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Abstract: A control method for the robust synchronization of a class of chaotic systems with unknown
time delay, unknown uncertainty, and unknown disturbance is presented. The robust controller was
designed using a nonlinear fractional order PID sliding surface. The Lyapunov method was used
to determine the update laws, prove the stability of the proposed mechanism, and guarantee the
convergence of the synchronization errors to zero. The simulation was performed using MATLAB
software to evaluate the performance of the proposed mechanism, and the results showed that it was
efficient. Finally, the proposed method was combined with a secure communication application to
encrypt images, and the results obtained were favorable regarding the standard criteria of correlation,
NPCR, PSNR, and information entropy.

Keywords: chaotic synchronization; fractional order sliding mode control; adaptive control; se-
cure communication
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1. Introduction

Chaos is a nonlinear phenomenon that appears to be random but actually follows
a pattern. It was discovered about a half-century ago by Lorenz [1]. Scientists began to
pay more attention to the phenomenon of chaos after that. Some systems, including the
Liu system [2], the IU system [3], and the Chen system [4], have been proposed on the
basis of Lorenz’s ideas. About 300 years ago, fractional calculations were introduced, and
more complete definitions and theorems have been introduced since then [5]. Physical
systems can be represented as integer or fractional equations in this context. It is evident
that modeling using fractional order systems can have more accuracy than modeling with
integer order systems. Recently, the description of systems using fractional calculus has
been developed in various sciences, including chemical reaction systems [6,7], biological
systems [8,9], power converters [10], electrochemical processes [11], robotics [12], and
others. The problem of synchronizing two chaotic systems has piqued the interest of
scientists working in the field of secure communication over the past two decades. In
fact, the synchronization of two chaotic systems can be described as a situation in which
two or more chaotic systems coordinate their responses by the controller. As a result,
two subsystems, the main or driving system and the slave or response system, constitute
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a coupled system. The master system’s response is unconstrained and drives the slave
system.

To tackle the problem, Petras et al. presented a fractional sliding surface [13]. Zare Hal-
laji et al. [14,15] presented research on the synchronization of positive and fractional chaotic
systems with system uncertainty. They evaluated the conditions of the described problem
from several perspectives, including unknown uncertainties in the system characteristics,
in their research. In [16], the chaotic system was synchronized using a nonlinear observer
and the benefit of adaptive control in order to determine the system’s uncertainties. In
this design, a sliding surface equivalent to one of the system states was provided, and
its stability was demonstrated using a Lyapunov function. The authors of [17] proposed
an adaptive terminal sliding mode controller (ATSMC). First, a fractional order sliding
surface for the master and slave system was introduced in this article. The stability of the
suggested controller was then examined, as was the ongoing convergence of the error in
the synchronization problem.

A sliding surface based on the nonlinear fractional order PID was developed in this
study for the synchronization of two systems with uncertainty and unknown disturbances
with unknown and time-varying time delay. The following benefits might be highlighted
in this research, which was conducted to synchronize two systems:

- The use of the nonlinear fractional PID (NLFOPID) sliding surface instead of typical
sliding surfaces.

- The presence of unknown time delays
- The presence of uncertainty and disturbance with unknown boundaries. Then, using

the suitable Lyapunov function and update laws, a control signal was extracted that
could be used to overcome the chattering problem by properly adjusting the controller
parameters. This is a critical issue for the suggested controller’s implementation.
In [10,18], a controller for the synchronization of chaotic systems in finite time was
constructed utilizing a sliding surface, and the synchronization of the integer order
chaotic system was investigated in [19].

The preliminary calculations of deficit accounts are reported in Section 2 of this article.
Section 3 presents the equations characterizing the system as well as the set limitations for
uncertainty. Section 4 introduces the sliding surface based on the proportional–integral–
nonlinear fractional derivative, as well as the controller architecture. Section 5 investigates
the adaptive controller’s stability analysis and update laws. Section 6 presents the simu-
lation results and visualization of the synchronized system. Section 7 discusses chaotic
masking for image encryption. Finally, in the last section, conclusions and recommenda-
tions are offered.

2. Preliminary Definitions of Fractional Order Differentiation

Definition 1. The fractional order integration and differentiation are defined as follows [20]:

Dq
t =


dq

dtq q > 0
1 q = 0∫ t

q (dτ)−q q < 0
(1)

in which q is a real number.

