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Abstract: Count data are encountered in real-life dealings. More understanding of such data and
the extraction of important information about the data require some statistical analysis or modeling.
One innovative technique to increase the modeling flexibility of well-known distributions is to use
the convolution of random variables. This study examines the distribution that results from adding
two independent random variables, one with the Bernoulli distribution and the other with the
Poisson–Lindley distribution. The considered distribution is named as the two-parameter Bernoulli–
Poisson–Lindley distribution. Many of its statistical properties are investigated, such as moments,
survival and hazard rate functions, mode, dispersion behavior, mean deviation about the mean, and
parameter inference based on the maximum likelihood method. To evaluate the effectiveness of the
bias and mean square error of the produced estimates, a simulation exercise is carried out. Then,
applications to two practical data sets are given. Finally, we construct a flexible count data regression
model based on the proposed distribution with two practical examples.

Keywords: discrete statistical model; dispersion index; hazard rate function; parameter estimation;
simulation; regression

MSC: 62E15

1. Introduction

In recent decades, count data analysis has drawn interest. There are many count
data sets in practical as well as theoretical domains, including medicine, sports, engineer-
ing, finance, insurance, etc. (see [1]). However, we are unable to use methodologies or
typical standard probability distributions to analyze them. Building adaptable models
has attracted a lot of interest from statisticians and applied scientists in order to improve
the modeling of count data. Therefore, it is critical to create models that are superior to
standard distributions in order to successfully investigate real-world data and its attributes.

Recently, for the purpose of modeling count data, several models have evolved.
The use of conventional discrete distributions as models for dependability, hazard rates,
counts, etc., is limited. The widespread parametric models for analyzing such data are
the Poisson, geometric, and negative binomial (NB) models (see [2]). The Poisson regres-
sion model is the most common model for modeling count data, but an obstacle arises:
there is a fact that they may exhibit over- or under-dispersion, which is when a count’s
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conditional variance is greater or less than its conditional mean (see [3]). In these cases,
the Poisson model’s mean–variance relationship is a well-known drawback. This has led
to the introduction of various Poisson distribution types (see [4,5]). A traditional way
of overcoming over-dispersion is to allow the single parameter of the Poisson distribu-
tion to be a random variable following a given distribution. This is also known as the
compounding method, and the idea was first proposed in [6]. The resultant compound
distributions are also termed as mixture distributions. One such famous mixture distribu-
tion is the negative binomial distribution, obtained by mixing the Poisson distribution with
a gamma distribution. In real-world count modeling applications, the negative binomial
distribution with an additional dispersion parameter is widely accepted as a solution to the
over-dispersion issue.

As a result, various discrete distributions based on widely used continuous distribu-
tions for reliability, hazard rates, etc., have been developed. The discrete Weibull distri-
bution is the most well-liked of these. It was introduced in [7–9]. Since then, numerous
applications have been made. There are many other recently constructed distributions
with continuous analogues. The author in [10] introduced the discrete gamma distribution,
which has received significant attention for applications in the areas of molecular biology
and evolution. Discrete analogues of the continuous Burr and Pareto distributions were
constructed in [11]. On the other hand, the authors in [12] introduced a discrete analogue
of the continuous inverse Weibull distribution. The discrete Lindley distribution was
proposed in [13].

There are so many models for studying over-dispersion, while only a few models
are there to deal with under-dispersion, because over-dispersion exists more frequently
(see [14]).

Various extensions and generalizations of the Poisson distributions were developed
for both over-dispersed and under-dispersed count data in the literature over the last
decade. The authors in [15] proposed the generalized Poisson (GP) regression model,
whereas those of [16] introduced the Conway–Maxwell–Poisson (COM–Poisson) model.
The COM–Poisson regression model was also created. The authors in [17] invented the
Poisson–Tweedie regression model.

Each of the aforementioned models has some drawbacks. For instance, the GP model’s
range must be truncated in order to achieve under-dispersion, with the level of truncation
depending on the actual model parameters. The issue is that because of the range’s shorten-
ing, the probabilities no longer add up to 1. The convolutions (sum and difference) of two
independent random variables are a clever way of broadening the modeling possibilities of
well-known distributions.

The author in [18] proposed the discrete Poisson–Lindley distribution, a compound
Poisson distribution obtained by compounding the Poisson distribution with the Lind-
ley distribution. The authors in [19] introduced an efficient regression model for under-
dispersed count data based on the Bernoulli–Poisson convolution (BerPoi) for under-
dispersed count data. In it, the response variable is distributed according to the BerPoi
distribution using a specific parameterization indexed by mean and dispersion parameters.

In this paper, we introduce a distribution generated from the sum of two independent
random variables, one with the Bernoulli distribution and the other with the Poisson–
Lindley distribution. The resulting distribution is known as the Bernoulli–Poisson–Lindley
(BPL) distribution. One of its key advantages is that it is suitable for modeling both under-
dispersed and over-dispersed count data, unlike the Poisson distribution. Furthermore,
it has only two parameters, which reduces the complexity of the simulation study, unlike
some Poisson generalizations with three parameters. Moreover, it has an increasing hazard
rate, making it appropriate for modeling equipment wear and tear or ageing processes.
The proposed model is appropriate for regression modeling since its moments may be
retrieved in closed form.

