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Abstract: In this paper, we first established a high-accuracy difference scheme for the time-fractional
Schrödinger equation (TFSE), where the factional term is described in the Caputo derivative. We
used the L1-2-3 formula to approximate the Caputo derivative, and the fourth-order compact finite
difference scheme is utilized for discretizing the spatial term. The unconditional stability and
convergence of the scheme in the maximum norm are proved. Finally, we verified the theoretical
result with a numerical test.
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1. Introduction

In 1926, the Schrödinger equation was proposed by Schrödinger, who is a physicist
from Austria [1], which combines the concept of matter wave with the wave equation to es-
tablish a second-order partial differential equation that describes the motion of microscopic
particles, and its general form is as follows:

ih̄
∂u
∂t

= − h̄2

2m
∆u + Vu.

where u is the wave function, h̄ is Planck constant, V is the potential function, m denotes
the mass of the particle, and ∆ represents the Laplace operator. In recent years, there
have been many studies on the Schrödinger equation [2–10]. Researchers have found that
fractional differential operators are non-local compared to integer differential operators
and are very suitable for describing real-world processes of change with memory as well as
hereditary properties. It has become one of the most important tools for describing all kinds
of complex mechanical and physical behaviors. In 2004, Naber substituted the time term of
the classical Schrödinger equation with the Caputo time-fractional derivative to propose
the time-fractional Schrödinger equation (TFSE) [11], which describes the dependence of
particle motion.

The TFSE is an integral-differential equation, and since it’s very difficult to find the
analytical solution, it has been a widely discussed hot topic to get a numerical solution
of the TFSE with a smaller error and higher order. For example, Wei et al. proposed an
LDG finite element method to solve the TFSE, which is implicit and fully discrete [12].
Garrappa R. et al. solved the TFSE based on the Krylov projection methods [13]. Liu et al.
obtained the approximation solution of the TFSE based on the reproducing kernel theory
and collocation method [14]. Zheng et al. presented a spectral collocation method for
solving the TFSE [15].
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Some L-type formulas have been exploited to replace the Caputo time-fractional term
for discretizing the time derivative term and to reap the approximation solution of the
TFSE. For example, Eskar, R. et al. used the L1 and L1-2 formulas to discretize the Caputo
derivatives, and the compact difference scheme is exploited for the spatial terms to obtain
the finite difference scheme [16]. Fei et al. constructed an implicit scheme by adopting
the L2-1σ formula to approximate the Caputo term; the weighted and shifted Grünwald
formula is used for the spatial term [17]. Cen et al. also adopted the L2-1σ formula on
graded meshes for solving the TFKBE with an initial singularity [18]. Ding et al. solved a
nonlinear TFSE by using the quintic non-polynomial spline in the spatial term and the L1
formula in the time term [19]. Mokhtari, R. et al. constructed three finite difference schemes
by adopting different L-type formulas to approximate the Caputo derivatives in the time
direction and the central difference format in the space direction, respectively. The accuracy
of the three schemes are O(τ2−α + h2), O(τ3−α + h2), and O(τ3 + h2) [20], where 0 6 α 6 1,
and τ (h) is time (spatial) step size. Hadhoud et al. received the approximation solution of
the TFSE by using the L1 formula and proved the conditional stability of the technique [21].

In this paper, we use the L1-2-3 formula to approximate the Caputo derivative, and the
fourth-order compact difference scheme is exploited to discretize the spatial derivative term
for establishing a high-accuracy difference scheme, where the order in the time direction is
3 and the spatial direction is 4. Furthermore, we will prove the scheme is unconditionally
stable and convergent in the maximum norm. At the end of the paper, a numerical test is
given to prove the theoretical result.