Definition 2. The Riemann–Liouville fractional integral of order q of the function f(t) is defined as
follows [21]:

t0 Iq
t f (t) =

1
Γ(q)

∫ t

t0

f (τ)(
t− τ)1−q dτ (2)

in which t0 is the initial time and Γ(q) is the Gamma function defined as follows:
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Definition 3. Suppose n− 1 < q ≤ n, n ∈ N. The fractional Riemann–Liouville differentiation
of order q is defined for the function f(t) below [21]:

t0Dq
t f (t) =

dq f (t)
dtq =

1
Γ(n− q)

dn

dtn

∫ t

t0

f (τ)(
t− τ)q−n+1 dτ (3)

Note 1: In Equation (4), the Riemann-Liouville fractional order integral is first calcu-
lated, and then differentiation is performed; thus, the derivative of a constant number in
this formulation is not equal to zero.

Definition 4. In the continuous function f(t), the Caputo fractional order derivative of order q is
defined as follows [21]:

t0Dq
t f (t) =

 1
Γ(m−q)

∫ t
t0

f (m)(τ)

(t−τ)q−m+1 dτ m− 1 < q < m
dm f (t)

dtm q = m
(4)

Γ(q) =
∫ ∞

0
e−ttq−1dt (5)

Such that m is the first integer number after q.

Lemma 1. If f(t) is a constant function and q > 0, the Caputo derivative in Equation (5) for f(t)
would be as follows:

Dq f (t) = 0 (6)

The authors of [22] presented the stability analysis of fractional order systems using
the direct Lyapunov method, as well as the determination of the necessary and sufficient
conditions guaranteeing stability using the Mittag–Leffler concept, and the authors of [23]
reviewed the stability analysis of nonlinear systems using convex Lyapunov functions.

Lemma 2 [23]. Suppose that h(t) ∈ R is a continuous and differentiable function. Then, for
t ≥ t0, Equation (7) is satisfied.

Dqh2(t) ≤ 2h(t) · Dqh(t) (7)

Lemma 3 [23]. Suppose that h(t) ∈ Rn is a continuous and differentiable function. Then, for
t ≥ t0 , we have:

DqhT(t)·h(t) ≤ 2hT(t) · Dqh(t) (8)

Theorem 1 [22]. Assume that the origin (x = 0) is the equilibrium point of the fractional order
system (5) and that its definition domain covers the origin. Furthermore, v(x(t), t) is a continuous
and differentiable Lipschitz function, implying the following:

Dqx(t) = f (x, t)
a1 ‖ x ‖a≤ v(x(t), t) ≤ a2 ‖ x ‖ab

Dqv(x(t), t) ≤ −a3 ‖ x ‖ab
(9)

in which 0 < q < 1 and a, a1, a2, a3, b are positive arbitrary constants. Then, the origin is
stable in the Mittag–Leffler sense.

Definition 5. The continuous function p : [0, ∞) → [0, ∞) belongs to class k if its derivative is
positive and p(0) = 0.
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Theorem 2 [22]. Assume x = 0 is the equilibrium point of the fractional order system (5), the
Lipschitz condition for f (x, t) is satisfied, and q ∈ (0, 1). If Equations (8) and (9) are satisfied for
the Lyapunov function v(x(t), t) and functions δi of class K:

δ1(‖ x ‖) ≤ v(x(t), t) ≤ δ2(‖ x ‖)
Dqv(x(t), t) ≤ −δ3(‖ x ‖) (10)

Then, system (5) is asymptotically stable in the Mittag–Leffler sense.

Theorem 3 [24]. For the fractional order system (5) and the Lyapunov function v(x), we have:

Dqv(x) ≤
(

∂v
∂x

)T
·Dqx =

(
∂v
∂x

)T
· f (x, t) (11)

Definition 6 [25]. A continuous piecewise function f (x, t) has the Lipschitz condition if:

‖ f (x, t)− f (z, t)‖ ≤ γ f ‖x− z‖, ∀ x, z ∈ Rn (12)

3. System Descriptor Equations

The equations characterizing a class of master–slave chaotic systems with uncertainty
and indeterminate time delay in the presence of an unknown disturbance are introduced in
this section. Following standardization, the master system dynamics in canonical form are
as follows: {

Dqxi = xi+1 1 ≤ i ≤ n− 1
Dqxn = σT

0 x + f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t).
(13)

The slave system equations are as follows:{
Dqyi = yi+1 1 ≤ i ≤ n− 1

Dqyn = σT
0 y + g(y(t− τ2), t) + ∆g(y(t), t) + d2(t) + u(t).