The remaining sections of the paper are organized as follows: Section 2 presents
the BPL distribution. Section 3 discusses the statistical properties of this distribution.
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Section 4 introduces the parameter estimation using the maximum likelihood method,
and its performance is assessed via a simulation study. The new model is shown to
perform at least as well as other recently proposed two-parameter discrete models, and the
conventional one-parameter discrete models using two real data sets are analyzed in
Section 5. In Section 6, a regression model is developed. Finally, several key takeaways are
outlined in Section 7.

2. Bernoulli-Poisson-Lindley Distribution

The BPL distribution is obtained by the distribution of the sum of two independent
random variables, one with the Bernoulli distribution, and the other with the Poisson–
Lindley distribution.

The result below presents a simple expression of the corresponding probability mass
function (pmf).

Proposition 1. The pmf of the BPL distribution with parameters α and θ can be expressed as

p(x, α, θ) =


(1− α)θ2(θ + 2)

(θ + 1)3 i f x = 0

θ2[(1 + αθ)(x + θ + 1) + (1− α)
]

(θ + 1)x+3 i f x = 1, 2, 3, . . .

(1)

Proof. Let X1 and X2 be two independent random variables, with X1 following the
Bernoulli distribution with parameter 0 < α < 1, i.e., P(X1 = 0) = 1− α and P(X1 = 1) = α
and X2 following the Poisson–Lindley distribution with parameter θ > 0, i.e.,

P(X2 = x) =
θ2(x + θ + 2)
(θ + 1)x+3 with x = 0, 1, 2, 3, . . . Then, by the definition, the BPL dis-

tribution is the distribution of X = X1 + X2. Let us now determine its pmf. For any
x = 0, 1, . . ., we have

p(x, α, θ) = P(X = x) = P(X1 + X2 = x)

= P(X1 = 0)P(X2 = x) + P(X1 = 1)P(X2 = x− 1).

In particular, for x = 0, we have

p(x, α, θ) = P(X1 = 0)P(X2 = 0) =
(1− α)θ2(θ + 2)

(θ + 1)3 .

For x = 1, 2, . . ., we have

p(x, α, θ) = P(X = x)

= (1− α)
θ2(x + θ + 2)
(θ + 1)x+3 + α

θ2(x− 1 + θ + 2)
(θ + 1)x−1+3

=
θ2

(θ + 1)x+3

[
α(x + θ + 1)(θ + 1) + (1− α)(x + 2 + θ)

]
=

θ2

(θ + 1)x+3

[
αθ(x + θ + 1) + α(x + θ + 1) + (1− α)(x + θ + 1 + 1)

]
=

θ2

(θ + 1)x+3

[
αθ(x + θ + 1) + α(x + θ + 1) + (1− α)(x + θ + 1) + (1− α)

]
=

θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1− α)

]
.

This ends the proof of Proposition 1.
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Remark 1. When α→ 0, the Poisson–Lindley distribution is included in the BPL distribution as a
special case.

Proposition 2. The cumulative density function (cdf) of the BPL distribution can be expressed as,
for any integer x,

F(x, α, θ) = 1 +
[−1− θ(3 + x + θ + xαθ + αθ(2 + θ))]

(1 + θ)x+3 , x = 0, 1, 2, . . . (2)

Proof. It follows from the geometric series expansions and some algebra, that

F(x, α, θ) =
x

∑
k=0

p(k, α, θ)

=
θ2(1− α)(θ + 2)

(θ + 1)3 +
x

∑
k=1

θ2
[
[(1 + αθ)(k + θ + 1)] + (1− α)

]
(θ + 1)k+3

= 1 +
[−1− θ(3 + x + θ + xαθ + αθ(2 + θ))]

(1 + θ)x+3 .

This ends the proof of Proposition 2.

The corresponding survival function is given by

S(x, α, θ) =
1 + θ[3 + x + θ + xαθ + αθ(2 + θ)]

(1 + θ)x+3 , x = 0, 1, 2, . . . (3)

The hazard rate function (hrf) of the BPL distribution is obtained as

h(x, α, θ) =


(1− α)θ2(θ + 2)

1 + θ[3 + θ + αθ(2 + θ)]
i f x = 0

θ2[1− α + (1 + x + θ)(1 + αθ)]

1 + θ[3 + x + θ + xαθ + αθ(2 + θ)]
i f x = 1, 2, 3, . . .

(4)

Figure 1 shows the different shapes of the pmf. It clearly indicates that the BPL
distribution is positively skewed, unimodal and as θ goes larger, the mass concentrates
more on values closer to 0 than at higher values. Figure 2 also presents different shapes of
the cdf.

Figure 3 presents different shapes of the hrf, indicating that the BPL distribution
exhibits increasing hazard rates with respect to both α and θ.
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Figure 1. Pmfs of the BPL distribution for different values of the parameters.

