deduced. In Section 4,
r-Bell polynomials are considered. Collocation, Wronskian, and Gramian matrices of r-Bell
polynomial bases are shown to be totally positive. Then, using the proposed factorization
for r-Stirling matrices, the resolution of the above mentioned algebraic problems can be
achieved to high relative accuracy. Finally, Section 5 presents numerical experiments
confirming the accuracy of the proposed methods for the computation of eigenvalues,
singular values, inverses, or the solution of some linear systems related to collocation,
Wronskian, and Gramian matrices of r-Bell polynomial bases.

2. Notations and Auxiliary Results

Let us recall that a matrix is totally positive (respectively, strictly totally positive) if all
its minors are nonnegative (respectively, positive).

The Neville elimination is an alternative procedure to Gaussian elimination (see [16,17,25]).
Given a nonsingular matrix A = (ai,j)1≤i,j≤n+1, its Neville elimination calculates a sequence
of (n + 1)× (n + 1) matrices A(k), k = 1, . . . , n + 1, so that their elements below the main
diagonal of the k− 1 first columns are zeros and then A(n+1) is upper triangular.

From A(k) = (a(k)i,j )1≤i,j≤n+1, the Neville elimination computes A(k+1) = (a(k+1)
i,j )1≤i,j≤n+1

as follows,

a(k+1)
i,j :=


a(k)i,j , if 1 ≤ i ≤ k,

a(k)i,j −
a(k)i,k

a(k)i−1,k

a(k)i−1,j, if k + 1 ≤ i, j ≤ n + 1, and a(k)i−1,k 6= 0,

a(k)i,j , if k + 1 ≤ i ≤ n + 1, and a(k)i−1,k = 0,

(1)

with A(1) := A. The element

pi,j := a(j)
i,j , 1 ≤ j ≤ i ≤ n + 1, (2)

is called the (i, j) pivot and we say that pi,i is the i-th diagonal pivot of the Neville elimina-
tion of A. Whenever all pivots are nonzero, no row exchanges are needed in the Neville
elimination procedure. The value

mi,j :=

a(j)
i,j /a(j)

i−1,j = pi,j/pi−1,j, if a(j)
i−1,j 6= 0,

0, if a(j)
i−1,j = 0,

(3)

for 1 ≤ j < i ≤ n + 1, is the (i, j) multiplier of the Neville elimination of A.
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The Neville elimination procedure of a nonsingular matrix is illustrated with the
following example:

A = A(1) =

 2 4 12
8 26 138
56 262 1704

→ A(2) =

 2 4 12
0 10 90
0 80 738

→ A(3) =

 2 4 12
0 10 90
0 0 18

. (4)

The multipliers and the diagonal pivots are m2,1 = 4, m3,1 = 7, m3,2 = 8, p1,1 = 2, p2,2 = 10,
and p3,3 = 18.

By Theorem 4.2 and the arguments of p. 116 of [17], a nonsingular totally positive
A ∈ R(n+1)×(n+1) can be written as follows,

A = FnFn−1 . . . F1DG1G2 . . . Gn, (5)

where Fi ∈ R(n+1)×(n+1) and Gi ∈ R(n+1)×(n+1), i = 1, . . . , n, are the totally positive, lower
and upper triangular bidiagonal matrices with the unit diagonal described by

Fi =



1
0 1

. . . . . .
0 1

mi+1,1 1
mi+2,2 1

. . . . . .
mn+1,n+1−i 1


,

GT
i =



1
0 1

. . . . . .
0 1

m̃i+1,1 1
m̃i+2,2 1

. . . . . .
m̃n+1,n+1−i 1


, (6)

and D ∈ R(n+1)×(n+1) is a diagonal matrix with positive diagonal entries. In fact, the ele-
ments in the diagonal of D are the diagonal pivots of the Neville elimination of A. On the
other hand, the off-diagonal elements mi,j and m̃i,j are the multipliers of the Neville elimi-
nation of A and AT , respectively.

Using the results in [16,17,25] and Theorem 2.2 of [22], the Neville elimination of A
can be used to derive the following bidiagonal factorization (5) of its inverse matrix,

A−1 = Ĝ1Ĝ2 . . . ĜnD−1 F̂n F̂n−1 . . . F̂1, (7)

where F̂i ∈ R(n+1)×(n+1) and Ĝi ∈ R(n+1)×(n+1) are the lower and upper triangular bidiago-
nal matrices with the form described in (6), which are obtained by replacing the off-diagonal
entries {mi+1,1, . . . , mn+1,n+1−i} and {m̃i+1,1, . . . , m̃n+1,n+1−i} by {−mi+1,i, . . . ,−mn+1,i}
and {−m̃i+1,i, . . . ,−m̃n+1,i}, respectively. The structure of the bidiagonal matrix factors
in (7) is described as follows,
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F̂i =



1
0 1

. . . . . .
0 1
−mi+1,i 1

−mi+2,i 1
. . . . . .

mn+1,i 1


, (8)

ĜT
i =



1
0 1

. . . . . .
0 1
−m̃i+1,i 1

−m̃i+2,i 1
. . . . . .

m̃n+1,i 1


. (9)

Let us also observe that, if a matrix A ∈ R(n+1)×(n+1) is nonsingular and totally
positive, its transpose AT is also nonsingular and totally positive, and

AT = F̃n F̃n−1 . . . F̃1DG̃1G̃2 . . . G̃n, (10)

where F̃i = GT
i , G̃i = FT

i and Fi, Gi i = 1, . . . , n, are the lower and upper triangular
bidiagonal matrices in (5).