(14)

The differential equations are written in the forms of well-known chaotic systems,
such as the Van der Pol Oscillator, Duffing’s Oscillator, the Genesio–Tesi System, Arneodo’s
System, and so on [26], where x(t), y(t) ∈ Rn denote the dynamic states of the master
and slave systems, σT

0 denotes the constant coefficients in the system’s linear states, and
f (x(t− τ1), t), g(y(t− τ2), t) ∈ R are nonlinear functions with an unknown delay with
τ1, τ2 delays, and ∆ f (x(t), t), ∆g(x(t), t) represent bounded uncertainty in the master and
slave systems. Furthermore, d1(t), d2(t) indicate the external distortions applied to the
master and slave systems, respectively, while u(t) is the control law applied to the slave
system.

Definition 7. If the following conditions are satisfied for the systems described in Equations (13)
and (14) for all the conditions governing the system, including all initial conditions, uncertainties,
unknown time delay, and external disturbance, the system has robust synchronization:

lim
t→∞
|yi(t)− xi(t)| = lim

t→∞
|ei(t)| = 0, i = 1, . . . , n. (15)

As a result, ei(t) introduces the synchronization error of the master and slave systems.
As a result, the following are the dynamic equations describing the synchronization

error for the uncertain chaotic master and slave systems with unknown time delay described
in (13) and (14):

Dqei = ei+1 1 ≤ i ≤ n− 1
Dqen = σT

0 (y− x) + g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)
−( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + u(t).

(16)
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Assumption 1. The uncertain external disturbances d1(t).d2(t) and the uncertain bounded
nonlinear uncertainties ∆f(x(t).t) and ∆g(x(t).t) in the master and slave systems (13) and (14)
meet the following conditions:

‖∆f(x(t), t)‖ ≤ β1ω1(x)
‖∆g(y(t), t)‖ ≤ β2ω2(y)
‖d1(t)‖ ≤ ρ1
‖d2(t)‖ ≤ ρ2
τi < τi < τi

(17)

Such that ‖.‖ denotes the l1 norm, β2, β1, ρ2, ρ1 are unknown positive real numbers,
and ω2(·), ω1(·) are positive and known functions. Also, ρi < ρi, βi < βi where ρi, βi, τi,
and τi are known values.

Assumption 2. The nonlinear functions f (x(t− τ1), t), g(y(t− τ2), t) ∈ R satisfy the Lipschitz
conditions for any x(t), y(t) ∈ R:

| f (x(t− τ1))− f (x(t− τ̂1))| ≤ l1|τ1 − τ̂1| = l1
∣∣∣∼τ1

∣∣∣
|g(y(t− τ2))− g(y(t− τ̂2))| ≤ l2|τ2 − τ̂2| = l2

∣∣∣∼τ2

∣∣∣ (18)

Table 1 presents the system parameters and the proposed mechanism:

Table 1. Symbols and concepts.

Symbol Concept Symbol Concept

ρi Disturbance bound ρ̂i Disturbance bound estimate

βi Uncertainty bound β̂i Uncertainty bound estimate

li Lipschitz constant τ̂i Time delay bound estimate

τi Time delay
∼
ρ i Disturbance bound estimate error

ρi Disturbance upper bound
∼
βi Uncertainty bound estimate error

βi Uncertainty upper bound
∼
τ i Time delay estimate error

τi Time delay upper bound b Positive constant number

τi Time delay lower bound ε Small positive constant number

In this study, all states of the system were directed to and kept on the sliding surface
by designing a robust adaptive controller and introducing an integral proportional sliding
surface and a fractional order nonlinear derivative. Furthermore, the system’s uncertainties
and unknown parameters should be estimated and updated. Then, in the robust synchro-
nization of chaotic systems (13) and (14) in the presence of external distortions, bounded
nonlinear uncertainties, and uncertain time delays, the dynamics of the slave system state
must match the behavior of the master system dynamics, and the estimation error of the
unknown parameters in both chaotic systems approach zero in any circumstance, ensuring
the system’s robust stability.

4. The Sliding Mode Control Approach Based on Fractional Order Nonlinear PID
Controllers

A proportional integral sliding surface and a nonlinear fractional order derivative
are presented in this section in order to synchronize chaotic systems (13) and (14) with
unknown uncertainty and unknown time delay. The fractional order sliding surface is
as follows, according to the nonlinear fractional order PID controller structure presented
in [26], which enhances tracking:

s(t) = h(e)·
[
kpen(t) + TI D−λ ∑n

i=1 k1iei + TdDδ ∑n
i=1 k2iei(t)

