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Abstract: This paper is on deducing the necessary and sufficient conditions of a surface family pair
with a Bertrand pair as mutual curvature lines in three-dimensional Lie group G. As a result, the
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1. Introduction

Geometry and algebra, two important mathematical topics, combine to form Lie
groups in two separate ways: first, as groups, and second, as differentiable manifolds. As a
result, Lie group substructure should be coherent in a particular way, both geometrically
and algebraically. The shared new approach to geometry heavily depends on research
into Lie groups. Consequently, there are several study findings on curves and surfaces in
three-dimensional Lie group (3-D Lie group) G [1–6].

In recent years, several academics have become interested in creating surface families
with characteristic curves, for example, Wang et al. [7] a surface family with a shared
geodesic was created. Their work involves defining a spatial curve to represent the surface
in an adverse engineering challenge, and it also includes scenarios where the curve could
be a geodesic on this surface. In addition to this, their work could be seen as an example
of industrial mathematics. Kasap et al. [8] expanded this work by speculating on new
complete marching-scale functions. In [9] Using the Dirichlet principle and the Dirichlet
approach, Li et al. analyzed the approximate minimal surface together with geodesics and
minimized the surface’s area. When constructing surfaces, this approach can be used to
obtain materials at the lowest possible cost. Several studies have taken into account the
surface family with characteristic curves [10–14].

The symmetry between the curves is an interesting topic for the theory of space
curves. The Bertrand curve is one of the more common private curves. If there is a linear
relationship between the principal normal vectors of two curves at their corresponding
points, the two curves are said to be a Bertrand pair [15]. The helix can be defined as the
generalization of the Bertrand curve. Because of its many applications, the helix has drawn
the interest of mathematicians and scientists as well. Examples include the clarification
of DNA, carbon nan-otubes, nan-osprings, a-helices, the geometrical shaping of linear
chained polymers stabilized as helices, and the eigenproblems interpreted for molecular
collation(see [16,17]). Additionally, the Bertrand curves provide unique applications of
offset curves that computer-aided manufacture (CAM) and computer-aided design (CAD)
(see [18,19]).
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To our knowledge, however, no more work has been done to develop a surface family
pair with a curve pair to be curvature lines in 3-D Lie group G. A surface family pair with
a Bertrand pair as mutual curvature lines is designed in this study using a Bertrand pair as
curvature lines to fill this demand. The expansion to the family of ruled surfaces is also
described. In the meantime, a some examples are utilized to construct the surface family
and ruled surface family with common Bertrand curvature lines.

2. Basic Concepts

The Lie group theory is introduced in this section (see [1–6]). Let G be a Lie group
with a bi-invariant metric <,>, and∇ be the Levi-Civita connection of G. If g indicates the
Lie algebra, then, for all a, b, c ∈ g, we have

< a, [b, c] > + < b, [a, c] >= 0,

and
∇ab =

1
2
[a, b]. (1)

Let γ : I ⊂ R→ G be an arc-length smooth curve and {s1,s2,. . . ,sn} be an orthonormal

basis of g. In this situation, any two vector fields a and b can be written as a =
n
Σ

i=1
aisi and

b =
n
Σ

i=1
bisi, where bi, ai :I → R are regular functions. The Lie bracket of a and b is given by

[a, b] =
n
Σ

i,i=1
aibj[si, sj],

and the directional derivative of a on the curve γ is displayed as follows:

∇ta = a
′
+

1
2
[t, a], (2)

where t = γ
′
= dγ

ds and a
′
=

n
Σ

i=1
a
′
isi, where a

′
i =

dai
ds . Here “dash” indicates the derivative

with respect to the parameter s. It is imperative to note that if a is the left-invariant vector
field to the curve then a

′
= 0 (see for details [5–8]).

Let α : I ⊂ R→ G be a regular unit speed curve in a three-dimensional Lie group G
with the Serret–Frenet apparatus {t(s), n(s), b(s), κ(s), τ(s)}. Then, a smooth function τG ,
which is a famed Lie torsion, is specified by:

τG(s) =
1
2
< t, [n, b] >, (3)

and
τG(s) =

1
2κ2τ

< t
′′
, [t, t

′
] > +

1
4κ2τ

∥∥∥[t, t
′
]
∥∥∥2

. (4)

Proposition 1 ([4–6]). Let α be an arc-length represented curve in G. Then,

[b, t]=< [b, t], n > n = 2τG(s)n,

[t, n]=< t, [n, b] > b = 2τG(s)b,

[n, b]=< [n, b], t > t = 2τG(s)t.