2. Preliminaries

The following TFSE is considered:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, L), t ∈ (0, T], (1)

u(x, 0) = ϕ(x), x ∈ Ω = [0, L], (2)

u(0, t) = u(L, t) = φ(t), t ∈ [0, T]. (3)

where i =
√
−1, α ∈ (0, 1), T and L are positive real numbers, u0(x) and f (x, t) are

given functions, ∂αu(x,t)
∂tα is the Caputo derivative of order α ∈ (0, 1), which is defined as

follows [20]:
∂αu(·, t)

∂tα
=

1
Γ(1− α)

∫ t

0

us(·, s)
(t− s)α

ds.

In order to discretize the continuous problem, we first give a dissected grid of the
solution region. Let h = L/M and τ = T/N be the step sizes in the time and space
directions, where M and N are two integers. Then xj = jh(j = 0, 1, 2, · · · , M), tn = nτ(n =
0, 1, 2, · · · , N). Furthermore, we define a mesh that cover the domain [0, L]× [0, T]. Let
Û = un

j is a grid function on the mesh. For any u, v ∈ Û, we introduce the following
notations:

δxun
j+1/2 =

un
j+1 − un

j

h
, δxun

j−1/2 =
un

j − un
j−1

h
, δ2

xun
j =

δxun
j+1/2 − δxun

j−1/2

h
,

(u, v) = h
M−1

∑
j=1

ujv̄j, ||u||2 = (u, u), ||u||∞ = max
16j6M−1

|uj|,

(u, v)1 = h
M−1

∑
j=0

(δxuj+1/2)(δx v̄j+1/2), ||u||21 = (u, u)1,

where the v̄j and v̄j+1/2 denote the complex-conjugate of vj and vj+1/2.
From the Taylor expansion, we have:
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δ2
xun

j =
1
h2 (u

n
j−1 − 2un

j + un
j+1)

=
2
h2 (

h2u′′(xj, tn)

2!
+

h4u(4)(xj, tn)

4!
) + O(h4)

= (1 +
h2

12
δ2

x)u
′′(xj, tn) + O(h4),

then, we get:

u′′(xj, tn) =
δ2

x

(1 + h2

12 δ2
x)

un
j + O(h4),

and we define the compact fourth-order difference formula as follow:

Hun
j = (I +

h2

12
δ2

x)u
n
j .

Definition 1 ([22]). (The L1-2-3 formula). Assuming that α ∈ (0, 1) and u(x, t) ∈ C6,5

(Ω× [0, T]). We have

C
0Dα

t u(·, tn) =
1

ταΓ(2− α)

[
d0un −

n−1

∑
l=1

(dn−l−1 − dn−l)ul − dn−1u0

]
, (4)

where un and u0 are approximations of u(·, tn) and u(·, t0). And for n = 1,

d0 = 1,

for n = 2,

dl =

{
al + bl , l = 0
al − bl−1, l = 1

for n = 3,

dl =


al + bl + gl , l = 0
al + bl − bl−1 − 2gl−1, l = 1
al − bl−1 + gl−2, l = 2

and for n > 4,

dl =



al + bl + gl , l = 0
al + bl − bl−1 + gl − 2gl−1, l = 1
al + bl − bl−1 + gl − 2gl−1 + gl−2, 2 6 l 6 n− 3
al + bl − bl−1 − 2gl−1 + gl−2, l = n− 2
al − bl−1 + gl−2, l = n− 1

with

al =(l + 1)1−α − l1−α,

bl =
(l + 1)2−α − l2−α

2− α
− (l + 1)1−α − l1−α

2
,

gl =
(l + 1)3−α − l3−α

(2− α)(3− α)
− (l + 1)1−α + 2l1−α

6
− l2−α

2− α
.
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Lemma 1 ([20]). If n > 4, then we have:

d0 > |d1|,

d0 > d2 > d3 > · · · > dn−1 > 0.

Lemma 2 ([20]). For dj(j = 0, 1, 2), we have:

d0 > 1,

3d0 + 2d1 − 2d2 > 2,

d0 + d1 − d2 > 1/3.