]
(19)
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Such that h(e) is a nonlinear function, defined as follows:

h(e) = k0 + (1− k0)‖E(t)‖, k0 ∈ (0, 1) (20)

where ‖E(t)‖ =
n
∑

i=1
|ei|. Coefficients TI and Td are time constants of integral and derivative

sentences. The parameters k1i and k2i are positive constant values of the sliding surface
such that they satisfy the stability of the desired system. If the system is in sliding mode,
the following conditions must be met:

s(t) = 0, Dqs(t) = 0 (21)

The fractional order derivative of the sliding surface in Equation (21) is as follows:

Dqs(t) =
(
k0kpDqen(t) + k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

= 0
(22)

Now, Dqen is substituted into Equation (21) using Equation (16):

Dqs(t) =
(
k0kp

(
g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)− ( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + σT

0 ·E(t)
+u(t)) + k0TiD1−λ ∑n

i=1 k1iei(t) + k0TdD1+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

= 0
(23)

In this case, the control signal is determined as follows:

u(t) = −1
k0kp

(
k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))

+ f (x(t− τ̂1).t)− g(y(t− τ̂2).t)− σT
0 ·E(t)− bs + u(t)

(24)

In Equation (25), the term u(t) comprises the terms coming from the estimation of the
system’s bounds of uncertainties and disturbances, which are defined using the adaptive
controller, as follows:

u(t) = −sgn(s)
[

β̂2ω2(y) + β̂1ω1(x)+ρ̂2 + ρ̂1)
]
+ u00(t)

u00(t) = −b
k0kps

2
∑

i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣∣β̂i

∣∣∣+ βi

)2
] (25)

5. Stability Analysis and Determining the Update Laws

The construction of the robust adaptive controller is described in this part, employing
the sliding surface based on nonlinear fractional order PID in such a way that the suggested
control strategy guarantees the stability of the synchronization of chaotic systems.

Theorem 4. The synchronization of systems (13) and (14) in the presence of disturbances d1 and
d2 and unknown uncertainties ∆ f and ∆g with unknown time delays τ1 and τ2 and the definition
of the controller u(t) is guaranteed as follows:

u(t) = −g(y(t− τ̂1)) + f (x(t− τ̂2))
− 1

k0kp

(
k0Tl Dq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
))
− σT

0
·E(t)− bs− sgn(s)

(
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

)
+ u00(t)

(26)
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Such that the update laws are as follows:

Dqτ̂i = −Dq∼τ i = li|s|sgn
(∼

τ i

)
, τ̂i(0) = τi

Dqρ̂i = −Dq∼ρ i = k0kp|s|
Dq β̂1 = −Dq

∼
β1 = −k0kp|s|ω2(y)

Dq β̂2 = −Dq
∼
β2 = −k0kp|s|ω1(x)

(27)

Thus, the convergence of the chaotic systems’ synchronization error to zero is ensured.

Proof. Consider the following Lyapunov function:

v(t) =
1
2

[
s2(t) +

∼
β

2

1 +
∼
β

2

2 + l1
∼
τ

2
1 + l2

∼
τ

2
2 +

∼
ρ

2
1 +

∼
ρ

2
2

]
(28)

in which the parameters’ estimation error is defined as follows:

∼
τ i = τi − τ̂i,

∼
ρ i = ρi − ρ̂i,

∼
βi = βi − β̂i (29)

Considering Equation (28), the derivative of the Lyapunov function is as follows:

Dqv(t) =
1
2

Dq
(

s2 +
∼
β

2

1 +
∼
β

2

2 + l1
∼
τ

2
1 + l2

∼
τ

2
2 +

∼
ρ

2
1 +

∼
ρ

2
2

)
≤ s·Dqs + ∑2

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

)
(30)

By applying Equation (23) in Equation (30), Equation (31) is determined:

Dqv(t) ≤ s·
[
k0kp

(
g(y(t− τ2), t) + ∆g(x(t), t) + d2(t)− ( f (x(t− τ1), t) + ∆ f (x(t), t) + d1(t)) + σT

0 ·E(t)
+u(t)) + k0TiDq−λ ∑n

i=1 k1iei(t) + k0TdDq+δ ∑n
i=1 k2iei(t) + (1− k0)kpDq(‖E(t)‖en(t))

+(1− k0)TI Dq(‖E(t)‖D−λ ∑n
i=1 k1iei(t)

)
+ (1− k0)TdDq(‖E(t)‖Dδ ∑n

i=1 k2iei(t)
)
+ u00(t)

]
+

2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (31)

In this case, the Lyapunov function derivate is as follows:

