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Abstract: The resolution of isolated cases of the well-known quadratic transformation due to Kummer
was thoroughly examined in two recent publications by Atia as well as Atia and Al-Mohaimeed. The
objective of this paper is twofold. We establish generalizations of the quadratic transformation due to
Kummer in the most general case in the first section, and in the second section, an effort is made to
discuss the resolution of an isolated case of a quadratic transformation contiguous to that of Kummer
established by Choi and Rathie.
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1. Introduction

Every one of us who has worked on classical orthogonal polynomials, special functions,
or other related fields has, at some point, used the extensive list of quadratic transformation
formulas for Gauss’ hypergeometric function, 2F1(u, v; w; z), that many authors have so
thoughtfully reproduced in their monographs, encyclopedias, and handbooks [1–3]. They
are extremely useful for students and researchers alike. In 1812, Gauss [4] defined their
famous infinite series as follows

1 +
uv
w

z
1!

+
u(u + 1)v(v + 1)

w(w + 1)
z2

2!
+ . . . (1)

The infinite series (1) is usually denoted by the notation 2F1(u, v; w; z), or simply F,
and is commonly known as Gauss’s function or the hypergeometric series. Gauss’s function
or the hypergeometric series is a solution of a second-order differential equation. In this
function, we have two numerator parameters, u and v, and one denominator parameter, w,
which are quantities that may be real or complex, with one exception that w should not
be zero or a negative integer and the quantity, z, is called the variable of the series. It is
interesting to mention here that for u = 1 and v = w (or, equivalently, v = 1 and u = w),
the infinite series (1) reduces to the well-known “geometric series”, and with this fact, the
series (1) is called “hypergeometric series”.

Moreover, in terms of Pochhammer’s symbol, (u)m, which is defined for a u complex
number (u 6= 0) by

(u)m =

{
u(u + 1) . . . (u + m− 1), m ∈ N,

1, m = 0,
, (2)

The infinite series (1) can be represented by
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2F1(u, v; w; z) =
∞

∑
m=0

(u)m(v)m

(w)m

zm

m!
. (3)

Further, in terms of the well-known Gamma function, the Pochhammer symbol, (u)m,
is represented by

(u)m =
Γ(u + m)

Γ(u)
, Re(u) > 0. (4)

By using a ratio test, it is not difficult to verify that the infinite series (1):

• Is convergent for all values of z, provided | z |< 1, and is divergent when | z |> 1;
• Is convergent for z = 1, provided <(w − u − v) > 0, and is divergent when

<(w− u− v) ≤ 0;
• Is absolutely convergent for z = −1, provided Re(w− u− v) > 0; convergent, but not

absolutely, for −1 < Re(w− u− v) ≤ 0; and divergent when Re(w− u− v) < −1.

The limiting case of (3) is worthy mentioning here. For this, if we replace z by
z
v

in (3)

and take the limit as v→ ∞, then, since
(v)m

vm zm → zm, we arrive at the following infinite
series, which is known in the literature either as a confluent hypergeometric function or as
Kummer’s function, 1F1,

1F1(u; w; z) =
∞

∑
m=0

(u)m

(w)m

zm

m!
. (5)

We remark in passing that almost all elementary functions of mathematics and math-
ematical physics are special cases or limiting cases of Gauss’s hypergeometric function.
For more details about Gauss’s hypergeometric function, we refer to the standard text of
Rainville [5].

Looking toward the definition of Gauss’s hypergeometric function, it is self-evident that
symmetry occurs in the numerator parameters of Gauss’s hypergeometric function.

Moreover, it is evident that the transformation formulas (including quadratic and cu-
bic) for the hypergeometric function play an important role in the theory of hypergeometric
functions. A large number of very useful and interesting transformation formulas have
been listed in the well-known paper by Goursat [6].

However, in our present investigation, we are interested in the following quadratic
transformation due to Kummer [7]

2F1(u, v; 2v; z) = (1− z
2
)−u

2F1

(
u
2

,
u + 1

2
; v +

1
2

; (
z

2− z
)2
)

(6)

provided that {2v + 1, v + 3
2} are not natural numbers and v− u is not an integer.