Theorem 1 ([22]). Let

ε3(u(·, tn)) =
∂αu(·, tn)

∂tα
− C

0Dα
t u(·, tn)

if u(x, t) ∈ C6,5(Ω× [0, T]), then

|ε3(u(·, t1))| 6 α

2Γ(3− α)
mttτ

2−α,

|ε3(u(·, t2))| 6 α

3(1− α)(2− α)Γ(1− α)

(
1
2
+

1
3− α

)
Mtttτ

3−α

+
α

12Γ(1− α)
(t2 − t1)−α−1Mttτ

3,

|ε3(u(·, tn))| 6 12α

Γ(1− α)
(tn − t1)−α−1Mttτ

3 +
α

8Γ(1− α)
(tn − t2)−α−1Mtttτ

4

+
α

Γ(1− α)

(
1
2
+

1
12

27− 10α + α2

∏4
i=1(α− i)

)
Mttttτ

4−α, n > 3

where

mtt = max
06t6t1

utt(·, t), Mtt = max
06t6t1

|utt(·, t)|, Mttt = max
06t6t2

|uttt(·, t)|, Mtttt = max
06t6tn

|utttt(·, t)|.

Lemma 3 ([23]). For any u, v ∈ Û, we have (δ2
xu, v) = −(u, v)1.

Lemma 4 ([23]). For any u ∈ Û, we have ||u||∞ 6 h−1/2||u||.

Lemma 5 ([24]). For any u ∈ Û, we have ||u||21 6 4
h2 ||u||2.

Lemma 6. For any u ∈ Û, we have 2
3 ||u||2 6 (Hu, u)..

Proof. Using Lemma 3 and Lemma 5,we have:

(Hu, u) = ((I +
h2

12
δ2

x)u, u) = (u, u) + (
h2

12
δ2

xu, u)

= ||u||2 − h2

12
(u, u)1 = ||u||2 − h2

12
||u||21

> ||u||2 − 1
3
||u||2 =

2
3
||u||2.
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Lemma 7 ([25]). Let {un} and {vn} be nonnegative sequences, and c is a nonnegative constant,
for all n > 1, if

un 6 c +
n−1

∑
l=0

ulvl ,

then,

un 6 c
n−1

∏
l=0

(1 + vn) 6 cexp(
n−1

∑
l=0

vl).

Lemma 8 ([26]). For any u ∈ Û, we have ||u|| 6 L√
6
||u||1.

Lemma 9 ([27]). For any u ∈ Û, we have (Hu, v) = (u, Hv).

Lemma 10. For any u ∈ Û, we have ||Hu|| 6 4
3 ||u||.

Proof. Applying the inverse estimate ||δ2
xu|| 6 4

h2 ||u||, we have:

||Hu|| = ||u +
h2

12
δ2

xu|| 6 ||u||+ h2

12
||δ2

xu|| 6 ||u||+ 1
3
||u|| = 4

3
||u||.

3. Analysis of the Method
3.1. Construction of the Difference Scheme

To solve Equation (1), we discretize the time term by using the L1-2-3 formula, and
the compact difference scheme is exploited for the spatial term, then we obtain the finite
difference scheme as follows:

iC
0Dα

t un
j = H−1δ2

xun
j + f n

j , 1 6 j 6 M− 1, 1 6 n 6 N (5)

u0
j = ϕj, 0 6 j 6 M (6)

un
0 = un

M = φn, 0 6 n 6 N (7)

where un
j is an approximation to u(xj, tn), and ϕj = ϕ(xj), φn = φ(tn), f n

j = f (xj, tn). Since
f n
j has no effect on the discussion of the study that follows, for convenience, we assume

f n
j = 0.

3.2. Analysis of Stability

In this section, we will analyze the unconditional stability of the scheme (5) that was
established in the previous subsection.

Theorem 2. Difference scheme (5) is unconditionally stable.

Proof. For n = 1, the inner product of Equation (5) and Hu1 gives:

(iC
0 Dα

t u1, Hu1) = (H−1δ2
xu1, Hu1) = (δ2

xu1, u1).