Dqv(t) ≤ s·
[
k0kp(g(y(t− τ2), t)− g(y(t− τ̂2), t) + ∆g(x(t), t) + d2(t) + f (x(t− τ̂1), t)− f (x(t− τ1), t)
−∆ f (x(t), t)− d1(t)− bs− sgn(s)

[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

])
] + sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (32)

Thus, we have:

Dqv(t) ≤ |s|·
[
k0kp(|g(y(t− τ2), t)− g(y(t− τ̂2), t)|+ |∆g(x(t), t)|+ | f (x(t− τ̂1), t)− f (x(t− τ1), t)|

−|∆ f (x(t), t)|+ |d2(t)− d1(t)|)]− k0kpbs2

+k0kps
(
−sgn(s)

[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

])
+ sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (33)

On the basis of assumptions 1-2 and 2-2 presented in Equations (17) and (18) in
Section 3 of the article, Equation (33) is rewritten as follows:

Dqv(t) ≤ |s|·
[
k0kp(l2|τ2 − τ̂2|+ β2ω2(y) + l1|τ1 − τ̂1|+ β1ω1(x) + ρ1 + ρ2)

]
− k0kpbs2

−k0kpsgn(s)s
[
β̂2ω2(y) + β̂1ω1(x) + ρ̂2 + ρ̂1

]
+ sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (34)

The derivative of the Lyapunov function is as follows:
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Dqv(t) ≤ |s|
[

k0kp

(
l1
∣∣∣∼τ1

∣∣∣+ ∼β2ω2(y) + l2
∣∣∣∼τ2

∣∣∣+ ∼β1ω1(x) +
∼
ρ2 +

∼
ρ1

)]
− bs2 + sk0kpu00(t)

+
2
∑

i=1

(∼
βiD

q
∼
βi + li

∼
τ iDq∼τ i +

∼
ρ iD

q∼ρ i

) (35)

Now, by substituting the update laws (27) into (35), the derivative of the Lyapunov
function is simplified as follows:

⇒ Dqv(t) ≤ −bs2 + sk0kpu00(t) (36)

In the following, by substituting u00(t) from (25) into (36), Equation (37) is obtained:

⇒ Dqv(t) ≤ −bs2 − sk0kp
b

k0kps

2

∑
i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣β̂i
∣∣+ βi

)2
]

(37)

On the other hand:∣∣∣∼τ i

∣∣∣ = |τi − τ̂i | ≤ |τi |+ |τ̂i | ≤ |τ̂i |+ τi ⇒ −(|τ̂i|+ τi)
2 ≤ −

∣∣∣∼τ i

∣∣∣2∣∣∣∣∼βi

∣∣∣∣ = ∣∣βi − β̂i
∣∣ ≤ |βi |+

∣∣β̂i
∣∣ ≤ ∣∣β̂i

∣∣+ βi ⇒ −
(∣∣β̂i

∣∣+ βi
)2 ≤ −

∣∣∣∣∼βi

∣∣∣∣2∣∣∣∼ρ i

∣∣∣ = |ρi − ρ̂i | ≤ |ρi |+ |ρ̂i | ≤ |ρ̂i |+ ρi ⇒ −(|ρ̂i|+ ρi)
2 ≤ −

∣∣∣∼ρ i

∣∣∣2
(38)

By substituting Equation (38) into Equation (35), the derivative of the Lyapunov
function is simplified to Equation (39).

⇒ Dqv(t) ≤ −b

(
s2 +

2

∑
i=1

[∼
βi

2
+
∼
τ i

2
+
∼
ρ i

2
])
≤ −2bv (39)

The convergence of v(t) to zero is guaranteed by Theorems (1) and (2). As a result, the
sliding surface s and the estimation errors approach zero. In the following, it is proven that
the synchronization errors approach zero. For this purpose, first, αi , T Ik1i and βi , Tdk2i
are defined. Then, by applying Equations (19)–(21), expression (40) is obtained:

⇒ kpen(t) + TI D−λ ∑n
i=1 k1iei + TdDδ ∑n

i=1 k2iei(t) = 0 (40)

Thus, the fractional order derivative of is obtained from both sides of Equation (37)

kpDλen(t) + ∑n
i=1 βiei(t) + ∑n

i=1 αiDλ+δei(t) = 0, 0 < λ + δ ≤ 1 (41)

The dynamics of the system error are defined as follows:
Dqe1 = e2
Dqe2 = e3

...
Dqen−1 = en

⇒


sqE1 = E2 + k‘

2(s)
sqE2 = E3 + k‘

3(s)
...

sqEn−1 = En + k‘
n(s)

⇒ Ei = s(i−1)qE1(s) + k‘
i(s) (42)

in which Ei(s) = L(ei), and k‘
i(s) is the effect of the initial condition of the Laplace transform.