The total positivity property of a given matrix can be characterized by analyzing
the sign of the diagonal pivots and multipliers of its Neville elimination, as shown in
Theorem 4.1, Corollary 5.5 of [25] and the arguments of p. 116 of [17].

Theorem 1. A nonsingular matrix A is totally positive (respectively, strictly totally positive) if
and only if the Neville elimination of A and AT can be performed without row exchanges, all the
multipliers of the Neville elimination of A and AT are nonnegative (respectively, positive) and the
diagonal pivots of the Neville elimination of A are all positive.

In [19], the bidiagonal factorization (5) of a nonsingular and totally positive
A ∈ R(n+1)×(n+1) is represented by defining a matrix BD(A) = (BD(A)i,j)1≤i,j≤n+1
such that

BD(A)i,j :=


mi,j, if i > j,

pi,i, if i = j,

m̃j,i, if i < j.

(11)

This representation will allow us to define algorithms adapted to the totally positive
structure and provide accurate computations with the matrix.

Let us observe that, for the matrix A in (4), the bidiagonal decomposition (5) can be
written as follows:(

2 4 12
8 26 138

56 262 1704

)
=

(
1 0 0
0 1 0
0 7 1

)(
1 0 0
4 1 0
0 8 1

)(
2 0 0
0 10 0
0 0 18

)(
1 2 0
0 1 6
0 0 1

)(
1 0 0
0 1 3
0 0 1

)
.

Moreover, since the diagonal pivots and multipliers of the Neville elimination of A and AT

are all positive, we conclude that A is strictly totally positive. The above factorization can
be represented in the following matrix form:
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BD(A) =

 2 2 3
4 10 6
7 8 18

.

Let us also recall that a real value x is computed to high relative accuracy whenever
the computed value x̃ satisfies ∣∣∣∣ x− x̃

x

∣∣∣∣ < Ku,

where u is the unit round-off and K > 0 is a constant, which is independent of the arithmetic
precision. High relative accuracy implies a great accuracy in the computations, since the
relative errors have the same order of the machine precision and the accuracy is not affected
by the dimension or the conditioning of the problem we are solving.

A sufficient condition to assure that an algorithm can be computed to high relative
accuracy is the non-inaccurate cancellation condition, sometimes denoted as the NIC
condition, which is satisfied if the algorithm does not require inaccurate subtractions and
only evaluates products, quotients, sums of numbers of the same sign, subtractions of
numbers of the opposite sign, or subtraction of initial data (cf. [18,19]).

If the bidiagonal factorization (5) of a nonsingular and totally positive matrix A can be
computed to high relative accuracy, the computation of its eigenvalues and singular values,
the computation of A−1, and even the resolution of systems of linear equations Ax = b,
for vectors b with alternating signs, can be also computed to high relative accuracy, using
the algorithms provided in [26].

Let (u0, . . . , un) be a basis of a space U of functions defined on I ⊆ R. Given a sequence
of parameters x1 < . . . < xn+1 on I, the corresponding collocation matrix is defined by

M(x1, . . . , xn+1) :=
(
uj−1(xi)

)
1≤i,j≤n+1. (12)

The system (u0, . . . , un) of functions defined on I ⊆ R is totally positive if all of its colloca-
tion matrices M(x1, . . . , xn+1) are totally positive.

If the space U is formed by n-times continuously differentiable functions and x ∈ I,
the Wronskian matrix at x is defined by:

W(u0, . . . , un)(x) := (u(i−1)
j−1 (x))1≤i,j≤n+1, (13)

where u(i)(x), i ≤ n, denotes the i-th derivative of u at x.
Now, let us suppose that U is a Hilbert space of functions under a given inner product

〈u, v〉 defined for any u, v ∈ U. Then, given linearly independent functions u0, . . . , un in U,
the corresponding Gram matrix is the symmetric matrix defined by:

G(u0, . . . , un) :=
(
〈ui−1, uj−1〉

)
1≤i,j≤n+1.

3. Bidiagonal Factorization of r-Stirling Matrices

Let us recall that given n, m ∈ N with m < n, the (signless) Stirling number of
the first kind, usually denoted by

[ n
m
]
, can be defined combinatorially as the number of

permutations of the set {1, . . . , n} having m cycles.
On the other hand, the Stirling number of the second kind, usually denoted by

{ n
m
}

,
coincides with the number of partitions of the set {1, . . . , n} into m non-empty disjoint
blocks (cf. [3]). Moreover, the Bell number Bn gives the total number of partitions of the set
{1, . . . , n}; that is,

Bn :=
n

∑
m=0

{ n
m

}
.