The result (6) is also recorded, for example, in the standard text of I.S. Gradshteyn and
I.M. Ryzhik [1] (9.134 and 9.134.1) and G. Andrews et al. [2] (3.1.7 page 127, with a slight
modification), in the handbook by Abramowitz-Stegun [3] (15.3.20), and in DLMF: NIST
Digital Library of Mathematical Functions, https://dlmf.nist.gov/ (accessed on 15 June
2023) 15.8.13 [8].

The transformation (1.6) is a quadratic transformation that relates two hypergeometric
functions (with the linear argument in one and a quadratic in the other), which are true
under some conditions. In fact, in [1], page 1008, 9.130, the authors wrote:

Generally speaking, the analytic function that is defined by the series 2F1(α, β; γ; z) has
singularities at z = 0, 1, and ∞. (There are branch points in the general case.) From
z = 1 to z = ∞, we cut the z-plane along the real axis; in other words, we require
that |arg(−z) |< π for |z| = 1. The series 2F1(α, β; γ; z) will then yield a single-
valued analytic continuation on the cut plane, which can be obtained using the formulas
below (provided γ + 1 is not a natural number and α − β and γ − α − β are not
integers). These equations allow for the calculation of 2F1(α, β; γ; z) values in the
specified region, even when |z| > 1. If the corresponding correlations between α, β, andγ

https://dlmf.nist.gov/


Axioms 2023, 12, 821 3 of 11

are true, other closely related transformation formulas can also be employed to obtain the
analytical continuation.

In 2011, Choi and Rathie [9] established the following two formulas closely related to
Kummer’s transformation (6)

2F1(u, v; 2u + 1; 2z)

= (1− z)−v
2F1(

v
2

,
v + 1

2
; u +

1
2

; (
z

1− z
)2)

− vz
2u + 1

(1− z)−v−1
2F1(

v + 1
2

,
v
2
+ 1; u +

3
2

; (
z

1− z
)2), (7)

which is valid when 2u + 1 ∈ C\Z−0 , |z| < 1
2 , and | z

1−z |< 1.
The aim of this paper is twofold: first, we will generalize the Choi and Rathie result

to 2F1(u, v; 2u± n; 2z), n ∈ N; then, we give the right expressions with the isolated cases
2u± n ∈ Z−0 , |z| < 1

2 , and | z
1−z |< 1.

Preliminaries and Main Notations

It is not out of place to mention here that Kummer [7] established transformation
Formula (6) using the theory of differential equations. On the other hand, if, in (6), we
replace z by 2z, we obtain the following formula:

2F1(u, v; 2v; 2z) = (1− z)−u
2F1

(
u
2

,
u + 1

2
; v +

1
2

; (
z

1− z
)2
)

. (8)

It is shown in the standard text of Rainville [5] that transformation Formula (8) can be
proven very quickly by employing the following classical summation theorem due to Gauss [4]:

2F1(u, v; w; 1) =
Γ(w)Γ(w− u− v)
Γ(w− u)Γ(w− v)

, (9)

provided <(w− u− v) > 0.
In addition to this, by considering the case when v− u is an integer and u is either

an even or an odd integer, very recently, Atia [10] and Atia with Al-Mohaimeed [11]
established two results, which are recorded here

(a) For v ∈ Z−, u ∈ 2Z,

2F1(
u
2

,
u + 1

2
; v +

1
2

; (
z

2− z
)2) = (1− z

2
)u

2F1(u, v; 2v; z) (10)

+
2
√

π( u
2 )−v+1

Γ(−v + 1
2 )

(4z− 4)v−u(2− z)u+1

z2v+1−u 2F1

(
1− u

2
,

1− u
2

+ v;
3
2

; (
2
z
− 1)2

)
.

(b) For v ∈ Z−, u ∈ 1 + 2Z,

2F1(
u
2

,
u + 1

2
; v +

1
2

; (
z

2− z
)2) = (1− z

2
)u

2F1(u, v; 2v; z) (11)

−
√

π( u+1
2 )−v

Γ(−v + 1
2 )

(4z− 4)v−u(2− z)u

z2v−u 2F1

(
1− u

2
, v− u

2
;

1
2

; (
2
z
− 1)2

)
.