Figure 2. Cdfs of the BPL distribution for different values of the parameters.
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Figure 3. Hrfs of the BPL distribution for different values of the parameters.

3. Statistical Properties
3.1. Mode

We now provide some theory to the observation of the mode of the BPL distribution
made in Figure 1.

Proposition 3. Let X be a random variable following the BPL distribution. Then, the mode of X,
denoted by xm, exists in {0,1, 2, . . . }, and satisfies

−1 +
1
θ
− θ +

2 + α

1 + αθ
≤ xm ≤

1
θ
− θ +

α− 1
1 + αθ

, (5)

with xm = 0 if the upper bound is non-positive.

Proof. By the definition of the mode, it corresponds to the integer x = xm for which
p(x, α, θ) has the greatest value, where we recall that

p(x, α, θ) =


(1− α)θ2 (θ + 2)

(θ + 1)3 i f x = 0

θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1− α)

]
i f x = 1, 2, 3, . . .

(6)
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To reach our aim, we need to solve p(xm, α, θ) ≥ p(xm − 1, α, θ) and p(xm, α, θ) ≥
p(xm + 1, α, θ). Obviously, p(xm, α, θ) ≥ p(xm − 1, α, θ) implies that

xm ≤
1
θ
− θ +

α− 1
1 + αθ

. (7)

Furthermore, p(xm, α, θ) ≥ p(xm + 1, α, θ) implies that

xm ≥ −1 +
1
θ
− θ +

2 + α

1 + αθ
. (8)

By combining Equations (7) and (8), we obtain Equation (5), hence, the proof of
Proposition 3.

3.2. Moments, Skewness, and Kurtosis

Hereafter, let X be a random variable following the BPL distribution. Then, after some
algebraic developments, the probability generating function of X is given by

P(s) = E
(
sX) = [1 + (−1 + s)α]θ2(2− s + θ)

(1 + θ)(1− s + θ)2 ,

for s < θ + 1.
The moment-generating function of X can be obtained by replacing s by et, for

t < log(θ + 1), which gives

M(t) = E
(
etX) = [1 + (−1 + et)α]θ2(2− et + θ)

(1 + θ)(1− et + θ)2 .

Basically, the r-th moment about the origin of X is derived as

E
(
Xr) = ∞

∑
x=0

xr p(x, α, θ) =
∞

∑
x=1

xr θ2

(θ + 1)x+3

[
(1 + αθ)(x + θ + 1) + (1− α)

]
.

Thus, after an intense use of the geometric series formulas (see Appendix A), the first
four moments of X are

E
(
X
)
= α +

2 + θ

θ(θ + 1)
,

E
(
X2) = 6 + θ[4 + θ + α(4 + θ(3 + θ))]

θ2(1 + θ)
,

E
(
X3) = 24 + θ

[
24 + θ(8 + θ) + α(3 + θ)(6 + θ(4 + θ))

]
θ3(1 + θ)

,

and

E
(
X4) = 120 + θ

[
168 + θ[78 + θ(16 + θ)] + α[96 + θ(132 + θ[64 + θ(15 + θ)])]

]
θ4(1 + θ)

.

Now, the variance of X is calculated as

V(X) = E(X2)− [E(X)]2 =
2 + θ[6 + θ(4 + θ + (1− α)α(1 + θ)2)]

θ2(1 + θ)2 .

Figure 4 presents the plots of the variance of X for different values of the parameters α
and θ. We see that the variance decreases when α is fixed and θ increases.
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Figure 4. Variance of the BPL distribution for different values of the parameters.

On the other hand, based on the first four moments of X, the skewness of X is

Skewness(X) =
[4 + θ(18 + θ[32 + θ(22 + α(1 + θ)3 − 3α2(1 + θ)3 + 2α3(1 + θ)3 + θ(7 + θ))])]2

[2− θ(6− θ[4 + θ + (1− α)α(1 + θ2)])]3
.

Furthermore, the kurtosis of X is

Kurtosis(X) =
1

[−2 + θ(−6 + θ[−4− θ − (1− α)α(1 + θ)2])]2

[
24 + θ(144 + θ[338+

6α3θ2(1 + θ)4 − 3α4θ2(1 + θ)4 + α(1 + θ)2[12 + θ(4 + θ)(9 + θ[4 + θ])]+

θ[406 + θ(258 + θ(87 + θ[15 + θ]))]

− 2α2(1 + θ)2[6 + θ(18 + θ[14 + θ(7 + 2θ)])]])

]
.

Figure 5 presents the plots of the skewness and kurtosis of X, respectively. From these
plots, when the value of α is held constant, and θ increases, a significant effect on both the
skewness and kurtosis is observed. Furthermore, when θ increases, the BPL distribution is
rightly skewed and leptokurtic.

Figure 5. Skewness and kurtosis of the BPL distribution for different values of the parameters.