In view of Equation (2) and Proposition 1, the Serret–Frenet formulae of α in G are

∇t

 t
n
b

 =

 0 κ 0
−κ 0 τ − τG
0 −(τ − τG) 0

 t
n
b

, (5)
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where t = α
′
(s), κ(s) = ‖∇tt‖ =

∥∥∥t
′
∥∥∥, and τ(s) = ‖∇tb‖−τG.

Remark 1. Let G be a three-dimensional Lie group with a bi-invariant metric. Consequently, the
subsequent is true [12–14]:

(1) If G is special unitary group SU(2), then τG = 1;
(2) If G is special orthogonal group SO(3), then τG = 1/2;
(3) If G is a commutative (Abelian) group, then τG = 0.

Definition 1 ([7]). Let α(s) and α̂(s) be two curves in G; n(s) and n̂(ŝ) are principal normal
vectors of them, respectively; {α(s), α̂(s)} is named a Bertrand pair if n(s) and n̂(ŝ) are linearly
dependent at the corresponding points; α(s) is named the Bertrand mate of α̂(s) and

α̂(s) = α(s) + f n(s). (6)

where f is a stationary.

We signalize a surface M in G by

M : y(s, t) = (y1(s, t), y2(s, t), y3(s, t)), (s, t) ∈ D ⊆ R2. (7)

If yj(s, t) = ∂y
∂j , the isotropic surface normal is

N(s, t) = ys ∧ yt, (8)

which is orthogonal to each of the vectors ys, and yt.
Any curve on a surface M can be the line of curvature under the conditions given by

the well-known theorem below. We advise the reader to the following for evidence and
specifics [20].

Theorem 1 (Monge’s Theorem). A necessary and sufficient condition for a curve on a surface to
be a curvature line is that the surface normals along the curve form a developable surface.

3. Main Results

This section presents an approach for creating a surface family pair interpolating a
Bertrand pair as mutual curvature lines in G. With this aim, let α(s) be a unit speed curve;
α̂(s) is the Bertrand mate of α(s) and {t̂(s), n̂(s), b̂(s)} is the Frenet–Serret frame of α̂(s) as
in Equation (5). The surface family M interpolating α(s) can be written as [7]:

M : y(s, t) = α(s) + a(s, t)t(s)+b(s, t)n(s)+c(s, t)b(s); 0 ≤ t ≤ T, (9)

and the surface family M̂ interpolating α̂(s) is

M̂ : ŷ(s, t) = α̂(s) + a(s, t)t̂(s)+b(s, t)n̂(s)+c(s, t)b̂(s); 0 ≤ t ≤ T. (10)

Here a(s, t), b(s, t), c(s, t) are all C1 functions and 0 ≤ t0 ≤ T, 0 ≤ s ≤ L. If the
parameter t is defined as the time, the functions a(s, t), b(s, t) and c(s, t) can then be named
as directed marching distances of a point unit in time t in the orientation t, n and b,
respectively, and the vector α(s) is seen as the initial situation of this point.

Our aim is to gain sufficient and necessary conditions for which the specified curve α(s)
is an isoparametric curvature line on M. At first, since the directrix α(s) is an isoparametric
curve on M, there exists a parameter t = t0 such that α(s) = y(s, t0); that is, we have:

a(s, t0) = b(s, t0) = c(s, t0) = 0,
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and
∂a(s, t0)

∂s
=

∂b(s, t0)

∂s
=

∂c(s, t0)

∂s
= 0.

Thus, the normal vector field is

N(s, t0) :=
∂y(s, t0)

∂s
× ∂y(s, t0)

∂t
= −∂c(s, t0)

∂t
n(s) +

∂b(s, t0)

∂t
b(s), (11)

Secondly, let us choose a unit vector

e(s) = cos θn(s)+ sin θb(s). (12)

Then, from Equations (11) and (12), we find that e(s)‖N(s, t0) if and only if there exists
a function λ(s) 6= 0 such that

−∂c(s, t0)

∂t
= λ(s) cos θ,

∂b(s, t0)

∂t
= λ(s) sin θ. (13)

Differentiating Equation (12) and using the Serret–Frenet formulae, we find

e
′
= (θ

′
+ τ − τG)e⊥ − κ cos θt.