For simplicity, let us denote by

F1(u, v, z) := 2F1

(
u
2

,
u + 1

2
; v +

1
2

; (
z

2− z
)2
)

F2(u, v, z) := (1− z
2
)u

2F1(u, v; 2v; z),
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b(u)v =
2
√

π( a
2 )−v+1

Γ(−v + 1
2 )

(4z− 4)v−u(2− z)u+1

z2v+1−u 2F1

(
1− u

2
,

1
2
+ v− u

2
;

3
2

; (
2
z
− 1)2

)
, (12)

and

c(u)v = −
√

π( u+1
2 )−v

Γ(−v + 1
2 )

(4z− 4)v−u(2− z)u

z2v−u 2F1

(
1
2
− u

2
, v− u

2
;

1
2

; (
2
z
− 1)2

)
. (13)

Atia and Al-Mohaimeed [11] have also proven that

F1(u, v, z) = −c(u,even)
v

and
F1(u, v, z) = −b(u,odd)

v .

Here, we return to Equation (6). If we replace z by 2z
1+z , then it takes the following form

(1 + z)−u
2F1

(
u, v; 2v;

2z
1 + z

)
= 2F1

(
u
2

,
u + 1

2
; v +

1
2

; z2
)

(14)

provided 2v /∈ Z−, | 2z
1+z |<

1
2 , and | z |< 1.

In 2011, Choi and Rathie [9] established the result closely related to (14) given below

(1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
= 2F1

(
u
2

,
u + 1

2
; v +

1
2

; z2
)
− uz

2v + 1 2F1

(
u + 1

2
,

u + 2
2

; v +
3
2

; z2
)

(15)

provided 2v + 1 /∈ Z−, | 2z
1+z |<

1
2 , and | z |< 1.

In the next section, we give interesting generalizations of the identities (14) and (15) in
the most general form.

2. Generalization of Kummer’s Transformation

In this section, we shall provide generalizations of (14) and (15) asserted in the follow-
ing theorem.

Theorem 1. For any integer m ≥ 0, the following results hold true:

2F1

(
u, v; 2v + m;

2z
1 + z

)
=

m

∑
k=0

(− 2z
1 + z

)k
(u)k(v)k(

m
k

)

(2v + k− 1)k(2v + m)k

× 2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)
, (16)

and

2F1

(
u, v; 2v−m;

2z
1 + z

)
=

m

∑
k=0

(
−2z
1 + z

)k
(−1)k(u)k(v−m)k(

m
k

)

(2v− 2m + k− 1)k(2v−m)k

× 2F1

(
u + k, v + k−m; 2(v + k−m);

2z
1 + z

)
. (17)

In order to prove this theorem, first, we shall derive the following Lemma.
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Lemma 1.

(i) 2F1(u, v; 2v + m, x)− 2F1(u, v; 2v + m− 1; x)

= − uvx
(2v + m)(2v + m− 1) 2F1(u + 1, v + 1; 2v + m + 1; x), (18)

and

(ii) 2F1(u, v; 2v−m, x)− 2F1(u, v; 2v−m + 1; x)

=
uvx

(2v−m)(2v−m + 1) 2F1(u + 1, v + 1; 2v−m + 2; x). (19)

Proof. In order to prove (i), we start with the left hand side of (21) .

L.H.S =2 F1(u, v; 2v + m, x)− 2F1(u, v; 2v + m− 1; x)

= ∑
k≥0

(u)k(v)kxk

(2v + m)kk!
− ∑

k≥0

(u)k(v)kxk

(2v + m− 1)kk!

= ∑
k≥0

(u)k(v)kxk

k!

(
1

(2v + m)k
− 1

(2v + m− 1)k

)

= ∑
k≥0

(u)k(v)kxk

k!
((2v + m− 1)k − (2v + m− 1)k)

(2v + m)k(2v + m− 1)k

= ∑
k≥0

(u)k(v)kxk

k!
(2v + m)k−1(2v + m− 1− (2v + m + k− 1))

(2v + m)k(2v + m− 1)k

= − ∑
k≥0

k(u)k(v)kxk

k!
(2v + m)k−1

(2v + m)k(2v + m− 1)k

= − ∑
k≥1

u(u + 1)k−1v(v + 1)k−1xk

(k− 1)!
(2v + m)k−1

(2v + m)(2v + m + 1)k−1(2v + m− 1)(2v + m)k−1

= − uvx
(2v + m)(2v + m− 1) ∑

k≥1

(u + 1)k−1(v + 1)k−1xk−1

(2v + m + 1)k−1(k− 1)!