3.3. Dispersion Index and Coefficient of Variation

In this section, we discuss the dispersion index (DI) and coefficient of variation (CV)
associated with the BPL distribution. The CV of X is obtained as

CV(X) =

√
2 + θ[6 + θ(4 + θ + (1− α)α(1 + θ)2)]

2 + θ + αθ(θ + 1)
.
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The DI of X is given by

DI(X) = 1 +
1
θ
+

1
1 + θ

−
(

α +
1− α + αθ

2 + θ(1 + α + αθ)

)
.

Clearly, DI(X) is greater than 1 when θ tends to 0, and less than 1 when θ tends to ∞.
Thus, the BPL distribution has under- or over-dispersed properties.

Numerical values for some moment measures, such as mean, variance, DI, skewness,
and kurtosis for the BPL distribution for different sets of parameter values are given in
Tables 1 and 2. It can be observed that the mean and variance decrease as θ tends to ∞ for
fixed values of α.

Table 1. Numerical values for some moment measures associated with the BPL distribution for
α = 0.1 and different values of θ.

Measures
θ

0.1 10 50 99 999

Mean 19.1909 0.2091 0.1204 0.1102 0.1010
Variance 218.3545 0.2108 0.1108 0.1003 0.0910

DI 11.3780 1.0083 0.9204 0.9102 0.9010
Skewness 2.0459 5.1086 6.4470 6.7468 7.0719
Kurtosis 6.0496 8.5888 8.2779 8.2024 8.1209

Table 2. Numerical values for some moment measures associated with the BPL distribution for
α = 0.3 and different values of θ.

Measures
θ

0.1 10 50 99 999

Mean 19.3909 0.4091 0.3204 0.3102 0.3010
Variance 218.4745 0.3309 0.2308 0.2203 0.2110

DI 11.2669 0.8087 0.7204 0.7102 0.7010
Skewness 2.0426 1.4711 0.9079 0.8355 0.7692
Kurtosis 6.0462 4.3926 2.4144 2.1001 1.7964

3.4. Mean Deviation about the Mean

The mean deviation (MD) about the mean measures the amount of scatter in a popula-

tion. Let µ be the mean of the BPL distribution, i.e., µ = E(X) = α +
2 + θ

θ(θ + 1)
. Then the

MD about the mean is defined as MD(X) = E
(
|X− µ|

)
, and can be calculated as

MD(X) =
∞

∑
x=0
|x− µ|p(x, α, θ)

= µp(0, α, θ) +
bµc

∑
x=1

(µ− x)p(x, α, θ) +
∞

∑
x=bµc+1

(x− µ)p(x, α, θ)

=
(1 + θ)−3−bµc

θ

[
2(1 + θ)2[2 + θ(1 + α + αθ)]− 2θ(1 + θ[3 + θ + αθ(2 + θ)])µ

− (1 + θ)2+bµc[2 + θ(1 + α + αθ − (1 + θ)µ)]

+ 2θbµc(2 + θ[4 + α + θ + αθ(3 + θ − µ)− µ] + θ(1 + αθ)bµc)
]

,

where bµc is the greatest integer less than or equal to µ.
Figure 6 shows the plot of the MD about the mean of X. From this plot, we observe

that when θ increases, the values of the MD about the mean decrease.
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Figure 6. MD about the mean of the BPL distribution for different values of α and θ.

4. Parameter Estimation

Parameter estimation is an important step toward a deeper understanding of the
process. The classical method of estimation, the maximum likelihood (ML) method, is used
here to estimate the parameters. Let X1, X2, . . . , Xn be a random sample of size n from a
BPL distribution with unknown parameters α and θ. Let x1, . . . , xn be the n observed values.
Let y be the number of xi taking the value 0 and (n − y) of xi’s are taking the nonzero
values. The log-likelihood function is given by

log L(α, θ) = y log(1− α) + 2y log θ + y log(θ + 2)− 3y log(θ + 1) + 2(n− y) log θ

− 3(n− y) log(1 + θ)

+
n−y

∑
i=1,xi 6=0

{
log
[
(1 + αθ)(1 + θ + xi) + (1− α)

]
− xi log(θ + 1)

}
.

The maximum likelihood estimates (MLEs) of α and θ are the values that maximize
log L(α, θ). They are denoted as α̂ and θ̂, respectively. The partial derivatives of log L(α, θ)
with respect to each parameter are the following:

∂

∂α
log L(α, θ) =

n−y

∑
i=1

{
θ(1 + xi + θ)− 1

(1 + αθ)(1 + xi + θ) + (1− α)

}
− y

1− α
,

∂

∂θ
log L(α, θ) =

n−y

∑
i=1

{
(1 + αθ) + (1 + xi + θ)α

(1 + αθ)(1 + xi + θ) + (1− α)

}
− n(3 + x̄)

θ + 1
+

y
θ + 2

+
2n
θ

.

In order to obtain the MLEs, note that the above system of equations set to zero contains
non-linear equations and does not have an explicit solution. Consequently, the system
must be solved numerically, for example, using the statistical programming language R
(see Appendix A).