From the Lemma 3, we have:

id0(Hu1, u1)− id0(Hu1, u0) = −µ(u1, u1)1 = −µ||u1||21,

where µ = ταΓ(2− α).
According to the Lemma 6 and Cauchy-Schwarz inequality, we can obtain:

2
3
||u1||2 6

1
4
||Hu1||2 + ||u0||2.
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From Lemma 10, here is:

2
3
||u1||2 6

1
3
||u1||2 + ||u0||2.

Eventually, we can get ||u1|| 6
√

3||u0||.
For n = 2, we can obtain the following equation by inner product of Equation (5) and

Hu2:
(iC

0 Dα
t u2, Hu2) = (H−1δ2

xu2, Hu2) = (δ2
xu2, u2).

From Lemma 3, we have:

id0(Hu2, u2)− i(d0 − d1)(Hu2, u1)− id1(Hu2, u0) = −µ||u2||21.

Further, we have:

d0(Hu2, u2) 6 (d0 − d1)(Hu2, u1) + d1(Hu2, u0).

Using the Lemma 6 and Cauchy-Schwarz inequality, we can obtain:

2
3

d0||u2||2 6 (d0 − d1)(
1
4
||Hu2||2 + ||u1||2) + d1(

1
4
||Hu2||2 + ||u0||2).

From Lemma 10, we can eventually obtain:

||u2||2 6
3(d0 − d1)

d0
||u1||2 + 3d1

d0
||u0||2.

Then, for η > 0, we now have:

||u2||2 6 η||u0||2 +
1

∑
l=0

vl ||ul ||2,

in which v0 = 3d1
d0

, and v1 = 3(d0−d1)
d0

.

According to Lemma 1, vl > 0, then using Lemma 7 ,we can obtain:

||u2||2 6 ηexp(
1

∑
l=0

vl)||u0||2 = ηexp(3)||u0||2,

choosing η 6 3/exp(3) gives ||u2|| 6
√

3||u0||.
For n > 3, we can obtain the following equation by inner product of Equation (5)

and Hun:
(iC

0 Dα
t un, Hun) = (H−1δ2

xun, Hun) = (δ2
xun, un).

From Lemma 3, we get:

id0(Hun, un)− i
n−1

∑
l=1

(dn−l−1 − dn−l)(Hun, ul)− idn−1(Hun, u0) = −µ||un||21.

Furthermore, we can obtain:

d0(Hun, un) 6
n−1

∑
l=1

(dn−l−1 − dn−l)(Hun, ul) + dn−1(Hun, u0).

Since only d1 − d2 is unknown positive or negative in dn−l−1 − dn−l , for l = 1, 2, · · · ,
n− 1, so we discuss it in two cases.
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Case1. If d2 < d1, from Lemma 6 and Cauchy-Schwarz inequality:

2
3

d0||un||2 6
n−1

∑
l=1

(dn−l−1 − dn−l)(
1
4
||Hun||2 + ||ul ||2) + dn−1(

1
4
||Hun||2 + ||u0||2).

From Lemma 10, we can obtain:

||un||2 6
3 ∑n−1

l=1 (dn−l−1 − dn−l)

d0
||ul ||2 + 3dn−1

d0
||u0||2.

Then, for η > 0, we now have:

||un||2 6 η||u0||2 +
n−1

∑
l=0

vl ||ul ||2,

in which v0 = 3dn−1
d0

, and vl =
3(dn−l−1−dn−l)

d0
for l = 1, 2, · · · , n− 1. According to Lemma 1,

vl > 0, then using Lemma 7:

||un||2 6 ηexp(
n−1

∑
l=0

vl)||u0||2 = ηexp(3)||u0||2,

choosing η 6 3/exp(3) gives ||un|| 6
√

3||u0||.
Eventually, for n > 1, using Lemma 4, we have:

||un||∞ 6
√

h||un|| 6
√

3h||u0||.

Case2. If d2 > d1, then we have:

2
3

d0||un||2 6
n−1

∑
l=1,l 6=n−2

(dn−l−1 − dn−l)(Hun, ul) + (d2 − d1)(Hun, un−2) + dn−1(Hun, u0).