= − uvx
(2v + m)(2v + m− 1) 2F1(u + 1, v + 1; 2v + m + 1; x).

which is the right-hand side of (21) .

The result (ii) can be proven on similar lines, so we prefer to avoid the details.
Here, we are ready to establish the result (16) asserted in Theorem 1.

Proof. The proof is made by induction on m.
For m = 0, it is obvious that we obtain

2F1

(
u, v; 2v;

2z
1 + z

)
= 2F1

(
u, v; 2v;

2z
1 + z

)
.

For m = 1, we obtain

2F1

(
u, v; 2v + 1;

2z
1 + z

)

= (− 2z
1 + z

)0
(u)0(v)0(

1
0
)

(2v + 1− 0)0(2v + 1)0
2F1(u + 0, v + 0; 2(v + 0);

2z
1 + z

)

+(− 2z
1 + z

)1
(u)1(v)1(

1
1
)

(2v + 1− 1)1(2v + 1)1
2F1(u + 1, v + 1; 2(v + 1);

2z
1 + z

),
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which becomes

2F1

(
u, v; 2v + 1;

2z
1 + z

)
= 2F1(u, v; 2v,

2z
1 + z

)

−( 2uvz
(2v)(2v + 1)(1 + z) 2F1(u + 1, v + 1; 2(v + 1);

2z
1 + z

)), (20)

After simplifying and using (6) by substituting z with z
1+z , we obtain Choi and

Rathie identity.
Furthermore, using the previous lemma, one obtains

2F1

(
u, v; 2v + m + 1;

2z
1 + z

)
= 2F1

(
u, v; 2v + m;

2z
1 + z

)
− 2uvz
(2v + m + 1)(2v + m)(1 + z) 2F1

(
u + 1, v + 1; 2v + m + 2;

2z
1 + z

)
,

which we write as

2F1

(
u, v; 2v + m + 1;

2z
1 + z

)
= 2F1

(
u, v; 2v + m;

2z
1 + z

)
− 2uvz
(2v + m + 1)(2v + m)(1 + z) 2F1

(
u + 1, v + 1; 2(v + 1) + m;

2z
1 + z

)
.

Taking into account (16), we obtain

2F1

(
u, v; 2v + m + 1;

2z
1 + z

)

=
m

∑
k=0

(− 2z
1 + z

)k
(u)k(v)k(

m
k

)

(2v + k− 1)k(2v + m)k
2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)

− 2uvz
(2v + m + 1)(2v + m)(1 + z)

m

∑
k=0

(− 2z
1 + z

)k
(u + 1)k(v + 1)k(

m
k

)

(2v + k + 1)k(2v + 2 + m)k

× 2F1

(
u + 1 + k, v + 1 + k; 2(v + 1 + k);

2z
1 + z

)

=
m

∑
k=0

(− 2z
1 + z

)k
(u)k(v)k(

m
k

)

(2v + k− 1)k(2v + m)k
2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)

+
1

(2v + m)(2v + 1 + m)

m

∑
k=0

(− 2z
1 + z

)k+1
(u)k+1(v)k+1(

m
k

)

(2v + k + 1)k(2v + m)k+2

× 2F1

(
u + 1 + k, v + 1 + k; 2(v + 1 + k);

2z
1 + z

)

=
m

∑
k=0

(− 2z
1 + z

)k
(u)k(v)k(

m
k

)

(2v + k− 1)k(2v + m)k
2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)

+
1

(2v + m)(2v + 1 + m)

m+1

∑
k=1

(− 2z
1 + z

)k
(u)k(v)k(

m
k− 1

)

(2v + k + 1)k−1(2v + m)k+1

× 2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)
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= 2F1

(
u, v; 2v;