By calculating the Laplace transform using Equation (40), Equation (42) is obtained:

kpsλEn(s) +
n

∑
i=1

(
αisq+λEi + βiEi

)
= k0(s) (43)
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where k0(s) is the general effect of the initial conditions. By substituting Equation (42) into
Equation (43), Equation (44) is obtained:[

kpsλs(n−1)q +
n

∑
i=1

(
αisδ+λs(i−1)q + βis(i−1)q

)]
E1(s) = k0(s) (44)

Therefore, the system’s characteristic equation is as follows:

kps(n−1)q+λ +
n

∑
i=1

(
αisδ+λ+(i−1)q + βis(i−1)q

)
= 0 (45)

If the coefficients αi, βi, and kp on the sliding surface are chosen in such a way that the
roots of the above equation have a negative real part, then all eis approach zero.

Therefore, a sufficient condition for the synchronization errors to converge to zero is
that the characteristic Equation (45) is stable.

In Equation (25), if the sliding surface approaches zero, u00(t) will be very big; to
avoid this, u00(t) is modified as follows:

u00(t) =
−bs

k0kp(s2 + ε)∑
2
i=1

[(
|ρ̂i|+ ρi)

2 + (|τ̂i|+ τi)
2 +

(∣∣β̂i
∣∣+ βi

)2
]

(46)

in which ε is a small positive number.
The update laws for delays in Equation (27), which are not available, depend on the

estimation error. This problem can be solved by the following:
Given that 0 < τi < τi < τi, such that τi is the upper limit and τi is the lower limit of

the time delay, as a result of selecting τ̂i(0) = τi, we have:

∼
τ i(0) = τi − τ̂i(0) = τi − τ < 0⇒ sgn

(∼
τ i

)
= −1

By defining V∼
τ i
= 1

2
∼
τ i

2
and calculating its derivate:

DqV∼
τ i
≤ ∼τ iDq∼τ i = −

∼
τ ili|s|sgn

(∼
τ i

)
= −li

∣∣∣∼τ i

∣∣∣|s| < 0 (47)

Therefore, V∼
τ i

is a decreasing function that tends to zero as a result: ∀t ≥ 0 :
∼
τ i < 0⇒

sgn(
∼
τ i) = −1.
In this way, the update laws for time delays are as follows:

Dqτ̂i = li|s|sgn
(∼

τ i

)
= −li|s| i = 1.2 (48)

Also, in order to increase the robustness of the adaptive laws against uncertainties and
disturbances, the Sigma correction law was used. The behavior of the sigma function is
shown in Figure 1.

The sigma function is defined as follows:

σ(t) =


0 i f

∣∣θ̂(t)∣∣ ≤ M0(∣∣θ̂(t)∣∣/M0 − 1
)n

σ0 i f M0 <
∣∣θ̂(t)∣∣ ≤ 2M0

σ0 i f
∣∣θ̂(t)∣∣ ≥ 2M0

(49)
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Therefore, the update laws for estimations of delays, disturbance, and uncertainty
bounds are as follows:

Dqτ̂i = −li|s| − σ0(|τ̂i|)τ̂i, τ̂i(0) = τi, i = 1.2
Dqρ̂i = k0kp|s| − σ0(|ρ̂i|)ρ̂i, i = 1.2
Dq β̂1 = −k0kp|s|ω1(x)− σ0

(∣∣β̂1
∣∣)β̂1,

Dq β̂2 = −k0kp|s|ω2(y)− σ0
(∣∣β̂2

∣∣)β̂2,

(50)

Its stability is demonstrated for chaotic systems with unknown uncertainty, fractional
order unknown time delay, and considering PI sliding surface and nonlinear fractional
order derivative. �

6. Simulation Results

In this section, the process of synchronizing time-varying chaotic systems with un-
known uncertainty and time delay of the fractional order using the proposed control
mechanism based on the nonlinear fractional order PID and with the advantage of the
adaptive controller and update laws that estimate system parameters is verified, and its
accuracy is evaluated. Two modified Jerk chaotic systems with the aforementioned charac-
teristics were utilized for this purpose. The canonical form of the master system’s governing
equations are as follows [15]:

Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t)
(51)

In this system, f3(x1(t− τ1), t) is a piecewise linear function, as follows:

f3(x1(t− τ1), t) =
1
2
(v0 − v1)[|x1(t− τ1) + 1| − |x1(t− τ1)− 1|] + v1x1(t− τ1) (52)

Such that v0 < −1 < v1 < 0, v0 = −2.5, and v1 = −0.5.
Also, εi is a time-varying function, defined as follows.