The first and second kinds of Stirling numbers can be recursively computed as follows,



Axioms 2023, 12, 839 6 of 17

[n
k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1
k− 1

]
,
{n

k

}
= k

{
n− 1

k

}
+

{
n− 1
k− 1

}
, (14)

with the initial conditions[
0
0

]
:= 1,

[n
0

]
=

[
0
n

]
:= 0,

{n
n

}
:= 1,

{n
0

}
=

{
0
n

}
:= 0, n ∈ N. (15)

The r-Stirling numbers are polynomials in r generalizing the regular Stirling numbers
and they count some restricted permutations and partitions of sets with a given number
of elements.

For r ∈ N, the first kind r-Stirling number, denoted by
[ n

m
]

r, counts the number of
permutations of the elements {1, . . . , n} having m cycles, such that 1, 2, . . . , r are in distinct
cycles. In addition, the second kind r-Stirling number, denoted by

{ n
m
}

r, is defined as the
number of set partitions of {1, . . . , n + r} into m + r blocks such that the first r elements are
in distinct blocks. Thus the r-Bell number Br

n gives the total number of partitions of the set
{1, . . . , n + r}, such that the first r elements are in distinct blocks; that is,

Br
n :=

n

∑
m=0

{ n
m

}
r
.

Clearly, for r = 0, the r-Stirling numbers coincide with the corresponding regular Stir-
ling numbers.

Theorems 1 and 2 of [3] prove that the r-Stirling numbers satisfy the recurrence
relations verified by the regular Stirling numbers (see (14)); that is,[n

k

]
r
= (n− 1)

[
n− 1

k

]
r
+

[
n− 1
k− 1

]
r
,
{n

k

}
r
= k

{
n− 1

k

}
r
+

{
n− 1
k− 1

}
r
, (16)

but with different initial conditions,[n
k

]
r
= 0, n < r,

[n
k

]
r
= δk,r, n = r,

and {n
k

}
r
= 0, n < r,

{n
k

}
r
= δk,r, n = r.

Moreover, for some particular values, the corresponding r-Stirling numbers can be easily
obtained: [n

n

]
r
=
{n

n

}
r
= 1, n ≥ r. (17)[n

k

]
r
=
{n

k

}
r
= 0, k > n, (18)[n

r

]
r
= rn−r := (n− 1)(n− 2) . . . r, k > n, (19){n

r

}
r
= rn−r. (20)

Finally, let us recall a “cross” recurrence relating r-Stirling numbers of the second kind
with a different r that is going to be used in this paper (see Theorem 4 of [3]). The r-Stirling
numbers of the second kind satisfy{n

k

}
=
{n

k

}
r−1
− (r− 1)

{
n− 1

k

}
r−1

, 1 ≤ r ≤ n. (21)

Now, we are going to define triangular matrices whose entries are given in terms of
r-Stirling numbers. We shall analyze their Neville elimination and derive their bidiagonal
factorization (5).
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Definition 1. For r, n ∈ N with 0 ≤ r ≤ n, the (n + 1)× (n + 1) the first kind of r-Stirling
matrix is the lower triangular matrix Lr

n = (lr
i,j)1≤i,j≤n+1 with

lr
i,j :=

[
i + r− 1
j + r− 1

]
r
, 1 ≤ i, j ≤ n + 1. (22)

On the other hand, the (n + 1)× (n + 1) second kind of r-Stirling matrix, is the lower triangular
matrix L̄r

n = (l̄r
i,j)1≤i,j≤n+1 with

l̄r
i,j :=

{
i + r− 1
j + r− 1

}
r
, 1 ≤ i, j ≤ n + 1. (23)

The following results provide the expression of the pivots and multipliers of the Neville
elimination of r-Stirling matrices and their inverses. Then, their bidiagonal factorization (5)
will be deduced and their total positivity property analyzed.

Theorem 2. For r, n ∈ N with r ≤ n, the first kind of r-Stirling matrix Lr
n ∈ R(n+1)×(n+1) is

totally positive and admits the following factorization

Lr
n = Fn . . . F1, (24)

where Fi, i = 1, . . . , n, are the lower triangular bidiagonal matrices of the form (6), whose off-
diagonal entries are given by

mi,j = i + r− j− 1, 1 ≤ j < i ≤ n + 1. (25)

Moreover,
(Lr

n)
−1 = F̂n . . . F̂1, (26)

where F̂i, i = 1, . . . , n, are the lower triangular bidiagonal matrices of the form (6), whose off-
diagonal entries are given by

mi,j = −(r + j− 1), 1 ≤ j < i ≤ n + 1. (27)

Proof. Let us define L(1) := Lr
n and L(k) = (l(k)ij )1≤i,j≤n+1, k = 2, . . . , n, the matrix obtained

after k − 1 steps of the Neville elimination of Lr
n. We shall deduce by induction on k ∈

{1, . . . , n + 1} that

l(k)i,j =

[
i + r− k
j + r− k

]
r
. (28)

For k = 1, identities (28) follow from (22). Now, suppose that (28) is verified for some
k ∈ {1, . . . , n}. Then, taking into account (19), we can write

l(k)i,k /l(k)i−1,k =

[
i + r− k

r

]
r
/
[

i + r− k− 1
r

]
r
= ri−k/ri−k−1 = i + r− k− 1. (29)