From Lemma 6 and Cauchy-Schwarz inequality we can obtain:

2
3

d0||un||2 6
n−1

∑
l=1,l 6=n−2

(dn−l−1 − dn−l)(
1
8
||Hun||2 + 2||ul ||2) + (d2 − d1)(

1
8
||Hun||2 + 2||un−2||2)

+ dn−1(
1
8
||Hun||2 + 2||u0||2).

Furthermore, using Lemma 10 and Lemma 2, we have:

||un||2 6
12

3d0 − 2d2 + 2d1
× (

n−1

∑
l=1,l 6=n−2

(dn−l−1 − dn−l)||ul ||2 + (d2 − d1)||un−2||2 + dn−1||u0||2)

66
n−1

∑
l=1,l 6=n−2

(dn−l−1 − dn−l)||ul ||2 + 6(d2 − d1)||un−2||2 + 6dn−1||u0||2.

Then, for η > 0, we now have:

||un||2 6 η||u0||2 +
n−1

∑
l=0

vl ||ul ||2,

in which v0 = 6dn−1, vn−2 = 6(d2 − d1), and vl = 6(dn−l−1 − dn−l) for l = 1, 2, · · · ,
n− 3, n− 1.
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According to Lemma 1, vl > 0, then using Lemma 7, we can obtain:

||un||2 6 ηexp(
n−1

∑
l=0

vl)||u0||2 = ηexp(C)||u0||2,

where C = 6(d0 − 2d1 + 2d2), based on Lemma 1, C > 0. Choosing η 6 3/exp(C) gives
||un|| 6

√
3||u0||.

Eventually, for n > 1, using Lemma 4, we have:

||un||∞ 6
√

h||un|| 6
√

3h||u0||.

In conclusion, scheme (5) is unconditionally stable.

3.3. Analysis of Convergence

In the following, we consider the convergence of the difference scheme (5). The error
equation holds:

en
j = u(xj, tn)− un

j , (8)

where u(xj, tn) denotes the exact solution of Equation (1), while un
j denotes the numeri-

cal solution.

Theorem 3. Finite difference scheme (5) is always consistent with 3 order accuracy for n > 2,
where u ∈ C6,5(Ω× [0, T]).

Proof. The local truncation error of the scheme (5) is:

T(xj, tn) = iC
0 Dα

t u(xj, tn)− H−1δ2
xu(xj, tn)− f (xj, tn), (9)

using Taylor expansion and Theorem 1, we have:

T(xj, tn) = i
∂αu(xj, tn)

∂tα
−

∂2u(xj, tn)

∂x2 − iε3(u(xj, tn)) + O
(

h4
)

= −iε3(u(xj, tn)) + O
(

h4
)

.

Let Tm = max(x,t)∈Ω×I |T(x, t)|, then:

Tm 6


Mtt

2 τ2−α + O
(
h4), t ∈

[
0, t1],

Mtt
40 τ2−α + Mtt

3 τ3−α + O
(
h4), t ∈

(
t1, t2],

7Mtt
2 τ3 + Mtt

25 τ4 + Mttt
4 τ4−α + O

(
h4), t ∈

(
t2, tn].

Obviously, for n > 2, Tm = O(τ3 + h4). Eventually, we have the following result:

‖Tn
j ‖ 6 C1(τ

3 + h4),

where C1 is a positive integer.

Theorem 4. Finite difference scheme (5) is convergent if u ∈ C4,4(Ω× I).

Proof. Subtracting Equation (5) from Equation (9) leads to :

Tn
j = iC

0 Dα
t en

j − H−1δ2
xen

j . (10)

Multiplying H on both sides of Equation (10), we have:
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HTn
j = iC

0 Dα
t Hen

j − δ2
xen

j .

Taking the inner product with respect to en
j and fetching the real part, then the follow-

ing equation holds:

−(δ2
xen, en) = Re(HTn, en).