ε1(t) = 0.5 + 0.3 sin(t) cos(5πt)
ε2(t) = 0.2 + 0.15 sin(0.5t) cos(3πt)

(53)

If εi(t) = ε0i + ∆εi(t), ∆εi(t) can be considered a part of the uncertainty and summed
with the general uncertainty.
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Thus, Equation (49) can be rewritten as follows:
Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε10x1(t)− x2(t)− ε20x3(t) + f3(x1(t− τ1), t)
+∆ f new(x(t), t) + d1(t).

(54)

in which ∆ f new(x(t), t)) = ∆ f (x(t), t)− ∆ε1(t)x1(t)− ∆ε2(t)x3(t) with the previous struc-
ture. The same is carried out for the slave system.

When the initial conditions are chosen as (x1(0); x2(0); x3(0))T = (−0.5032; 2.8545;
−1.37)T , the chaotic behavior of the system is as shown in Figure 2.
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Figure 2. Chaotic behavior of the fractional order Jerk master and slave systems without applying
the controller.

If the bounded uncertainty functions of the master and slave systems are as follows:

∆ f (x(t), t)) = 0.3sin(4x1(t) + x2(t)− x3(t))
∆g(x(t), t)) = 0.2sin(y1(t) + 2y2(t)− y3(t))

(55)

The dynamic equations of the master and slave system are as follows:
Dqx1 = x2
Dqx2 = x3

Dqx3 = −ε1x1(t)− x2(t)− ε2x3(t) + f3(x1(t− τ1), t)
+∆ f new(x(t), t)) + d1(t)

(56)

The dynamic of the master system follows the following equations:
Dqy1 = y2
Dqy2 = y3

Dqy3 = −ε1y1(t)− y2(t)− ε2y3(t) + g3(y1(t− τ2), t)
+∆gnew(x(t), t)) + d2(t) + u(t)

(57)

Such that the nonlinear terms of the slave system are as follows:

g3(y1(t− τ2), t) =
1
2
(v0 − v1)[|y1(t− τ2) + 1| − |y1(t− τ2)− 1|] + v1y1(t− τ2) (58)
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According to the dynamic of the master and slave systems described in Equations (51)
and (52), the synchronization error is given as follows:

Dqei = ei+1 1 ≤ i ≤ n− 1
Dqen = σT

0 ·e(t) + g(y(t− τ2), t) + ∆g(y(t), t) + d2(t)
− f (x1(t− τ1))− ∆ f new(x(t), t))− d1(t) + u(t)

(59)

Accordingly, the error dynamics for the chaotic Jerk system are as follows:
Dqe1 = e2
Dqe2 = e3

Dqe3 = −ε1e1(t)− e2(t)− ε2e3(t)− g(y1(t− τ2)) + f (x1(t− τ1))
+∆gnew(x(t), t))− ∆ f new(x(t), t))

d2(t)− d1(t) + u(t)

(60)

At this stage, we applied the robust adaptive control signal, which is devised by
combining the sliding surface based on the structure of the fractional order nonlinear PID
controllers and described in Equation (26), to the slave system.

In this article, simulations were run for 100 s. Figure 2 depicts the master and slave
systems in three-dimensional space. Figure 3 illustrates the behavior of the master and slave
system states in the absence of any controller actions. Figure 4 shows the synchronization
of the master and slave system. It is clear that after applying the control signal based on the
proposed mechanism, the slave system follows the master system well. Figure 5 depicts the
synchronization error of the master and slave system utilizing the proposed mechanism.
Figure 6 depicts the control signal based on the proposed method. According to the range
of the image’s control signal (6), it is unquestionable that the proposed controller can be
implemented. As this figure demonstrates, the controller signal exhibited no chattering,
and a saturation limit of 24 volts was used, which is simple to implement. In this design,
the controller coefficients k11 = k22 = 9 and k12 = k21 = 18 were selected. Also, the gain
and time constants of the PID sliding surface are nonlinear fractional orders, as kp = 3,
Ti = 0.8, and Td = 0.65. The fractional order of the integral part and the derivative of the
sliding surface are defined as δ = 0.15 and λ = 0.75. The parameters of the proposed robust
controller are ε = 0.01 and b = 2. The unknown time delays of the system are τ1 = 0.3
and τ2 = 0.5. The time delay of the master system changes to the value of τ1 = 0.45 at
the moment t = 40 s, and the time delay of the follower system changes to the value of
τ2 = 0.58 at the moment t = 50 s. The error in estimating the uncertainty, disturbance,
and delay bounds is shown in Figure 7. Figure 8 shows the uncertainties and disturbances
applied to the master and slave systems. The unknown disturbances are applied to both
systems as follows:

d1(t) = 0.8sin22t + 1.2cos3t + 1.6sin1.3t
d2(t) = sin1.4t + 0.3sinπt + 0.3cos πt

2
(61)
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7. Application of Secure Communication in Encryption and Image Retrieval