However, via the Rodrigues’ formula, α = α(s) is a curvature line on y(s, t) if and only
if dθ

ds + τ − τG = 0. This means that

θ(s) = θ0 −
s∫

s0

(τ(s)− τG(s))ds, (14)

where s0 is the starting value of arc length and θ0 = θ(s0). The functions λ(s) and θ(s) are
named controlling functions.

Theorem 2. α = α(s) is a curvature line on y(s, t) if and only if

a(s, t0) = b(s, t0) = c(s, t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L, λ(s) 6= 0,
− ∂c(s,t0)

∂t = λ(s) cos θ, ∂b(s,t0)
∂t = λ(s) sin θ.

}
(15)

Similarly to [8], for the purpose of facilitation and inspection, we also address the case
where the marching-scale functions a(s, t), b(s, t) and c(s, t) can be written into two factors:

a(s, t) = l(s)A(t),
b(s, t) = m(s)B(t),
c(s, t) = n(s)C(t)

(16)

Here l(s), m(s) and n(s) are C1 functions which are not identically vanishing. Then,
from Theorem 1, we gain:

Corollary 1. α(s) is a curvature line on y(s, t) if and only if

A(t0) = B(t0) = C(t0) = 0, 0 ≤ t0 ≤ T, 0 ≤ s ≤ L, λ(s) 6= 0,
−n(s) dC(t0)

dt = λ(s) cos θ, m(s) dB(t0)
dt = λ(s) sin θ.

}
(17)

However, we can allow a(s, t), b(s, t) and c(s, t) based only on the parameter t, that
is, l(s) = m(s) = n(s) = 1. Then, we analyze condition (17) according to the different
expressions of θ(s):
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(i) In the case of τ(s) 6= τG(s), θ(s) is a non-constant function of variable s and condition (17)
can be displayed as

A(t0) = B(t0) = C(t0) = 0,
− dC(t0)

dt = λ(s) cos θ, dB(t0)
dt = λ(s) sin θ,

}
(18)

(ii) In the case of τ(s) = τG(s), that is the curve is a planar curve, θ(s) = θ0 is a constant
and we have

(a) In the case of θ0 6= 0, condition (17) can be displayed as

A(t0) = B(t0) = C(t0) = 0,
− dC(t0)

dt = λ(s) cos θ0, dB(t0)
dt = λ(s) sin θ0.

}
(19)

(b) In the case of θ0 = 0, condition (17) can be displayed as

A(t0) = B(t0) = C(t0) = 0,
− dC(t0)

dt = λ(s), dB(t0)
dt = 0,

}
(20)

and from Equation (17) the normal N(s, t0) (resp. e(s)) is coincident with n.
In this case, the curve α= α(s) is not only a curvature line but also a geodesic.
Now, we are dealing with and construct some representative examples to
verify the method. Additionally, they serve to confirm the correctness of the
formulas obtained previously.

Example 1. Let α(s) be a unit speed helix specified by

α(s) = (
1√
2

cos s,
1√
2

sin s,
s√
2
), 0 ≤ s ≤ 2π.

It is clear that
t(s) = 1√

2
(− sin s, cos s, 1),

n(s) = (− cos s,− sin s, 0),
b(s) = 1√

2
(sin s,− cos s, 1),

κ(s) = τ(s) = 1√
2
, τG(s) = 0.


So, the curve α(s) is a helix in a commutative group G. Then, θ(s) = − s√

2
+ θ0. If θ0 = 0,

we have θ(s) = − s√
2

. By choosing

l(s) = m(s) = n(s) = 1,

A(t) = t, B(t) = −tλ(s) sin
s√
2

, C(t) = −tλ(s) cos
s√
2

, λ(s) 6= 0,

and from Equation (9), we attain

M : y(s, t) = (
1√
2

cos s,
1√
2

sin s,
s√
2
) + t(1,−λ sin

s√
2

,−λ cos
s√
2
)

×

 −
1√
2

sin s 1√
2

cos s 1√
2

− cos s − sin s 0
1√
2

sin s − 1√
2

cos s 1√
2

.

Hence, the surface family M̂ interpolating α̂ is: let f =
√

2 in Equation (6), we obtain

α̂(s) = (− 1√
2

cos s,− 1√
2

sin s,
s√
2
).
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The Serret–Frenet vectors of α̂(s) are found as

t̂(s) =
1√
2
(sin s,− cos s, 1), n̂(s) = (cos s, sin s, 0), b̂(s) =

1√
2
(− sin s, cos s, 1).