Simulation Study

In this section, a brief simulation study is performed to evaluate the asymptotic
behavior of the MLEs for different parametric combinations. Here the iteration is carried
out for different sample sizes (50, 100, 200, 500, 1000) and N = 1000 replications are used
for the same. The measures such as percentage relative bias (PRB) and mean square errors
(MSEs) are calculated with the following formulas:
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PRB =
∑N

i=1(a− âi)

∑N
i=1 âi

× 100,

where a ∈ {α, θ}, âi is the MLE of a at the i-th replication, and

MSE =
1
N

N

∑
i=1

(ai − âi)
2.

It is evident from Table 3 that all the estimates are asymptotically unbiased as n
increases, i.e., with the PRBs approaching zero and the MSEs decreasing to zero.

Table 3. Simulation results.

α = 0.25, θ = 0.6

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.24715 1.15434 0.29785 0.61781 −2.88305 0.10035
100 0.24663 1.36523 0.19457 0.60301 −0.49874 0.06998
200 0.23642 3.74246 0.15031 0.60426 −0.70581 0.05007
500 0.24617 1.55751 0.08833 0.60124 −0.20587 0.03022

1000 0.25123 −0.88448 0.06078 0.60058 −0.09602 0.02079

α = 0.5, θ = 1.2

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.49695 0.61431 0.15829 1.24485 −3.60276 0.24016
100 0.50188 −0.37455 0.10670 1.22124 −1.73911 0.16789
200 0.49925 0.15014 0.07770 1.21047 −0.86520 0.11252
500 0.50077 −0.15318 0.04811 1.20429 −0.35658 0.06926

1000 0.50027 −0.05312 0.03408 1.20472 −0.39213 0.04991

α = 0.65, θ = 3

n MLE (α) PRB (α) MSE (α) MLE (θ) PRB (θ) MSE (θ)

50 0.64882 0.18225 0.02067 3.26433 −8.09744 1.14048
100 0.65254 −0.38979 0.06712 3.10000 −3.22588 0.60840
200 0.64524 0.73814 0.04595 3.03897 −1.28222 0.41492
500 0.65194 −0.29778 0.09402 3.03066 −1.01156 0.26135

1000 0.65068 −0.10485 0.02939 3.00499 −0.16592 0.17036

5. Empirical Studies

This section describes a comparison of the BPL model with other competing models
given in Table 4, to demonstrate the BPL model’s practical effectiveness. Two practical
data sets are considered. The comparison of the fitted models is based on conventional
metrics: the Akaike information criterion (AIC), the Bayesian information criterion (BIC),
the Kolmogorov–Smirnov test (KS) and the resulting p-value. In particular, the formulas
for the AIC and BIC are

AIC = −2 log L + 2r

and BIC = −2 log L + r log n,

respectively, where log L is the estimation of the log-likelihood function and r is the number
of parameters.

The pmfs of the competing models are given as follows:

• For the DG model:

p(x, β, γ) = e−βγx+1 − e−βγx
, x = 0, 1, 2, . . . , β > 0, 0 < γ < 1.
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• For the DIW model:

p(x, β, γ) =

{
β i f x = 1
βx−γ − β(x−1)−γ

i f x = 2, 3, 4, . . . , 0 < β < 1, γ > 0.

• For the PQX model:

p(x, β, γ) =
2βγ(γ + 1)2 + γ3(x + 1)(x + 2)

2(β + 1)(γ + 1)x+3 , x = 0, 1, 2, . . . , β > 0, γ > 0.

Table 4. Discrete competitive models.

Distribution Abbreviation Reference

Discrete Gumbel DG [20]
Discrete inverse Weibull DIW [12]
Poisson-quasi-xgamma PQX [21]

Poisson - -
Geometric - -

5.1. Survival Times

The first data set consists of survival times in days for 72 guinea pigs. These data are
taken from [22]. The flexibility of the BPL model is compared with other discrete flexible
models, such as the DG, DIW, PQX, Poisson, and geometric models. The results of the
fitted models along with their estimates together with the standard errors (SEs) are given
in Table 5. This table demonstrates that the Poisson and geometric models, two of the
researched models, may not be fitted to the relevant data set (based on their p-values),
but we nevertheless use them for comparison since they are very common models to take
into account. The BPL model, as can be observed, offers the highest p-value and the smallest
AIC, BIC, and KS statistic values.

Table 5. AIC, BIC and p-values values for the survival times data.

Model Parameters Estimates (SE) AIC BIC KS Value p-Value

BPL
α 0.9900 (2.9821)

793.0159 797.5692 0.1299 0.176
θ 0.0200 (0.0013)

DG
β 4.2894 (0.7061)

800.2187 804.7720 0.14825 0.08443
γ 0.9789 (0.0021)

DIW
β 1.517024 × 10−41 (1.1371)

801.8879 806.4412 0.14357 0.1028
γ 1.1214 (0.4120)

Poisson β 99.8194 (1.1774) 795.1784 797.9551 0.5697 2.2 × 10−16

Geometric β 0.0100 (0.0012) 808.1606 810.4372 0.2232 0.0015

PQL
β 1.527183× 10−7 (0.0779)

798.0983 802.6516 0.1768 0.0222
γ 3.005888× 10−2 (0.0025)

5.2. Final Examination Marks

The results of 48 slow space students’ final mathematics exams from the Indian
Institute of Technology in Kanpur in 2003 are included in the second data set (see [23]).
The results of the fitted models given in Table 6.