Despite the uncertainties and time delays in the system, the fractional order chaotic
master and slave systems were entirely synchronized according to the proposed mechanism,
the details of which were described in the previous section. Images were encrypted
using the [27] algorithm in this section. The encrypted image was then transmitted using
fractional order chaotic masking and received with high precision before being decoded.

Figure 9 is a block diagram detailing the encryption technique applied to the images.
In this block diagram, information is exchanged via a wireless communication channel.

Various statistical parameters, including the histogram difference between the original
image and the restored image, correlation, NPCR, PSNR, and information entropy, were
calculated for standard color benchmark images and medical color images to demonstrate
the efficacy of the proposed method. These parameters are standard criteria that have been
used in numerous articles [27].

This section encrypts images for secure communication utilizing the mechanism whose
efficacy was evaluated in Section 6. Figure 10 shows the result of image encryption and
recovery using secure communication for the original image, and Figure 11 shows their
histogram for Aletta (Isekai.Shokudou) color image.
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Figure 12 shows the encryption on the lena color image and Figure 13 shows its
histogram.
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Figure 13. Histogram of the original, encrypted, and decrypted color image.

It can be seen that the decoded images were well restored using the proposed synchro-
nization scheme.

Table 2 shows the results of the statistical criteria of Figures 10 and 12.

Table 2. Results of statistical criteria of color images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyStandard Encrypted NPCR (%) UACI (%)

Images 10 21,153.1171 21,148.239 0.0068 99.68 33.23 8.10 7.9690

Images 12 18,144.3510 18,143.750 0.0043 99.40 33.46 8.27 7.9700

Image encryption using the above mechanism along with histogram for cameraman’s
black and white image is shown in Figures 14 and 15, respectively, and for panda is
presented in Figures 16 and 17.
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Table 3 shows the results of the statistical criteria of the black and white images in
Figures 14 and 16.
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Table 3. Results of statistical measures of black and white images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyMain Decoded NPCR (%) UACI (%)

Images 14 398,232.09375 398,201.1053 0.9923 99.21 33.55 8.9671 7.9783

Images 16 24,466.718750 24,421.32934 0.9953 99.48 33.21 8.0221 7.9458

The encryption of the medical color image along with its histogram for the single
image mode is shown in Figures 18 and 19 and for the multiple image in Figures 20 and 21,
respectively.
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Table 4 shows the results of the statistical criteria of the color medical images in
Figures 18 and 20. The results of encryption entropy indicate excellent quality of image
retrieval.

Table 4. Results of statistical measures of medical images.

Images
Histogram

Correlation
Differential Attack

PSNR
Information

EntropyStandard Decrypted NPCR (%) UACI (%)

Images 18 65,536 65,535 0.9986 99.96 33.46 9.23 7.9627

Images 20 65,536 65,534 0.9987 99.97 33.47 9.24 7.9842

8. Conclusions

This study examined a novel adaptive sliding mode control approach for robust
synchronization of a class of fractional order chaotic systems with uncertainty, external dis-
turbance, and unknown parameters, such as unknown time delay. In the proposed robust
control mechanism, a nonlinear fractional order sliding surface was first proposed based
on the structure of nonlinear proportional, integral, and fractional derivative controllers.
Using the Lyapunov theory and Lipschitz conditions in chaotic systems, matching criteria
were established in order to estimate the unknown parameters of the system. In order
to facilitate the implementation process, the control signal’s saturation limit was defined,
and the robust control system’s stability was demonstrated. The synchronization of two
fractional order Jerk chaotic systems with the stated characteristics, including uncertainties
and unknown time delays, based on the proposed control mechanism was simulated using
MATLAB, and the results express the capability and optimal performance of the proposed
approach in the robust synchronization of the mentioned systems. In closing, the proposed
adaptive sliding mode control approach was implemented in the structure of a chaotic
secure communication mechanism, and the simulation results indicate a high level of
quality in the secure encryption and decryption of digital images despite the presence of
uncertain parameters in the master and slave systems of the communication mechanism.
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