By (1), we have l(k+1)
i,j = l(k)i,j −

(
l(k)i,k /l(k)i−1,k

)
l(k)l−1,j and, using (16), (28), and (29), we derive

l(k+1)
i,j =

[
i + r− k
j + r− k

]
r
− (i + r− k− 1)

[
i + r− k− 1

j + r− k

]
r
=

[
i + r− k− 1
j + r− k− 1

]
r
,

corresponding to the identity (35) for k + 1.
By (2), (19), and (28), we deduce that the pivots of the Neville elimination of Lr

n satisfy

pi,j = l(j)
i,j =

[
i + r− j

r

]
r
.
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and so the diagonal pivots are pi,i =
[ r

r
]

r = 1 for i = 1, . . . , n + 1 (see (17)). Moreover,
the following expression for the multipliers can be deduced

mi,j = pi,j/pi−1,j =

[
i + r− j

r

]
r
/
[

i + r− j− 1
r

]
r
= i + r− j− 1, 1 ≤ j < i ≤ n + 1.

Clearly, pi,i > 0, for i = 1, . . . , n + 1, and mi,j > 0, for 1 ≤ j < i ≤ n + 1. Then, using
Theorem 1, we deduce that Lr

n is totally positive.
Finally, taking into account the bidiagonal factorization (7) for the inverse of a nonsin-

gular totally positive matrix, the factorization (26) for (Lr
n)
−1 can be deduced easily.

The provided bidiagonal decomposition (5) of the first kind of r-Stirling matrix Lr
n can

be stored in a compact form through BD(Lr
n) =

(
BD(Lr

n)i,j
)

1≤i,j≤n+1 with

BD(Lr
n)i,j =


i + r− j− 1, 2 ≤ j < i ≤ n + 1,
1, 1 ≤ i = j ≤ n + 1,
0, elsewhere.

(30)

Now, the following result deduces the pivots and multipliers of the Neville elimination
of r-Stirling matrices of the second kind and their inverses.

Theorem 3. For r, n ∈ N with r ≤ n, the (n + 1)× (n + 1) second kind r-Stirling matrix L̄r
n

admits a bidiagonal factorization
L̄r

n = Fn . . . F1, (31)

where Fi, i = 1, . . . , n, are lower triangular bidiagonal matrices of the form (6), whose off-diagonal
entries mi,j, 1 ≤ j < i ≤ n + 1, are given by

mi,j = r + j− 1, 1 ≤ j < i ≤ n + 1. (32)

Moreover,
(L̄r

n)
−1 = F̂n . . . F̂1, (33)

where F̂i, i = 1, . . . , n, are lower triangular bidiagonal matrices of the form (6), whose off-diagonal
entries mi,j, 1 ≤ j < i ≤ n + 1, are given by

mi,j = −(r + i− j− 1). 1 ≤ j < i ≤ n + 1. (34)

Proof. Let us define L(1) := L̄r
n and L(k) = (l(k)ij )1≤i,j≤n+1, r = 2, . . . , n, the matrix obtained

after k− 1 steps of the Neville elimination of L̄r
n. By induction on k ∈ {1, . . . , n + 1}, we

shall deduce that

l(k)i,j =

{
i + r− 1
j + r− 1

}
r+k−1

. (35)

Taking into account (23), identities (35) clearly hold for k = 1. If (35) holds for some
k ∈ {1, . . . , n}, using (20), we have

l(k)i,k /l(k)i−1,k =

{
i + r− 1
k + r− 1

}
r+k−1

/
{

i + r− 2
k + r− 1

}
r+k−1

=
(k + r− 1)i−k

(k + r− 1)i−k−1 = k + r− 1. (36)

Since l(k+1)
i,j = l(k)i,j −

(
l(k)i,k /l(k)i−1,k

)
l(k)l−1,j (see (1)), and taking into account (21), (35), and (36),

we derive

l(k+1)
i,j =

{
i + r− 1
j + r− 1

}
r+k−1

− (r + k− 1)
{

i + r− 2
j + r− 1

}
r+k−1

=

{
i + r− 1
j + r− 1

}
r+k

,

corresponding to the identity (35) for k + 1.
Now, by considering (2), (20), and (35), we can easily deduce that
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pi,j = l(j)
i,j =

{
i + r− 1
j + r− 1

}
r+j−1

= (r + j− 1)i−j,

and pi,i = 1, for i = 1, . . . , n + 1. For the multipliers we have

mi,j = pi,j/pi−1,j = (r + j− 1)i−j/(r + j− 1)i−j−1. = r + j− 1, 1 ≤ j < i ≤ n + 1.

Clearly, pi,i > 0, for i = 1, . . . , n + 1, mi,j > 0, for 1 ≤ j < i ≤ n + 1 and, using Theorem 1,
we conclude that L̄r

n is strictly totally positive.
Finally, taking into account the bidiagonal factorization (7) for the inverse of a nonsin-

gular totally positive matrix, the factorization (33) for (L̄r
n)
−1 can be deduced.