The BPL model has the largest p-value, the smallest KS value, and the smallest AIC
and BIC values, as seen in Tables 5 and 6. We can therefore conclude that the BPL model
outperforms all other competitive models for the two real-life data sets.
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Table 6. AIC, BIC and p-values values for the final examination marks.

Model Parameters Estimates (SE) AIC BIC KS Value p-Value

BPL
α 0.9950 (4.7501)

399.4703 403.2127 0.0976 0.7507
θ 0.0774 (0.0114)

DG
β 4.4664 (0.8884)

402.6350 406.3774 0.0987 0.7375
γ 0.9224 (0.0089)

DIW
β 2.750165× 10−15 (0.4321)

406.3307 410.0731 0.1552 0.1978
γ 1.3479 (0.5324)

Poisson β 25.8958 (0.7345) 795.1784 797.0496 0.3998 4.342× 10−7

Geometric β 0.0386 (0.0055) 408.5140 410.3852 0.2501 0.0049

PQX
β 1.07574× 10−8 (0.2323)

399.9926 403.7350 0.1093 0.6149
γ 1.158624× 10−1 (0.0183)

6. Bernoulli–Poisson–Lindley Regression Model

We already mentioned that the BPL distribution is capable of modeling under-dispersed
as well as over-dispersed data sets. However, over-dispersed data sets are of utmost signifi-
cance. In order to describe such data sets, this section introduces a count regression model
based on the BPL distribution.

6.1. Model Construction

Let Y be a random variable with the BPL distribution that indicates how many times
an event has been counted.

Consider the following reparametrization:

θ =
α + 1− µ +

√
(µ− α− 1)2 + 8(µ− α)

2(µ− α)
.

Then the pmf of the BPL distribution can be expressed in terms of the mean
E(Y) = µ > 0 as

P(y, α, µ) =



(1− α)

(
α+1−µ+

√
(µ−α−1)2+8(µ−α)
2(µ−α)

)2

(
α+1−µ+

√
(µ−α−1)2+8(µ−α)
2(µ−α) +2

)
(

α+1−µ+
√

(µ−α−1)2+8(µ−α)
2(µ−α) +1

)3 , i f y = 0

(
α+1−µ+

√
(µ−α−1)2+8(µ−α)
2(µ−α)

)2

(
α+1−µ+

√
(µ−α−1)2+8(µ−α)
2(µ−α) +1

)y+3

([
(1 + α

α+1−µ+
√

(µ−α−1)2+8(µ−α)
2(µ−α)

)

[y +
α+1−µ+

√
(µ−α−1)2+8(µ−α)
2(µ−α)

+ 1]
]
+ (1− α)

)
, i f y = 1, 2, 3, . . .

(9)

with 0 < α < 1, µ > 0 and µ− α > 0.
Assume that we have n observations of the response variable Y, which is also the

response variable, with the i-th observation being a realization of a random variable Yi for
i = 1, 2, . . . , n. In addition, assume that the mean of the response variable Yi is linked to the
covariates with a log link function given by

µi = exT
i γ, i = 1, 2, . . . , n (10)
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where xT
i = (1, xi1, xi2, xi3, . . . , xik)

T is the covariate vector and γ = (γ0, γ1, . . . , γk) is the
unknown regression coefficient vector. Substituting Equation (10) in Equation (9), a linear
form for the pmf of Yi provided that {XT

i = xT
i } is realized and the BPL distribution with

parameters α and µi, is obtained as

P(yi, α, exT
i γ) =



(1− α)

(
α+1−exT

i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

)2

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+2)

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+1)3

, i f yi = 0

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

)2

(
α+1−e

xT
i γ

+

√
(e

xT
i γ−α−1)2+8(e

xT
i γ−α)

2(e
xT

i γ−α)

+1

)yi+3

(
(1 + α

α+1−exT
i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

)

(yi +
α+1−exT

i γ+

√
(exT

i γ−α−1)2+8(exT
i γ−α)

2(exT
i γ−α)

+ 1) + (1− α)

)
, i f yi = 1, 2, 3, . . .

