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Abstract: The aim of this paper is to characterize a Riemannian 3-manifold M3 equipped with a semi-
symmetric metric ξ-connection ∇̃ with ρ-Einstein and gradient ρ-Einstein solitons. The existence of a
gradient ρ-Einstein soliton in an M3 admitting ∇̃ is ensured by constructing a non-trivial example,
and hence some of our results are verified. By using standard tensorial technique, we prove that the
scalar curvature of (M3, ∇̃) satisfies the Poisson equation ∆R =

4(2−σ−6ρ)
ρ .
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1. Introduction

The Ricci and other geometric flows are active topics of current research in mathemat-
ics, physics and engineering. The Ricci flow [1] is defined on a Riemannian n-manifold
(Mn, g) by an evolution equation for metric g(t) of the form ∂g

∂t = −2S, where S is the Ricci
tensor of Mn and t indicates the time. The metric g on Mn satisfies the Ricci soliton (in
short, RS) equation £Eg + 2σg + 2S = 0, where E is a vector field on Mn, σ ∈ R (the set
of real numbers), and £E represents the Lie derivative operator in the direction of E on
Mn. A RS is called expanding (steady or shrinking) if σ > 0 (σ = 0 or σ < 0). If E = 0
or Killing, then the RS is called a trivial RS, and Mn becomes an Einstein manifold. Thus
the RS is a basic generalization of an Einstein manifold [2]. If F is a smooth function such
that E = DF for the gradient operator D of g, then the RS is described as a gradient Ricci
soliton (GRS), E is referred to as the potential vector field, and F is called the potential
function. Thus, the RS equation becomes HessF + σg + S = 0, where HessF is the Hessian
of F and (HessF )(ζ1, ζ2) = g(∇ζ1 DF , ζ2) for all vector fields ζ1 and ζ2 on Mn. Here, ∇
stands for the Levi–Civita connection.

The notion of Ricci–Bourguignon flow, a natural generalization of Ricci flow, has been
proposed in [3] and is described on an Mn as:

∂g
∂t

= −2(S− ρRg), g(0) = g0, (1)

where R is the scalar curvature and ρ ∈ R. It is to be noticed that for the specific values of
ρ, the following cases for the tensor S− ρRg appeared in (1) [4] are obtained:

(i) ρ = 1
2 , the Einstein tensor S− R

2 g, (for Einstein soliton),
(ii) ρ = 1

n , the trace-less Ricci tensor S− R
n g,

(iii) ρ = 1
2(n−1) , the Schouten tensor S− R

2(n−1) g, (for Schouten soliton),

(iv) ρ = 0, the Ricci tensor S (for RS).
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An (Mn, g), n ≥ 3 is said to be a ρ-Einstein soliton (or ρ-ES) (g, E, σ, ρ) if

£Eg + 2S + 2(σ− ρR)g = 0. (2)

Similar to the RS, a ρ-ES is called expanding (steady or shrinking) if σ > 0 (σ = 0 or σ < 0).
If E = DF , then (Mn, g) is called a gradient ρ-Einstein soliton (or gradient ρ-ES). Hence, (2)
takes the form

HessF + S + (σ− ρR)g = 0, (3)

where HessF denotes the Hessian of F ∈ C∞(Mn) and defined by HessF = ∇∇F .
Recently, ρ-Einstein solitons have been studied by several authors, such as [5–12]. On
the other hand, we recommend the papers [13–19] for the studies of Ricci, Yamabe, Ricci-
Yamabe, η-Ricci-Yamabe and quasi-Yamabe solitons on different geometric structures.

In this paper, we have made an effort to the solitonic study of a 3-dimensional Rieman-
nian manifold M3 equipped with a semi-symmetric metric ξ-connection ∇̃. To achieve the
goal, we present our work as follows: In Section 2, we gather the basic information of a
Riemannian 3-manifold equipped with a semi-symmetric metric ξ-connection (M3, ∇̃, g),
definitions and Lemmas. The properties of ρ-ES in (M3, ∇̃, g) are studied in Section 3. We
address the properties of gradient ρ-ES in (M3, ∇̃, g) in Section 4. In the last section, we
model a non-trivial example of (M3, ∇̃, g) admitting a gradient ρ-ES, and prove our results.