Then, we have

M̂ : ŷ(s, t) = (− 1√
2

cos s,− 1√
2

sin s,
s√
2
) + t(1,−λ sin

s√
2

,−λ cos
s√
2
)

×


1√
2

sin s − 1√
2

cos s 1√
2

cos s sin s 0
− 1√

2
sin s 1√

2
cos s 1√

2

.

Hence, for λ = 1, −2 ≤ t ≤ 2 and 0 ≤ s ≤ 2π the corresponding surfaces are shown in
Figure 1, where the blue curve represents α(s), the green curve α̂(s).

Figure 1. M (yellow) and M̂ (red).

Example 2. Let α(s) be
α(s) = (cos s, sin s, 0), 0 ≤ s ≤ 2π.

Then,

t(s) = (− sin s, cos s, 0), n(s) = (− cos s,− sin s, 0), b(s) = (0, 0, 1).

The curvature of this curve is κ = 1, τ = 0 and τG(s) = 1
2 . Thus, the curve α(s) is a circle in

SO(3) and θ(s) = s
2 . By choosing

l(s) = m(s) = n(s) = 1,

A(t) = t, B(t) = tλ(s) sin
s
2

, −C(t) = tλ(s) cos
s
2

, λ 6= 0,

Then,

M : y(s, t) = (cos s, sin s, 0) + t(1,−λ(s) sin
s
2

, λ cos
s
2
)

 − sin s cos s 0
− cos s − sin s 0

0 0 1

.

Let f = 2 in Equation (6), we get

α̂(s) = (− cos s,− sin s, 0),

and
t̂(s) = (sin s,− cos s, 0), n̂(s) = (cos s, sin s, 0), b̂(s) = (0, 0, 1).

Similarly, the surface family M̂ interpolating α̂ is

M̂ : ŷ(s, t) = (− cos s,− sin s, 0) + t(1,−λ(s) sin
s
2

, λ cos
s
2
)

 sin s − cos s 0
cos s sin s 0

0 0 1

.
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For λ = 1, −5 ≤ t ≤ 5 and 0 ≤ s ≤ 2π thecorresponding surfaces are shown in Figure 2,
where the blue curve represents α(s), the green curve α̂(s).

Figure 2. M (green.) and M̂ (red).

Ruled Surface Family Pair Interpolating Bertrand Pair as Mutual Curvature Lines

Ruled surfaces are simple and mutual surfaces in geometric designs. Suppose y(s, t) is
a ruled surface with the directrix α(s) and α(s) is also an iso-parametric curve of y(s, t), then
there exists t0 such that y(s, t0) = α(s). It follows that the surface can be parameterized as

M : y(s, t)− y(s, t0) = (t− t0)e(s), 0 ≤ s ≤ L, with t, t0 ∈ [0, T], (21)

where e(s) defines the direction of the rulings. In view of Equation (9), we have

(t− t0)e(s) = a(s, t)t(s)+b(s, t)n(s) + c(s, t)b(s), (22)

where 0 ≤ s ≤ L, with t, t0 ∈ [0, T]. In fact, Equation (22) is a system of equations with
three unknown functions a(s, t), b(s, t) and c(s, t). The solutions of the above system can
be deduced as

a(s, t) = (t− t0) < e(s), t(s) >,
b(s, t) = (t− t0) < e(s), n(s) >,
c(s, t) = (t− t0) < e(s), b(s) > .

(23)

According to condition (15), if α(s) is a curvatureline of the surface y(s, t), we have

a(s, t) = 0,
λ(s) sin θ =< e(s), n(s) >,
−λ(s) cos θ =< e(s), b(s) > .

(24)

The above equations are simply the necessary and sufficient conditions forwhich y(s, t)
is a ruled surface with a directrix α(s). Suppose at all point on α(s) the ruling

e(s) = υ(s)t(s) + σ(s)n(s) + µ(s)b(s),

then
σ(s) = λ(s) sin θ, µ(s) = −λ(s) cos θ,

that is,
e(s) = υ(s)t(s) + λ(s) sin θn(s)− λ(s) cos θb(s).

Choosing a(s, t) = tυ(s), b(s, t) = tλ(s) sin θ and c(s, t) = −tλ(s) cos θ, the ruled
surface family M with α(s) can be displayed as

y(s, t) = α(s) + tυ(s)t(s) + tλ(s)(sin θn(s)− cos θb(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T. (25)

And, the ruled surface family interpolating α̂(s) is

ŷ(s, t) = α̂(s) + tυ(s)t̂(s) + tλ(s)(sin θn̂(s)− cos θb̂(s)), 0 ≤ s ≤ L, 0 ≤ t ≤ T. (26)
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The functions υ(s) and λ(s) can control the shape of the surface family M.