By Lemma 3 and Lemma 8, we get :

6‖en‖2 6 L2‖en‖2
1 = L2 Re(HTn, en) 6 L2|(HTn, en)|.

Using Lemma 9, Cauchy-Schwarz inequality and Lemma 10, we can obtain:

6‖en‖2 6 L2| 3
4L2 ‖T

n‖2 +
L2

3
‖Hen‖2| 6 L4

3
‖Tn‖2 + ‖en‖2.

Further, we can get :

‖en‖ 6 L2
√

15
‖Tn‖ 6 L2

√
15

C1(τ
3 + h4),

where Theorem 3 used. Eventually, we have :

‖en‖ 6 C
(

τ3 + h4
)

,

where C is a positive integer. Therefore, for n > 1, finite difference scheme (5) is convergent
when u ∈ C6,5(Ω× [0, T]).

4. Numerical Experiment

Furthermore, two numerical examples are given to demonstrate the theoretical analy-
ses of the scheme (5). The following notations will be used when presenting the result,

L∞ − error = max
06j6M,06n6N

|en
j |.

Order = log2

[
L∞ − error(2h, τ)

L∞ − error(h, τ)

]
.

Example 1. The one-dimensional TFSE is considered as follows:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, 2), t ∈ (0, 1],

u(x, 0) = 0, x ∈ [0, 2],

u(0, t) = u(2, t) = 0, t ∈ [0, 1]

where f (x, t) = 2t2−α

Γ(3−α)
(i− 1)sinπx + (1 + i)t2π2sinπx, and the exact solution is given by

u(x, t) = (1 + i)t2sinπx.

Tables 1 and 2 indicate the maximum norm errors and the convergence orders in
spatial direction. When taking different values of α(0.1, 0.5, 0.9) for N = 2000; we can know
that the order of convergence in spatial direction is 4.

In Figure 1, we show the errors in the maximum norm for time direction attaining the
third order of accuracy for M = 2000 for α = 0.1 and α = 0.5.
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Table 1. Numerical error and convergence order in spatial direction for Example 1.

α h L∞-Error Order

1/2 0.0395 -
1/4 2.2777 × 10−3 4.1107

0.1 1/8 1.4014 × 10−4 4.0268
1/16 8.7188 × 10−6 4.0066
1/32 5.4430 × 10−7 4.0017

1/2 0.0393 -
1/4 2.2777 × 10−3 4.1104

0.5 1/8 1.3974 × 10−4 4.0258
1/16 8.6938 × 10−6 4.0066
1/32 5.4273 × 10−7 4.0017

1/2 0.0396 -
1/4 2.2935 × 10−3 4.1108

0.9 1/8 1.4073 × 10−4 4.0265
1/16 8.7792 × 10−6 4.0027
1/32 5.7222 × 10−7 3.9395

Table 2. Numerical error and convergence order in spatial direction for Example 2.

α h L∞-Error Order

π/2 0.0240 -
π/4 1.4026 × 10−3 4.0953

0.1 π/8 8.6104 × 10−5 4.0260
π/16 5.3570 × 10−6 4.0066
π/32 3.3509 × 10−7 3.9990

π/2 0.0181 -
π/4 1.0620 × 10−3 4.0891

0.5 π/8 6.6241 × 10−5 4.0028
π/16 4.1390 × 10−6 4.0004
π/32 2.5174 × 10−7 4.0393

π/2 0.0117 -
π/4 6.9124 × 10−4 4.0856

0.9 π/8 4.4740 × 10−5 3.9500
π/16 2.7902 × 10−6 4.0031
π/32 1.7359 × 10−7 4.0066

log( )

lo
g
(E

rr
o
r)

=0.1

L

Line of slope 3

-4 -3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4

log( )

-18

-17

-16

-15

-14

-13

-12

-11

-10

lo
g

(E
rr

o
r)

=0.5

L

Line of slope 3

Figure 1. Convergence rates of numerical solutions at M = 2000 with different α for Example 1.