6.2. Estimation of the Model Parameters

The ML method is used to estimate the parameter α and the regression coefficient
vector γ of the model. The logarithm of the likelihood function L of the BPL count regression
model is given by

log L =
y

∑
i=1

{
log(1− α) + 2 log

(
α + 1− exT

i γ +
√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+

log
((

α + 1− exT
i γ +

√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+ 2
)
−

3 log
((

α + 1− exT
i γ +

√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+ 1
)}

+

n−y

∑
i=1,xi 6=0

{
2 log

(
α + 1− exT

i γ +
√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)2

+

log
((

1 + α

(
α + 1− exT

i γ +
√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

))
(

yi +

(
α + 1− exT

i γ +
√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)
+ 1
)
+

(1− α)

)
− (yi + 3) log

((
α + 1− exT

i γ +
√
(exT

i γ − α− 1)2 + 8(exT
i γ − α)

2(exT
i γ − α)

)
+ 1
)}

. (11)

Now the unknown parameters α and γ are obtained by maximizing Equation (11).

6.3. Residual Analysis

This part introduces a residual to test the goodness-of-fit of the BPL model defined in
Section 6.1 based on randomized quantile (RQ) residuals. Let F(y, µ) be the cdf of the BPL
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model in which the regression structures are assumed in the parameter as in Equation (10).
The i-th RQ residual of the BPL regression model is

rq
i = Φ−1(F(Ui, µ̂i)), i = 1, 2, . . . , n,

where µ̂i = exT
i γ̂, and Φ−1(·) represents the quantile function of the standard normal distri-

bution. Furthermore, Ui is a random variable that follows the uniform

U
(

F(yi − 1, µ̂i), F(yi, µ̂i)

)
distribution. When the fitted model is correct, the RQ residuals

are normally distributed with zero mean and unit variance.

6.4. Simulation of the Bernoulli–Poisson–Lindley Regression Model

This section provides a simulation exercise to assess how well the MLEs of the BPL
regression model’s parameters performed. We generate N = 1000 samples of sizes n = 100,
200, 300, and 500 for the parametric combinations (α = 0.25, γ0 = 0.5, γ1 = 0.4, γ2 = 0.6) and
(α = 0.5, γ0 = 0.3, γ1 = 1.2, γ2 = 2) by using µi = exp(γ0 + γ1xi1 + γ2xi2). The independent
variables xi1 and xi2 are generated from the standard uniform distribution, i.e., U(0, 1).
On the basis of the estimates, biases, and MSEs, the simulation findings are discussed.
The simulation results are listed in Table 7.

Table 7. Simulation results for the BPL regression model.

α = 0.25, γ0 = 0.5, γ1 = 0.4, γ2 = 0.6 α = 0.5, γ0 = 0.3, γ1 = 1.2, γ2 = 2

n Parameters Estimates Bias MSE n Parameters Estimates Bias MSE

100
α 0.25781 0.00781 0.01867

100
α 0.51368 0.01368 0.01360

γ0 0.53025 0.03025 0.49531 γ0 0.37353 0.07353 0.16408
γ1 0.49863 0.09863 0.26276 γ1 1.19985 0.00015 0.37260
γ2 0.65218 0.05218 0.31935 γ2 1.80780 0.19220 1.21552

200
α 0.25420 0.00420 0.00987

200
α 0.50673 0.00673 0.00525

γ0 0.53000 0.03000 0.55058 γ0 0.35115 0.05115 0.11311
γ1 0.47112 0.07112 0.20901 γ1 1.18296 0.01705 0.74723
γ2 0.63384 0.03384 0.24494 γ2 1.93278 0.06722 1.10588

300
α 0.25214 0.00214 0.00223

300
α 0.50106 0.00106 0.00370

γ0 0.50183 0.00183 0.38789 γ0 0.31464 0.01464 0.08764
γ1 0.44939 0.04939 0.16479 γ1 1.20512 0.00512 0.52853
γ2 0.61069 0.01069 0.17588 γ2 1.93557 0.06443 0.53403

500
α 0.25051 0.00051 0.00430

500
α 0.50121 0.00121 0.00215

γ0 0.50031 0.00031 0.00031 γ0 0.30628 0.00628 0.07150
γ1 0.40352 0.01352 0.00141 γ1 1.20053 0.00052 0.35168
γ2 0.60321 0.00321 0.16040 γ2 1.96866 0.03134 0.36140

Table 7 shows that the bias and MSEs reduce as sample size rises, indicating the
consistency property of the MLEs for estimating the regression parameters.

6.5. Applications

Two data sets are used here to assess the performance of the BPL regression model.
Only the Poisson distribution is considered in both scenarios for comparison.

6.5.1. Titanic Survivors Data

The first data set used is the Titanic survivors data. These data, which come from
the Titanic’s survival record, show the proportion of survivors among all the passengers,
broken down by age, sex, and class. They are available in the CountsEPPM package of the
statistical programming language R. The aim of the study is to investigate the effects of age
(adult) (x1i), sex (male) (x2i), and classes (2-nd class and 3-rd class) (x3i and x4i) on the number
of survivors (yi).

The summary statistics for the Titanic survivors data are shown in Table 8.
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Table 8. Summary statistics for the Titanic survivors data set.

Variables Min Max Median

survive 1 140 14
age adult 0 0.5 1
sex male 0 0.5 1

2-nd class 0 0 1
3-rd class 0 0 1

The results of the regression analysis applied to the Titanic survivors data are given in
Table 9.