The provided bidiagonal factorization (5) of the matrix L̄r
n can be stored in a compact

form through BD(L̄r
n) =

(
BD(L̄r

n)i,j
)

1≤i,j≤n+1 with

BD(L̄r
n)i,j =


r + j− 1, 2 ≤ j < i ≤ n + 1,
1, 1 ≤ i = j ≤ n + 1,
0, elsewhere.

(37)

Remark 1. Given a lower triangular (n + 1)× (n + 1) matrix, for any k ≤ n + 1, the determi-
nants of the submatrices using row i1, . . . , ik and columns j1, . . . , jk with ih ≥ jh for all h ≤ k are
called nontrivial minors because all other minors are zero. A lower triangular matrix is called ∆STP
if all its nontrivial minors are positive. Since Theorem 2 (respectively, Theorem 3) proves that the
lower triangular matrix with unit diagonal Lr

n (respectively, L̄r
n) has all multipliers of its Neville

elimination positive, by Theorem 4.3 of [16], we conclude that Lr
n (respectiveley, L̄r

n) is in fact ∆STP.

Now, taking into account Theorems 2 and 3, we provide the pseudocode of
Algorithms 1 and 2, respectively. Specifically, Algorithm 1 computes the matrix form
BD(Lr

n) in (30), for the bidiagonal decomposition of the first kind r-Stirling matrix Lr
n

in (24). Moreover, Algorithm 2 computes the matrix form BD(L̄r
n) in (37) for the bidiagonal

decomposition of the r-Stirling matrix of the second kind L̄r
n in (31). The computational cost

of both algorithms is O(n2). Let us observe that none of the algorithms requires inaccurate
subtractions, and so the provided matrices are computed to high relative accuracy. In fact,
all of their entries are natural numbers.

Algorithm 1: Computation to high relative accuracy of BD(Lr
n) (see (30))

Require: n, r
Ensure: BDLr

n bidiagonal decomposition of Lr
n to high relative accuracy

BDLr
n = eye(n + 1)

for i = 2 : n + 1
for j = 1 : i− 1

BDLr
n(i, j) = i + r− j− 1

end
end

Algorithm 2: Computation to high relative accuracy of BD(L̄r
n) (see (37))

Require: n, r
Ensure: BDL̄r

n bidiagonal decomposition of L̄r
n to high relative accuracy

BDL̄r
n = eye(n + 1)

for i = 2 : n + 1
for j = 1 : i− 1

BDL̄r
n(i, j) = r + j− 1

end
end
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4. Accurate Computations with r-Bell Bases

Let Pn(I) be the (n+1)-dimensional linear space formed by all polynomials in the
variable x defined on a real interval I and whose degree is not greater than n; that is,

Pn(I) := span{1, x, . . . , xn}, x ∈ I.

For n ∈ N, the n degree r-Bell polynomial of the first kind is defined as

Br
n(x) :=

n

∑
k=0

[
n + r
k + r

]
r
xk. (38)

Then we can define a system (Br
0, . . . , Br

n) of r-Bell polynomials of the first kind that satisfy

(Br
0, . . . , Br

n)
T = Lr

n(m0, . . . , mn)
T , (39)

where mi(x) := xi, i = 0, . . . , n and Lr
n is the (n + 1)× (n + 1) first kind of r-Stirling matrix

defined by (22). By (24), det Lr
n = 1 and we can guarantee that (Br

0, . . . , Br
n)

T is a basis of
Pn(R).

Definition 2. We say that (Br
0, . . . , Br

n) is the r-Bell basis of the first kind of the polynomial space
Pn(R).

On the other hand, the r-Bell polynomials of the second kind {B̄ r
n}n≥0 in [3,27] are

called r-Bell polynomials, which are defined by their generating function

∑
n≥0

B̄ r
n(x)

tn

n!
= exp

(
x(et − 1)+rt

)
.

They can also be written in terms of the monomial basis as follows,

B̄ r
n(x) =

n

∑
k=0

{
n + r
k + r

}
r
xk, n ∈ N. (40)

and then
(B̄r

0, . . . , B̄ r
n)

T = L̄r
n(m0, . . . , mn)

T , (41)

where L̄r
n is the (n + 1)× (n + 1) second kind of r-Stirling matrix defined by (23). By (31),

det L̄r
n = 1 and we can guarantee that (B̄r

0, . . . , B̄r
n)

T is a basis of Pn(R).

Definition 3. We say that (B̄r
0, . . . , B̄ r

n) is the r-Bell basis of the second kind of Pn(R).

Let us recall that the monomial basis (m0, . . . , mn), with mi(x) = xi for i = 0, . . . , n, is
a strictly totally positive basis of Pn(0,+∞), and so the collocation matrix

V :=
(

xj−1
i

)
1≤i,j≤n+1

, (42)

is strictly totally positive for any increasing sequence of positive values 0 < x1 < . . . < xn+1
(see Section 3 of [19]). In fact, V is the Vandermonde matrix at the considered nodes. Let us
recall that Vandermonde matrices have relevant applications in linear interpolation and
numerical quadrature (see for example [28,29]). As for BD(V), we have

BD(V)i,j :=


∏

j−1
k=1

xi−xi−k
xi−1−xi−k−1

, if i > j,

∏i−1
k=1(xi − xk), if i = j,

xi, if i < j,

(43)
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and it can be easily checked that the computation of BD(V) does not require inaccurate
cancellations and can be performed to high relative accuracy.