2. Riemannian Manifolds with a Semi-Symmetric Metric ξ-Connection

In 1970, Yano [20] investigated the properties of a semi-symmetric metric connection
∇̃ on Riemannian n-manifolds Mn and defined by ∇̃ζ1 ζ2 = ∇ζ1 ζ2 + η(ζ2)ζ1 − g(ζ1, ζ2)ξ
for all ζ1 and ζ2 on Mn, where η is a 1-form associated with the unit vector field ξ such
that g(ξ, ξ) = η(ξ) = 1 and g(ζ1, ξ) = η(ζ1). Later, the properties of the semi-symmetric
metric connection ∇̃ have been explored by several researchers. One of these properties
is the curvature invariant respecting to the semi-symmetric metric connection ∇̃ and the
Levi–Civita connection ∇. For example, the conformal curvature tensors corresponding
to the semi-symmetric connection (Yano’s sense) and the Levi–Civita connection coincide.
Similar results for different curvature tensors have been established by many geometers.
A connection ∇̃ is said to be semi-symmetric metric ξ-connection if and only if ∇̃ξ = 0.
Afterwards, the properties of semi-symmetric metric ξ-connection have been studied
in [21–24].

In an (Mn, ∇̃, g), we have [21]

∇ζ1 ξ = −ζ1 + η(ζ1)ξ, g(ξ, ξ) = 1, and η(ζ1) = g(ζ1, ξ) (4)

for any ζ1 on Mn. Next, we have [21]

(∇ζ1 η)ζ2 = −g(ζ1, ζ2) + η(ζ1)η(ζ2), (5)

K(ζ1, ζ2)ξ = η(ζ1)ζ2 − η(ζ2)ζ1, (6)

K(ζ1, ξ)ζ2 = g(ζ1, ζ2)ξ − η(ζ2)ζ1, (7)

S(ζ1, ξ) = −(n− 1)η(ζ1) ⇐⇒ Qξ = −(n− 1)ξ, (8)

(£ξ g)(ζ1, ζ2) = 2{−g(ζ1, ζ2) + η(ζ1)η(ζ2)}, (9)

for all ζ1, ζ2 on Mn. Here, K and Q represent the curvature tensor and the Ricci operator of
Mn, respectively.
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Definition 1. An Mn is said to be quasi-Einstein if its S( 6= 0) satisfies

S(ζ1, ζ2) = l g(ζ1, ζ2) +m η(ζ1)η(ζ2),

where m and l are smooth functions on Mn. If m = 0, then the manifold is called an Einstein
manifold.

Definition 2. A partial differential equation ∆u = v on a complete Mn is called a Poisson equation
for some smooth functions u and v.

Remark 1 ([21,22]). An (M3, ∇̃, g) is a quasi-Einstein manifold of the form

S(ζ1, ζ2) =

(
1 +

R
2

)
g(ζ1, ζ2)−

(
3 +

R
2

)
η(ζ1)η(ζ2). (10)

Remark 2 ([21,22]). In an (M3, ∇̃, g), we have

ξ(R) = 2(R + 6), (11)

η(∇ξDR) = 4(R + 6), (12)

where D is the gradient operator of g. From (11), it is noticed that R of M3 is constant if and only if
R = −6.

3. ρ-ES on (M3, ∇̃, g)

First, we prove the following theorem.

Theorem 1. If (M3, ∇̃, g) admits a ρ-ES (g, E, σ, ρ), then its scalar curvature R satisfies the
Poisson equation ∆R = 4(2−σ−6ρ)

ρ , provided ρ 6= 0.

Proof. Let the metric of an (M3, ∇̃, g) be a ρ-ES (g, E, σ, ρ), then in view of (10), (2) leads to

(£Eg)(ζ1, ζ2) = −2
{

1 + σ + (
1
2
− ρ)R

}
g(ζ1, ζ2) (13)

+(R + 6)η(ζ1)η(ζ2),

for any vector fields ζ1, ζ2 on M3.
Taking covariant derivative of (13) respecting to ζ3, we find

(∇ζ3£Eg)(ζ1, ζ2) = (ζ3R)
{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
(14)

−(R + 6)
{

g(ζ1, ζ3)η(ζ2) + g(ζ2, ζ3)η(ζ1)− 2η(ζ1)η(ζ2)η(ζ3)
}

.

As g is parallel with respect to ∇, then the formula [25]

(£E∇ζ1 g−∇ζ1£Eg−∇[E,ζ1]
g)(ζ2, ζ3) = −g((£E∇)(ζ1, ζ2), ζ3)− g((£E∇)(ζ1, ζ3), ζ2)

turns to
(∇ζ1£Eg)(ζ2, ζ3) = g((£E∇)(ζ1, ζ2), ζ3) + g((£E∇)(ζ1, ζ3), ζ2).