Table 9. Modeling results for the Titanic survivors data set.

Covariates
Poisson BPL

Estimates p-Values Estimates p-Values

γ0 2.71128 <0.001 2.25802 <0.001
γ1 2.04421 <0.001 2.03979 <0.001
γ2 −0.59605 <0.001 −0.37823 0.01094
γ3 −0.52602 <0.001 0.07812 0.03181
γ4 −0.12805 0.02179 0.39305 <0.001

AIC 145.83530 111.45620
BIC 148.74480 114.85050

From this table, it is clear that the BPL regression model has a better fit than the
Poisson regression model with the smallest AIC and BIC. In conclusion, all the covariates
can explain the number of survivors.

The corresponding quantile–quantile (Q–Q) plots are shown in Figure 7. These graphs
demonstrate that the BPL regression model is better than the Poisson regression model.

Figure 7. The Q–Q plots of the BPL and Poisson regression models, respectively.

6.5.2. Low Birth Weight Data

The second data set used here is the low birth weight data. It is taken from the COUNT
package in the statistical programming language R. The BPL regression model is used to
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model the number of low-weight babies (lowbw) (yi) by using the covariates, cases (x1i),
race1 (x2i) and race2 (x3i). The summary statistics for the low birth weight data are shown
in Table 10.

Table 10. Summary statistics for the low birth weight data set.

Variables Min Max Median

lowbw 12 60 16.5
cases 30 90 165
race1 0 0.5 1
race2 0 0 1

The results of the regression analysis applied to the low birth weight data are given in
Table 11.

Table 11. Modeling results for the low birth weight data set.

Covariates
Poisson BPL

Estimates p-Values Estimates p-Values

γ0 2.0679 <0.001 2.2041 0.0194
γ1 0.0124 <0.001 0.0119 0.2390
γ2 −0.3287 0.0690 −0.4641 0.8689
γ3 0.2192 0.0505 0.1506 0.8273

AIC 61.9544 59.31121
BIC 60.9132 58.06177

According to this table, the BPL regression model offers a better fit than the Poisson
regression model since it has lower AIC and BIC values. Additionally, the covariates have
no statistically significant effect on the number of low-weight babies.

Figure 8 presents the Q–Q plots corresponding with the low birth weight data. Here
also, these graphs demonstrate that the BPL regression model is better than the Poisson
regression model.

Figure 8. The Q–Q plots of the BPL and Poisson regression models, respectively.
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7. Conclusions

This paper focused on a two-parameter discrete distribution generated from the sum of
two independent random variables, one with the Bernoulli distribution and the other with
the Poisson–Lindley distribution. We have naturally called it the Bernoulli–Poisson–Lindley
distribution. This distribution has a number of advantages, including the absence of special
functions in its pmf and cdf, as well as its utilization of only two parameters. Furthermore,
the model’s ability to exhibit under- or over-dispersion makes it well-suited for modeling
purposes. With the aim of estimating the unknown parameter, the ML method was used,
and a simulation exercise was conducted. Furthermore, its associated count regression
model was developed and discussed from an inferential viewpoint. The regression model
is applied to two real-life data sets, and it is observed that our model is competitive in
modeling practical data. To assess the viability of the suggested paradigm, two real-
world data sets are examined. Favorable results were obtained for the proposed modeling
strategy in all cases. Thus, the BPL distribution will be productive in modeling count data,
beyond the scope of this paper.
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Appendix A

• The formula for a finite geometric series is as follows:

n

∑
i=0

ri =
1− rn+1

1− r
,

where r ∈ R and n is a positive integer. When |r| < 1, by applying n → ∞, we obtain
the standard infinite geometric formula, which can be generalized for any non-negative
integer k as follows:

∞

∑
i=0

i(i− 1) . . . (i− k + 1)ri−k =
k!

(1− r)k+1 .

• The R-code for the empirical study of BPL distribution is given below.

library(AdequacyModel)
data<-NULL

n<-length(data)
n
x<-mean(y)
x
TTT(y)
dbpl <- function(x,alpha,theta) {



Axioms 2023, 12, 813 19 of 20

ifelse (x==0,(((1-alpha)*(theta^2)*(theta+2))/((theta+1)^3)), \\
(((theta^2)*((1+alpha*theta)*(x+theta+1)+(1-alpha))/((theta+1)^(x+3)))))
}
dbpl(1,0.25,0.66)
pbpl <- function(q,alpha,theta){
(1-(1+theta*(3+q+theta+(q*alpha*theta)+ \\
(alpha*theta*(2+theta))))/((1+theta)^(q+3)))

}

z<-sort(y)
c1=c(0,-1)
a1=matrix(c(1,0,-1,0),byrow = TRUE,2)
a1

L<-function(par)
{alpha=par[1];theta=par[2]
res= - sum(log(dbpl(y,alpha,theta)));
return(res);
}
initial<-c()
est=constrOptim(initial,L,ci=c1,ui=a1,grad = NULL)
est
ks.test(y,"pbpl",initial)
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