Taking into account the total positivity of the Vandermonde matrices and the total
positivity of r-Stirling matrices of the first and second kinds, we shall derive the total
positivity of r-Bell bases, as well as factorizations providing computations to high relative
accuracy when considering their collocation matrices.

Theorem 4. The r-Bell basis of first and second kind are totally positive bases of Pn(0,+∞).
Moreover, given 0 < x1 < . . . < xn+1, the collocation matrices

B :=
(

Br
j−1(xi)

)
1≤i,j≤n+1

, B̄ :=
(

B̄ r
j−1(xi)

)
1≤i,j≤n+1

, (44)

and their bidiagonal factorization (5) can be computed to high relative accuracy.

Proof. Given 0 < x1 < . . . < xn+1, by formulae (39) and (41), the collocation matrices
in (44) satisfy

B = V(Lr
n)

T , B̄ = V(L̄r
n)

T , (45)

where V is the Vandermonde matrix (42), and Lr
n and L̄r

n are r-Stirling matrices of the first
and second kind, respectively.

It is well known that V is strictly totally positive at 0 < x1 < . . . < xn+1 and its
decomposition (5) can be computed to high relative accuracy (see [19]). By Theorem 2
(respectively, Theorem 3), Lr

n (respectively, L̄r
n) is a nonsingular totally positive matrix and

its decomposition (5) can be computed to high relative accuracy. Taking into account these
facts, (Lr

n)
T (respectively, (L̄r

n)
T) is a nonsingular totally positive matrix and its bidiagonal

decomposition can be also computed to high relative accuracy (see (10)). Therefore, we can
deduce that B (respectively, B̄) is a totally positive matrix since it is the product of totally
positive matrices (see Theorem 3.1 of [13]). Moreover, using Algorithm 5.1 of [26], if the
decomposition (5) of two nonsingular totally positive matrices is provided to high relative
accuracy, then the decomposition of the product can be obtained to high relative accuracy.
Consequently, B (respectively, B̄) and its decomposition (5) can be obtained to high relative
accuracy.

Corollary 1 of [20] provides the factorization (5) of W := W(m0, . . . , mn)(x), the Wron-
skian matrix of the monomial basis (m0, . . . , mn) at x ∈ R. For the matrix representation
BD(W), we have

BD(W)i,j :=


x, if i < j,

(i− 1)!, if i = j,

0, if i > j.

(46)

Taking into account the sign of the entries of BD(W) and Theorem 1, one can derive that
the Wronskian matrix of the monomial basis is totally positive for any x > 0. Moreover,
the computation of (46) satisfies the NIC condition and W can be computed to high relative
accuracy. Using (46), computations to high relative accuracy when solving algebraic
problems related to W have been achieved in [20] for x > 0.

Using formula (39), it can be checked that

W(Br
0, . . . , Br

n)(x) = W(m0, . . . , mn)(x)(Lr
n)

T , W(B̄r
0, . . . , B̄r

n)(x) = W(m0, . . . , mn)(x)(L̄r
n)

T .

So, with the reasoning of the proof of Theorem 4, the next result follows and we can also
guarantee computations to high relative accuracy when solving algebraic problems related
to Wronkian matrices of r-Bell polynomial bases at positive values.

Theorem 5. Let (Br
0, . . . , Br

n) and (B̄r
0, . . . , B̄r

n) be the r-Bell bases of the first and second kind,
respectively. For any x > 0, the Wronskian matrices Wr

n := W(Br
0, . . . , Br

n)(x) and W̄r
n :=
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W(B̄r
0, . . . , B̄r

n)(x) are nonsingular totally positive and their bidiagonal decomposition (5) can be
computed to high relative accuracy.

It is well known that the polynomial space Pn([0, 1]) is a Hilbert space under the inner
product

〈p, q〉 :=
∫ 1

0
p(x)q(x) dx, (47)

and the Gramian matrix of the monomial basis (m0, . . . , mn) with respect to (47) is:

Hn :=
(∫ 1

0
xi+j−2 dx

)
1≤i,j≤n+1

=

(
1

i + j− 1

)
1≤i,j≤n+1

. (48)

The matrix Hn is the (n + 1)× (n + 1) Hilbert matrix. In Numerical Linear Algebra, Hilbert
matrices are well-known Hankel matrices. Their inverses and determinants have explicit
formulas; however, they are very ill-conditioned for moderate values of their dimension.
Then, they can be used to test numerical algorithms and see how they perform on ill-
conditioned or nearly singular matrices. It is well known that Hilbert matrices are strictly
totally positive. In [19], the pivots and the multipliers of the Neville elimination of H are
explicitly derived. It can be checked that BD(Hn) = (BD(Hn)i,j)1≤i,j≤n+1 is given by

BD(Hn)i,j :=


(i−1)2

(i+j−1)(i+j−2) , if i > j,

(i−1)!4

(2i−1)!(2i−2)! , if i = j,

(j−1)2

(i+j−1)(i+j−2) , if i < j.

(49)

Clearly, the computation of the factorization (5) of Hn does not require inaccurate cancella-
tions, and so it can be computed to high relative accuracy.