Figure 2 (Figure 3) represents the real (imaginary) part of the numerical solution and
the exact solution for α = 0.7, h = 1/100 and τ = 1/200; it can be seen that our resulting
numerical solution is very close to the exact solution.
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Figure 4 gives the absolute modulus error between the numerical and exact solution
when M = 20 and N = 400 for different α(0.2, 0.8), and we can observe that the error is
very small.

Figure 2. Real part of numerical solution and exact solution of Example 1.

Figure 3. Imaginary part of numerical solution and exact solution of Example 1.

Figure 4. Absolute modulus error of Example1 for different α.
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Example 2. The one-dimensional TFSE is considered as follows:

i
∂αu(x, t)

∂tα
=

∂2u(x, t)
∂x2 + f (x, t), x ∈ Ω = (0, 2π), t ∈ (0, 1],

u(x, 0) = 0, x ∈ [0, 2π],

u(0, t) = u(2, t) = t2, t ∈ [0, 1]

where f (x, t) = − 2t2−α

Γ(3−α)
sin x + t2 cos x + i( 2t2−α

Γ(3−α)
cos x + t2 sin x), and the exact solution is

given by
u(x, t) = t2(cos x + i sin x).

In Figure 5, we show the errors in the maximum norm for time direction attaining the
third order of accuracy for M = 2000 for α = 0.1 and α = 0.5.

In Figure 6 (Figure 7), we plot the real (imaginary) part of the numerical solution and
the exact solution for α = 0.3, h = π/100 and τ = 1/200, it can be seen that our resulting
numerical solution gives a great approximation of the exact solution.

Figure 8 gives the absolute modulus error between the numerical and exact solution
when M = 20 and N = 400 for different α(0.2, 0.8), and we can observe that the error is
very small.

log( )

lo
g
(E

rr
o
r)

=0.1

L

Line of slope 3

log( )

lo
g
(E

rr
o
r)

=0.5

L

Line of slope 3

Figure 5. Convergence rates of numerical solutions at M = 2000 with different α for Example 2.

Figure 6. Real part of numerical solution and exact solution of Example 2.
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Figure 7. Imaginary part of numerical solution and exact solution of Example 2.

Figure 8. Absolute modulus error of Example 2 for different α.

Ref. [16] has used two L-type formulas to approximate the time fractional derivatives
to establish two finite difference schemes, and the convergence orders are fourth order
accuracy in the spatial direction and 2− α and 3− α in the temporal direction, respectively.
The convergence order in the time direction for two schemes is shown in the Table 3:

Table 3. The convergence order in time direction [16].

α τ
Example 1 Example 2

Order(L1) Order(L1-2) Order(L1) Order(L1-2)

1/10 - - - -

0.1 1/20 1.768 3.042 1.764 3.010
1/40 1.787 3.021 1.784 2.981
1/80 1.802 3.010 1.800 2.965

1/10 - - - -

0.5 1/20 1.472 2.872 1.448 2.553
1/40 1.480 2.699 1.468 2.524
1/80 1.486 2.547 1.478 2.511

1/10 - - - -

0.9 1/20 1.089 1.397 1.051 2.086
1/40 1.136 1.995 1.074 2.124
1/80 1.157 2.162 1.087 2.100
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By following Figures 1 and 5, we can know that with our method, we can achieve
third order accuracy in the time direction, which is higher than [16].

5. Conclusions

In this paper, we first proposed a time-fractional Schrödinger equation with the Caputo
time-fractional derivative of order α ∈ (0, 1) for constructing the finite difference scheme to
obtain the approximation solution of the equation; we approximated the Caputo derivative
using the L1-2-3 formula to discretize the time term, and the spatial term is discretized by
the fourth-order compact difference scheme; we then analyzed the unconditional stability
of the scheme and also proved that the scheme is convergent in the maximum norm with
an accuracy of O(τ3 + h4). At the end of this article, we give a numerical example to verify
the theoretical result.
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