2z
1 + z

)
+

m

∑
k=1

(− 2z
1 + z

)k
(u)k(v)k(

m
k

)

(2v + k− 1)k(2v + m)k

× 2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)
+ (− 2z

1 + z
)m+1

(u)m+1(v)m+1(
m
m

)

(2v + m)m+1(2v + m + 1)m+1

× 2F1

(
u + m + 1, v + m + 1; 2(v + m + 1);

2z
1 + z

)
+

1
(2v + m)(2v + 1 + m)

m

∑
k=1

(− 2z
1 + z

)k

×
(u)k(v)k(2v + k− 1)(2v + m + 1)(

m
k− 1

)

(2v + k− 1)k(2v + m + 1)k
2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)

= 2F1

(
u, v; 2v;

2z
1 + z

)
+ (− 2z

1 + z
)m+1

(u)m+1(v)m+1(
m + 1
m + 1

)

(2v + m)m+1(2v + m + 1)m+1

× 2F1

(
u + m + 1, v + m + 1; 2(v + m + 1);

2z
1 + z

)
+

m

∑
k=1

(− 2z
1 + z

)k(u)k(v)k

× 2F1

(
u + k, v + k; 2(v + k);

2z
1 + z

)

×


(

m
k

)

(2v + k− 1)k(2v + m)k
+

(2v + k− 1)(2v + m + 1)(
m

k− 1
)

(2v + m)(2v + 1 + m)(2v + k− 1)k(2v + m + 1)k


taking into account

(
m
k

)

(2v + k− 1)k(2v + m)k
+

(2v + k− 1)(2v + m + 1)(
m

k− 1
)

(2v + m)(2v + 1 + m)(2v + k− 1)k(2v + m + 1)k

=

(
m + 1

k
)

(2v + k− 1)k(2v + m + 1)k

This completes the proof.
In exactly the same manner, the result (17) given in Theorem 1 can be proven. Thus,

we left this as an exercise for the interested reader.

We shall mention here that,for the first time, it is observed here that the transfor-
mation (15) still makes sense, even if 2v + 1 is a negative integer; thus, our aim in this
paper is to discover a new formula for any negative integer, v, such that 2v ∈ Z−, and for
u ∈ Z. Therefore, in order to find the results in the most general form, two cases have to be
considered separately:

1. For any negative integer v and u ∈ 2Z.
2. For any negative integer v and u ∈ 1 + 2Z.

The details are given in the next section.

3. Resolution of an Isolated Case

In this section, we shall establish two new and interesting results asserted in the
following theorem.

Theorem 2.

(i) For u ∈ 2Z and v ∈ {. . . ,−4,−3,−2}, the following formula holds true:
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(1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
− 2F1

(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2
)

(21)

+
uz

2v + 1 2F1

(
1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2
)

= av
u(z) = b−v+1

u
2

(z)− uz
2v + 1

c−v
u+1

2
(z).

(ii) For u ∈ 2Z+ 1 and v ∈ {. . . ,−4,−3,−2}, the following formula holds true:

(1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
− 2F1

(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2
)

(22)

+
uz

2v + 1 2F1

(
1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2
)

= av
u(z) = c−v+1

u
2

(z)− uz
2v + 1

b−v
u+1

2
(z).

Proof. In order to prove results (21) and (22), let us first denote by

G1(u, v, z) = (1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
,

G2(u, v, z) = 2F1

(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2
)

,

and

G3(u, v, z) =
uz

2v + 1 2F1

(
1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2
)

.

Then, let us express G1(u, v, z), G2(u, v, z), and G3(u, v, z) in terms of the functions of
the function of F1(u, m, z), F2(u, m, z), b(u)m , and c(u)m .

For this, the first step is an easy task to see that the expression

2F1(u, v; 2v; z)− 2F1(u, v; 2v + 1; z) =
uz

2(2v + 1) 2F1(u + 1, v + 1; 2v + 2; z),

can be written in the following form:

F2(u, v, z)− uz
2(2v + 1)(1− z

2 )
F2(u + 1, v + 1, z) = (1− z

2
)u

2F1(u, v; 2v + 1; z).

where

G1(u, v, z) = (1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
= F2

(
u, v,

2z
1 + z

)
− uz

(2v + 1)
F2

(
u + 1, v + 1,

2z
1 + z

)
.