Using formula (39), it can be checked that the Gramian matrices Gr
n and Ḡr

n of the
r-Bell bases of the first and second kind, respectively, with respect to the inner product (47),
can be written as follows,

Gr
n = Lr

n Hn(Lr
n)

T , Ḡr
n = L̄r

n Hn(L̄r
n)

T , (50)

where Lr
n (respectively, L̄r

n) is the (n + 1)× (n + 1) r-Stirling matrix of the first (respectively,
second) kind. According to the reasoning in the proof of Theorem 4, the following result
can be deduced.

Theorem 6. The Gramian matrices Gr
n and Ḡr

n of the r-Bell bases of the first and second kind, re-
spectively, with respect to the inner product (47), are nonsingular and totally positive. Furthermore,
Gr

n, Ḡr
n and their bidiagonal decompositions (5) can be computed to high relative accuracy.

Now, taking into account Algorithms 1 and 2, as well as Theorems 4–6, we provide the
pseudocode of Algorithms 3–5 for computing, to high relative accuracy, the matrix form (11)
of the bidiagonal decomposition of the collocation matrices Br

n, B̄r
n, Wronskian matrices Wr

n,
W̄r

n, and Gramian matrices Gr
n, Ḡr

n of r-Bell bases of the first and second kind. Algorithm 3
requires BD(Lr

n), BD(L̄r
n), and the bidiagonal decomposition of the Vandermonde matrix

implemented in the MATLAB function TNVandBD available in [30]. In addition, Algorithm 4
requires BD(Lr

n), BD(L̄r
n), and the bidiagonal decomposition BD(W) (46) of the Wronskian

matrix W of the monomial basis at x. Moreover, Algorithm 5 requires BD(Lr
n), BD(L̄r

n), and
the bidiagonal decomposition BD(H) of the Hilbert matrix H implemented in the MATLAB
function TNCauchyBD available in [30]. Finally, let us observe that these three algorithms call
the MATLAB function TNProduct available in [30]. Let us recall that, given A = BD(F) and
B = BD(G) to high relative accuracy, TNProduct(A, B) computes BD(F ·G) to high relative
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accuracy. The computational cost of the mentioned function and mentioned algorithms is
O(n3) arithmetic operations.

Algorithm 3: Computation to high relative accuracy of the bidiagonal decom-
position of collocation matrices Br

n, B̄r
n of r-Bell bases of the first and second kind

Require: n, r, x := {xi}n+1
i=1 such that 0 < x1 < . . . < xn+1

Ensure: BDBr
n bidiagonal decomposition of Br

n to high relative accuracy
BDB̄r

n bidiagonal decomposition of B̄r
n to high relative accuracy

BDLr
n = BDLr

n(n, r) (see Algorithm 1)
BDL̄r

n = BDL̄r
n(n, r) (see Algorithm 2)

BDV = TNVandBD(x)
BDBr

n = TNProduct(BDV, (BDLr
n)

T)
BDB̄r

n = TNProduct(BDV, (BDL̄r
n)

T)

Algorithm 4: Computation to high relative accuracy of the bidiagonal decompo-
sition of Wronskian matrices Wr

n, W̄r
n of r-Bell bases of the first and second kind

Require: n, r, x ∈ (0, ∞)
Ensure: BDWr

n bidiagonal decomposition of Wr
n to high relative accuracy

BDW̄r
n bidiagonal decomposition of W̄r

n to high relative accuracy
BDLr

n = BDLr
n(n, r) (see Algorithm 1)

BDL̄r
n = BDL̄r

n(n, r) (see Algorithm 2)
BDW = BDW(x)
BDWr

n = TNProduct(BDW, (BDLr
n)

T)
BDW̄r

n = TNProduct(BDW, (BDL̄r
n)

T)

Algorithm 5: Computation to high relative accuracy of the bidiagonal decom-
position of Gramian matrices Gr

n, Ḡr
n of r-Bell bases of the first and second kind

Require: n, r
Ensure: BDGr

n bidiagonal decomposition of Gr
n to high relative accuracy

BDḠr
n bidiagonal decomposition of Ḡr

n to high relative accuracy
BDLr

n = BDLr
n(n, r) (see Algorithm 1)

BDL̄r
n = BD′′ L̄r

n(n, r) (see Algorithm 2)
BDH = TNCauchyBD(1 : n, 0 : n− 1)
B1 = TNProduct(BDLr

n), BDH)

BDG̃ = TNProduct(B1, (BDLr
n)

T))
B2 = TNProduct(BDL, BDH)
BDG = TNProduct(B2, (BDL̄r

n)
T)

5. Numerical Experiments

Some numerical tests are presented in this section, supporting the obtained theoretical
results. We have considered different nonsingular strictly totally positive collocation
matrices Br

n, B̄r
n, Wronskian matrices Wr

n, W̄r
n, and Gramian matrices Gr

n, Ḡr
n of r-Bell

bases of the first and second kind. Specifically, Bn with r = 0 and t = (i − 1)/(n + 1),
i = 1, . . . , n + 1, and B̄r

n, with r = 1 and t = 1 + (i− 1)/(n + 1), i = 1, . . . , n + 1, and with
r = 3 and t = (i− 1)/(n + 1), i = 1, . . . , n + 1. In addition, Wr

n with r = 5 and t = 60 and,
W̄r

n with r = 4 and t = 50. Finally, Ḡr
n with r = n, n = 10, 11, . . . , 20.