Since £E∇ is symmetric, therefore we have

2g((£E∇)(ζ1, ζ2), ζ3) = (∇ζ1£Eg)(ζ2, ζ3) + (∇ζ2£Eg)(ζ1, ζ3)− (∇ζ3£Eg)(ζ1, ζ2),

which in view of (14) gives
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2g((£E∇)(ζ1, ζ2), ζ3) = (ζ1R)
{
(2ρ− 1)g(ζ2, ζ3) + η(ζ2)η(ζ3)

}
+(ζ2R)

{
(2ρ− 1)g(ζ1, ζ3) + η(ζ1)η(ζ3)

}
−(ζ3R)

{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
−2(R + 6)

{
g(ζ1, ζ2)η(ζ3)− η(ζ1)η(ζ2)η(ζ3)

}
,

from which it follows that

2(£E∇)(ζ1, ζ2) = (ζ1R)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
(15)

+(ζ2R)
{
(2ρ− 1)ζ1 + η(ζ1)ξ

}
−(DR)

{
(2ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
−2(R + 6)

{
g(ζ1, ζ2)ξ − η(ζ1)η(ζ2)ξ

}
.

Replacing ζ2 by ξ and ζ1 by ζ2 in (15), we have

(£E∇)(ζ2, ξ) = ρg(DR, ζ2)ξ − ρ(DR)η(ζ2) (16)

+(R + 6)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
.

The covariant differentiation of (16) respecting to ζ1 yields

(∇ζ1£E∇)(ζ2, ξ) = 2(ζ1R)
{
(2ρ− 1)ζ2 + η(ζ2)ξ

}
+(ζ2R)

{
(ρ− 1)ζ1 + η(ζ1)ξ

}
−(DR)

{
(ρ− 1)g(ζ1, ζ2) + η(ζ1)η(ζ2)

}
(17)

−3(R + 6)
{

g(ζ1, ζ2)ξ − η(ζ1)η(ζ2)ξ
}

−(R + 6)
{
(2ρ− 1)η(ζ1)ζ2 + η(ζ2)ζ1

}
+ρg(∇ζ1DR, ζ2)ξ − ρ(∇ζ1DR)η(ζ2),

where (4), (5) and (16) being used.
Again from [25], we have

(£EK)(ζ1, ζ2)ζ3 = (∇ζ1£E∇)(ζ2, ζ3)− (∇ζ2£E∇)(ζ1, ζ3), (18)

which by putting ζ3 = ξ and using (17) becomes

(£EK)(ζ1, ζ2)ξ = g(DR, ζ1)
{
(3ρ− 1)ζ2 + η(ζ2)ξ

}
(19)

−g(DR, ζ2)
{
(3ρ− 1)ζ1 + η(ζ1)ξ

}
+2(R + 6)(ρ− 1)

{
η(ζ2)ζ1 − η(ζ1)ζ2

}
+ρg(∇ζ1DR, ζ2)ξ − ρg(∇ζ2DR, ζ1)ξ

−ρ(∇ζ1DR)η(ζ2) + ρ(∇ζ2DR)η(ζ1).

Contracting (19) respecting to ζ1 then using (4) and (11) we lead to

(£ES)(ζ2, ξ) = (1− 6ρ)ζ2(R) + 2(R + 6)(2ρ− 1)η(ζ2) (20)

+ρg(∇ξDR, ζ2)ξ − ρ(∆R)η(ζ2).

By putting ζ2 = ξ in (20) then using (4), (11) and (12), we find

(£ES)(ξ, ξ) = −4ρ(R + 6)− ρ(∆R). (21)

The Lie derivative of (8) respecting to E leads to

(£ES)(ξ, ξ) = 4η(£Eξ). (22)

Putting ζ1 = ζ2 = ξ in (13) infers
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(£Eg)(ξ, ξ) = −2σ + 2ρR + 4. (23)

The Lie derivative of g(ξ, ξ) = 1 gives

(£Eg)(ξ, ξ) = −2η(£Eξ). (24)

Now combining (21)–(25) we deduce

∆R =
4(2− σ− 6ρ)

ρ
, provided ρ 6= 0. (25)

This completes the proof.