G2(u, v, z) = F1

(
u, v,

2z
z + 1

)
and

G3(u, v, z) =
uz

2v + 1
F1

(
u + 1, v + 1,

2z
z + 1

)
.

On the other hand, we have the following results

F1(u, v, z) = F2(u, v, z) + b(u)v (u, v, z), where u is an even integer,

as well as
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F1(u, v, z) = F2(u, v, z) + c(u)v (u, v, z), where u is an odd integer.

Here, we are ready to establish the results, (3.1) and (3.2), asserted in Theorem 2.
Therefore, for u ∈ 2Z, we have

(1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
− 2F1

(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2
)

+
uz

2v + 1 2F1

(
1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2
)

= G1(u, v, z)− G2(u, v, z) + G3(u, v, z)

= F2

(
u, v,

2z
1 + z

)
− uz

(2v + 1)
F2

(
u + 1, v + 1,

2z
1 + z

)
− F1

(
u, v,

2z
z + 1

)
+

uz
2v + 1

F1

(
u + 1, v + 1,

2z
z + 1

)
= F2

(
u, v,

2z
1 + z

)
− F1

(
u, v,

2z
z + 1

)
+

uz
2v + 1

(
F1

(
u + 1, v + 1,

2z
z + 1

)
− F2

(
u + 1, v + 1,

2z
1 + z

))
= −bu

v +
uz

2v + 1
cu+1

v .

Similarly, for u ∈ 1 + 2Z, we have

(1 + z)−u
2F1

(
u, v; 2v + 1;

2z
1 + z

)
− 2F1

(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2
)

+
uz

2v + 1 2F1

(
1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2
)

= G1(u, v, z)− G2(u, v, z) + G3(u, v, z)

= F2

(
u, v,

2z
1 + z

)
− uz

(2v + 1)
F2

(
u + 1, v + 1,

2z
1 + z

)
− F1

(
u, v,

2z
z + 1

)
+

uz
2v + 1

F1

(
u + 1, v + 1,

2z
z + 1

)
= F2

(
u, v,

2z
1 + z

)
− F1

(
u, v,

2z
z + 1

)
+

uz
2v + 1

(
F1(u + 1, v + 1,

2z
z + 1

)− F2(u + 1, v + 1,
2z

1 + z
)

)
= −cu

v +
az

2v + 1
bu+1

v .

This completes the proof.

Remark 1. For v = −1, the results (21) and (22), take the following form:

(i) For u ∈ 2Z, we have

(1 + z)−u
2F1(u,−1;−1;

2z
1 + z

)− 2F1(
1
2

u,
1
2

u +
1
2

;−1
2

; z2)

+
uz
−1 2F1(

1
2

u +
1
2

,
1
2

u + 1;−1 +
3
2

; z2) = −b2
u
2
(z)− uzc1

u+1
2
(z),

(ii) For u ∈ 2Z+ 1, we have

(1 + z)−u
2F1(u,−1;−1;

2z
1 + z

)− 2F1(
1
2

u,
1
2

u +
1
2

;−1
2

; z2)

+
uz
−1 2F1(

1
2

u +
1
2

,
1
2

u + 1;−1 +
3
2

; z2) = −c2
u
2
(z)− uzb1

u+1
2
(z).
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One can use the following Maple commands