Example 3. In view of Example 1, we have:

(1) By taking υ(s) = λ(s) = s the {M̂, M} interpolating {α̂(s), α(s)} are (Figure 3):

M : y(s, t) =


1√
2
(cos s− st sin s)− st(sin s

2 sin s + 1√
2

cos s
2 cos s)

1√
2
(sin s + st cos s) + st(− sin s

2 sin s + 1√
2

cos s
2 cos s)

s√
2
(1 + t(1− cos s

2 ))

,

and

M̂ : ŷ(s, t) =


1√
2
(− cos s + st sin s) + st(sin s

2 cos s + 1√
2

cos s
2 sin s)

− 1√
2
(sin s + st cos s) + st(sin s

2 sin s− 1√
2

cos s
2 cos s)

s√
2
(1 + t(1− cos s

2 ))

,

where the blue curve represents α(s), the green curve is α̂(s), −1 ≤ t ≤ 1 and 0 ≤ s ≤ 2π.
(2) By taking υ(s) = λ(s) =

√
s the {M̂, M} with {α̂(s), α(s)} as mutual Bertrand-curvature

line curves are (Figure 4):

M : y(s, t) =


1√
2
(cos s−

√
st sin s)−

√
st(sin s

2 sin s + 1√
2

cos s
2 cos s)

1√
2
(sin s +

√
st cos s) +

√
st(− sin s

2 sin s + 1√
2

cos s
2 cos s)√

s
2 (
√

s + t(1− cos s
2 ))

,

and

M̂ : ŷ(s, t) =


1√
2
(− cos s +

√
st sin s) +

√
st(sin s

2 cos s + 1√
2

cos s
2 sin s)

− 1√
2
(sin s +

√
st cos s) +

√
st(sin s

2 sin s− 1√
2

cos s
2 cos s)√

s
2 (
√

s + t(1− cos s
2 ))

,

where the blue curve represents α(s), the green curve is α̂(s), −1 ≤ t ≤ 1 and 0 ≤ s ≤ 2π.

Figure 3. M (green) and M̂ (red) with υ(s) = λ(s) = s.

Figure 4. M (green) and M̂ (red) with υ(s) = λ(s) =
√

s.

Example 4. In view of Example 2, we have:
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(1) By taking υ(s) = λ(s) = s the {M̂, M} interpolating {α̂(s), α(s)} are (Figure 5):

M : y(s, t) =

 (1− st cos s
2 ) cos s− st sin s

(1− st cos s
2 ) sin s + st cos a
−st sin s

2

,

and

M̂ : ŷ(s, t) =

 −(1− st cos s
2 ) cos s + st sin s

−(1− st cos s
2 ) sin s− st cos a

−st sin s
2

,

where the blue curve represents α(s), the green curve is α̂(s),−0.5 ≤ t ≤ 0.5 and 0 ≤ s ≤ 2π
(2) By taking υ(s) = λ(s) =

√
s the {M̂, M} interpolating {α̂(s), α(s)} are (Figure 6):

M : y(s, t) =

 (1−
√

st cos s
2 ) cos s−

√
st sin s

(1−
√

st cos s
2 ) sin s +

√
st cos a

−
√

st sin s
2

,

and

M̂ : ŷ(s, t) =

 −(1−√st cos s
2 ) cos s +

√
st sin s

−(1−
√

st cos s
2 ) sin s−

√
st cos a

−
√

st sin s
2

,

where the blue curve represents α(s), the green curve is α̂(s), −.5 ≤ t ≤ .5 and 0 ≤ s ≤ 2π.

Figure 5. M (green) and M̂ (red) with υ(s) = λ(s) = s.

Figure 6. M (green) and M̂ (red) with υ(s) = λ(s) =
√

s.

4. Conclusions

In this paper, we considered the problem of how to establish a surface family pair
interpolating a Bertrand pair as mutual curvature lines in a three-dimensional Lie group
G. The extension to ruled surfaces is also outlined. Meanwhile, some curves are selected
to organize the surface family and ruled surface family interpolating the Bertrand pair
as mutual curvature lines. An analogue of the problem considered in this paper may be
consider for Minkowski 3-space. We will study this problem in the future.
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