It is well-known that the ρ-ES Equation (2) on Mn with the soliton constant
ρ = 1

2 , 1
n , 1

2(n−1) reduces to the Einstein soliton, traceless Ricci soliton, Schouten soliton,
respectively. It is also known that a smooth function f on an Mn is called harmonic, sub-
harmonic or superharmonic if ∆f = 0, ≥ 0 or ≤ 0, respectively. These facts together with
Theorem 1 state the following:

Corollary 1. Let (M3, ∇̃, g) admit a ρ-ES, then we have

Value of ρ Solitons Poisson equation
Condition for R to be subharmonic
and superharmonic

ρ = 1
2 Einstein soliton ∆R = −8(σ + 1)

(i) R is subharmonic if σ ≤ −1,
(ii) R is superharmonic if σ ≥ −1,

ρ = 1
3 traceless Ricci soliton ∆R = −12σ

(i) R is subharmonic if σ ≤ 0,
(ii) R is superharmonic if σ ≥ 0,

ρ = 1
4 Schouten soliton ∆R = 16( 1

2 − σ)
(i) R is subharmonic if σ ≤ 1

2 ,
(ii) R is superharmonic if σ ≥ 1

2 .

Remark 3. The ρ-ES on an Mn with ρ = 0 reduces to the RS. The properties of RS on (M3, ∇̃, g)
have been explored by Chaubey and De [22]. Thus, we can say that the Theorem 1 generalizes the
study of Einstein soliton, traceless RS and the Schouten soliton on (M3, ∇̃, g).

It is well-known that the Poisson equation ∆u = v with v = 0 becomes a Laplace
equation. Suppose that an (M3, ∇̃, g) does not admit RS. Then, Theorem 1 and above
discussion state:

Corollary 2. If (M3, ∇̃, g) admits a ρ-ES, which is not a RS (ρ 6= 0), then R of M3 satisfies
Laplace equation if and only if σ = 2(1− 3ρ).

Let (M3, ∇̃, g) admit a ρ-ES. If R of M3 satisfies the Laplace equation, then
σ = 2(1 − 3ρ). The ρ-ES under consideration to be steady, shrinking or expanding if
ρ is equal to, less than or greater than 1

3 . Thus, we write our corollary as

Corollary 3. Let the metric of an (M3, ∇̃, g) be ρ-ES, which is not a RS (ρ 6= 0). If R of M3

satisfies the Laplace equation, then the ρ-ES is steady, shrinking or expanding if ρ = 1
3 , ρ < 1

3 or
ρ > 1

3 , respectively.

4. Gradient ρ-ES on (M3, ∇̃, g)

Theorem 2. Let (M3, ∇̃, g) admit a gradient ρ-ES. Then, either M3 is Einstein or the gradient
ρ-ES is steady type gradient traceless RS.

Proof. Let the metric of an (M3, ∇̃, g) be a gradient ρ-ES. Then, (3) can be written as

∇ζ1DF + Qζ1 + (σ− ρR)ζ1 = 0, (26)
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for all ζ1 on M3.
The covariant differentiation of (26) with respect to ζ2 leads to

∇ζ2∇ζ1DF = −(∇ζ2 Q)ζ1 −Q(∇ζ2 ζ1)− (σ− ρR)∇ζ2 ζ1 + ρζ2(R)ζ1. (27)

Interchanging ζ1 and ζ2 in (27) leads to

∇ζ1∇ζ2DF = −(∇ζ1 Q)ζ2 −Q(∇ζ1 ζ2)− (σ− ρR)∇ζ1 ζ2 + ρζ1(R)ζ2. (28)

By plugging of (26)–(28), we find

K(ζ1, ζ2)DF = −(∇ζ1 Q)ζ2 + (∇ζ2 Q)ζ1 + ρ
{

ζ1(R)ζ2 − ζ2(R)ζ1
}

.

Contracting the forgoing equation along ζ1, we obtain

S(ζ2,DF ) = (1− 4ρ)

2
ζ2(R). (29)

In account of (10), we have

S(ζ2,DF ) = (1 +
R
2
)ζ2(F )− (3 +

R
2
)η(ζ2)ξ(F ). (30)

Thus, from (29) and (30), it follows that

(1− 4ρ)ζ2(R) = (R + 2)ζ2(F )− (R + 6)η(ζ2)ξ(F ). (31)

By putting ζ2 = ξ in (31), then using (4) and (11), we find

ξ(F ) = −1
2
(1− 4ρ)(R + 6). (32)

By using (32) and (31) turns to

(1− 4ρ)ζ2(R) = (R + 2)ζ2(F ) +
1
2
(R + 6)2(1− 4ρ)η(ζ2). (33)

The covariant differentiation of (33) along ζ1 leads to

(1− 4ρ)g(∇ζ1DR, ζ2) = ζ1(R)ζ2(F ) + (R + 2)g(∇ζ1DF , ζ2) (34)

+(R + 6)(1− 4ρ)ζ1(R)η(ζ2)

+
1
2
(R + 6)2(1− 4ρ)

{
η(ζ1)η(ζ2)− g(ζ1, ζ2)

}
.