restart;
F1 := proc (u, v, z) options
operator, arrow; hypergeom([(1/2)*u+1/2, (1/2)*u], [v+1/2],
z^2/(2-z)^2) end proc;
F2 := proc (u, v, z) options operator, arrow;
(1-(1/2)*z)^u*hypergeom([u, v], [2*v], z) end proc;
bvu := proc (u,
v, z) options operator, arrow;
2*(z/(2-z))^(u-1-2*v)*sqrt(Pi)*pochhammer((1/2)*u, 1-v)
*hypergeom([1-(1/2)*u, 1/2+v-(1/2)*u], [3/2], (2-z)^2/z^2)
*(z^2/(2-z)^2-1)^(v-u)/GAMMA(1/2-v) end proc;
cvu := proc (u, v, z) options operator, arrow;
-(z/(2-z))^(u-2*v)*sqrt(Pi)*pochhammer((1/2)*u+1/2, -v)
*hypergeom([v-(1/2)*u, 1/2-(1/2)*u], [1/2], (2-z)^2/z^2)
*(z^2/(2-z)^2-1)^(v-u)/GAMMA(1/2-v) end proc;
G1 := proc (u, v, z) options operator, arrow;
(1+z)^(-u)*hypergeom([u, v], [2*v+1], 2*z/(1+z)) end proc;
G2 :=proc (u, v, z) options operator, arrow; hypergeom([(1/2)*u,
(1/2)*u+1/2], [v+1/2], z^2) end proc;
G3 := proc (u, v, z) options
operator, arrow; u*z*hypergeom([(1/2)*u+1/2, (1/2)*u+1], [v+3/2],
z^2)/(2*v+1) end proc; simplify(F1(6, -2, z)-F2(6, -2, z)-bvu(6,
-2, z));

0
factor(simplify(F1(5, -2, z)-F2(5, -2, z)-cvu(5, -2, z)));

0
simplify(hypergeom([u, v], [2*v], z)-hypergeom([u, v], [2*v+1], z)
-(1/2)*z*u*hypergeom([v+1, u+1], [2*v+2], z)/(2*v+1));

0
simplify(F2(u, v, z)-u*z*F2(u+1, v+1, z)/((2*(2*v+1))*(1-(1/2)*z)));
(1-(1/2)*z)^u*hypergeom([u, v], [2*v+1], z):

simplify(G1(u, v, z)-F2(u, v, 2*z/(z+1))+u*z*F2(v+1, v+1 ,
2*z/(z+1))/(2*v+1)):; simplify(G2(u, v, z)-F1(u, v, 2*z/(z+1)));

0
simplify(G3(u, v, z)-u*z*F1(u+1, v+1, 2*z/(z+1))/(2*v+1));

0
u := 8; vs. := -3; simplify(G1(u, v, z)-G2(u, v, z)+G3(u, v, z)
+bvu(u, v, 2*z/(z+1))-u*z*cvu(u+1, v+1, 2*z/(z+1))/(2*v+1));

0
u := 8; vs. := -1; simplify(G1(u, v, z)-G2(u, v, z)+G3(u, v, z)
-bvu(u, v, 2*z/(z+1))+u*z*cvu(u+1, v+1, 2*z/(z+1))/(2*v+1));

0
u := 7; vs. := -3; simplify(G1(u, v, z)-G2(u, v, z)+G3(u, v, z)
+cvu(u, v, 2*z/(z+1))-u*z*bvu(u+1, v+1, 2*z/(z+1))/(2*v+1));

0
u := 1; vs. := -1; simplify(G1(u, v, z)-G2(u, v, z)+G3(u, v, z)
-cvu(u, v, 2*z/(z+1))+u*z*bvu(u+1, v+1, 2*z/(z+1))/(2*v+1));

0

Remark 2. It is clear that the transformation formula
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(1 + z)−u
2F1(u, v; 2v + 1;

2z
1 + z

)

= 2F1(
1
2

u,
1
2

u +
1
2

; v +
1
2

; z2)− uz
2v + 1 2F1(

1
2

u +
1
2

,
1
2

u + 1; v +
3
2

; z2)

obtained earlier by Choi and Rathie is valid, provided 2b /∈ Z−, | 2z
1+z |<

1
2 , and | z |< 1.

It is observed for the first time that the above-mentioned transformation formula still makes
sense, even if v is any negative integer. Therefore, in this paper, an attempt was made to establish
two results for any negative integer, v, with u ∈ 2Z and u ∈ 1 + 2Z.

We conclude this paper by remarking the general result of the form

(1 + z)−u
2F1(u, v; 2v±m;

2z
1 + z

), in the most general form for any m ∈ N∪ {0}, by considering

the following cases:

1. For 2v±m, it is neither zero nor a negative integer and u ∈ 2Z.
2. For 2v±m, it is neither zero nor a negative integer and u ∈ 1 + 2Z,

these cases are under investigation and will form a subsequent paper in this direction.
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