We have computed, with Mathematica, the 2-norm condition number, which is the ra-
tio of the largest singular value to the smallest, of all considered matrices. This conditioning
is depicted in Figure 1. It can be easily observed that the conditioning drastically increases
with the size of the matrices. Due to the ill-conditioning of these matrices, standard routines
do not obtain accurate solutions because they can suffer from inaccurate cancellations.
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Figure 1. The 2-norm condition number of collocation, Wronskian, and Gramian matrices of r-Bell
bases of the first and second kind.

Let us recall that if BD(A) can be obtained to high relative accuracy, then the MATLAB
functions TNEigenValues, TNSingularValues, TNInverseExpand and TNSolve available in
the software library TNTools in [30], take as input argument BD(A), and compute to high
relative accuracy the eigenvalues and singular values of A, the inverse matrix A−1 (using
the algorithm presented in [22]) and even the solution of linear systems Ax = b, for vectors
b with alternating signs.

In order to check the accuracy of our algorithms, we have performed several matrix
computations using the mentioned routines available in [30], with the matrix form (11)
of the bidiagonal factorization (5) as an input argument. The obtained approximations
have been compared with the respective approximations obtained by traditional methods
provided in Matlab R2022b. In this context, the values provided by Wolfram Mathematica
13.1 with 100-digit arithmetic have been taken as the exact solution of the considered
algebraic problem. For the sake of brevity, only a few of these experiments will be shown.

The relative error of each approximation has also been computed in Mathematica
with 100-digit arithmetic as e := |y− ỹ|/|y|, where y denotes the exact solution and ỹ the
computed approximation.

Computation of eigenvalues and singular values. For all considered matrices, we
have compared the smallest eigenvalue and singular value obtained using the proposed
bidiagonal decompositions provided by Algorithms 3–5 with the functions TNEigenvalues
and TNSingularvalues, and the smallest eigenvalue and singular value computed with the
Matlab commands eig and svd, respectively. Note that the eigenvalues of the Wronskian
matrices are exact. Furthermore, the singular values of the Gramian matrices considered
coincide with their eigenvalues (since Gramian matrices are symmetric).

The relative errors are shown in Figure 2. Note that our approach accurately computes
the smallest eigenvalue and singular value regardless of the 2-norm condition number of
the considered matrices. In contrast, the Matlab commands eig and svd return results that
are not accurate at all.

Computation of inverses. Further to this, for all considered matrices, we have com-
pared the inverse obtained using the proposed bidiagonal decompositions provided by
Algorithms 3–5 with the function TNInverseExpand and the inverse computed with the
Matlab command inv. As shown in Figure 3, our procedure provides very accurate results.
On the contrary, the results obtained with Matlab reflect poor accuracy.

Resolution of linear systems. Finally, for all considered matrices, we have compared
the solution of the linear systems Br

nc = d, B̄r
nc = d, Wr

nc = d, W̄r
nc = d, Gr

nc = d and
Ḡr

nc = d where d = ((−1)i+1di)1≤i≤n+1 and di, i = 1, . . . , n + 1, are random nonnegative
integer values, obtained using the proposals for bidiagonal decompositions provided by
Algorithms 3–5 with the function TNSolve and the solutions obtained within the Matlab
command \. As opposed to the results obtained with the command \, the proposed
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procedure preserves the accuracy for all of the dimensions which have been taken into
account. Figure 4 illustrates the relative errors.

Figure 2. Relative error in the approximations to the smallest eigenvalue of B̄r
n with r = 3 and

ti = (i − 1)/(n + 1), i = 1, . . . , n + 1, and to the smallest singular value of Br
n with r = 0 and

ti = (i− 1)/(n + 1), i = 1, . . . , n + 1.

Figure 3. Relative error of the approximations to the inverse of Wr
n with r = 5 and t = 60 and Ḡr

n
with r = n.

Figure 4. Relative error of the approximations to the solution of the linear systems B̄r
nc = d,

with r = 1 and ti = 1 + i/(n + 1), i = 0, . . . , n, and W̄r
nc = d, with r = 4 and t = 50, where

d = ((−1)i+1di)1≤i≤n+1 and di, i = 1, . . . , n + 1, are random nonnegative integer values.

6. Conclusions

We have introduced a new class of matrices called r-Stirling matrices. These matrices
are defined in terms of r-Stirling numbers and have interesting properties, such as being
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totally positive. They also play a significant role in determining the linear transformation
between monomial and r-Bell polynomial bases.

The paper further discusses an efficient algorithm for computing the bidiagonal
factorization of r-Stirling matrices to high relative accuracy. This factorization is used
for solving relevant algebraic problems involving collocation, Wronskian, and Gramian
matrices associated with r-Bell polynomial bases. To validate the proposed procedure and
its usefulness, the paper presents numerical experiments that confirm its accuracy.
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