Interchanging ζ1 and ζ2 in (34), we have

(1− 4ρ)g(∇ζ2DR, ζ1) = ζ2(R)ζ1(F ) + (R + 2)g(∇ζ2DF , ζ1) (35)

+(R + 6)(1− 4ρ)ζ2(R)η(ζ1)

+
1
2
(R + 6)2(1− 4ρ)

{
η(ζ1)η(ζ2)− g(ζ1, ζ2)

}
.

Equating the left hand sides of last two equations gives

ζ1(R)ζ2(F ) + (R + 6)(1− 4ρ)ζ1(R)η(ζ2)

−ζ2(R)ζ1(F )− (R + 6)(1− 4ρ)ζ2(R)η(ζ1) = 0,

which by replacing ζ2 = ξ then using (4), (11) and (32) takes the form

(R + 6)
{
(1− 4ρ)ζ1(R)− 4ζ1(F )− 4(R + 6)(1− 4ρ)η(ζ1)} = 0.
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Thus, we have either R = −6, or (1− 4ρ)ζ1(R) = 4ζ1(F ) + 4(R + 6)(1− 4ρ)η(ζ1). If we
firstly suppose that R 6= −6 and (1− 4ρ)ζ1(R) = 4ζ1(F ) + 4(R + 6)(1− 4ρ)η(ζ1), which
by virtue of (33) turns to

(R− 2)
{

2ζ1(F ) + (R + 6)(1− 4ρ)η(ζ1)
}
= 0, (36)

which refers that either R = 2 or ζ1(F ) = − 1
2 (R + 6)(1− 4ρ)η(ζ1). From (11), it is obvious

that if R is constant, then its value must be −6, which shows that R = 2 is inadmissible.
Thus, we have ζ1(F ) = − 1

2 (R + 6)(1− 4ρ)η(ζ1), which is equivalent to

DF = −1
2
(R + 6)(1− 4ρ)ξ = ξ(F )ξ. (37)

Thus, the gradient of F is pointwise collinear with ξ. Now, taking the covariant derivative
of (37) with respect to ζ1 and using (4), we have

∇ζ1DF = ζ1(ξ(F ))ξ − ξ(F )(ζ1 − η(ζ1)ξ). (38)

Therefore, from (26) and (38), we obtain

Qζ1 + (σ− ρR)ζ1 = −ζ1(ξ(F ))ξ + ξ(F )(ζ1 − η(ζ1)ξ). (39)

Now, by replacing ζ1 by ξ in (39) then using (8), (11) and (32) we lead to

σ = (1− 3ρ)(R + 8). (40)

Let us suppose that ρ = 1
3 , that is, the gradient ρ-ES on an M3 is gradient traceless RS. This

fact together with Equation (40) leads to σ = 0. Thus, the gradient traceless RS is steady.
This completes the proof.

Theorem 3. Let an (M3, ∇̃, g) be a non-gradient traceless RS. Then, the gradient ρ-ES is trivial
soliton with constant σ = 2(1− 3ρ). Also, the ρ-ES is shrinking and expanding according to
ρ > 1

3 and ρ < 1
3 .

Proof. Now, we suppose that ρ 6= 1
3 . Thus, (40) leads to

R =
σ

1− 3ρ
− 8, (41)

which informs that R is constant and hence (11) infers that R = −6. This contradicts our
hypothesis R 6= −6.

Secondly, we consider that R = −6 and (1 − 4ρ)ζ1(R) 6= 4ζ1(F ) + 4(R + 6)(1 −
4ρ)η(ζ1). For R = −6, (33) informs that F ∈ R and hence the GRBS on the manifold is
trivial. Moreover, the Riemannian 3-manifold under assumption is an Einstein manifold
with σ = 2(1− 3ρ). This completes the proof.

Let us suppose that an (M3, ∇̃, g) admits a proper gradient ρ-ES. Then, the ρ-ES
reduces to the gradient traceless RS and ρ = 1

3 , σ = 0. Using these facts in (26) and then
contracting the foregoing equation over ζ1 gives ∆F = 0.

A smooth function h on an Mn is called harmonic if ∆h = 0.
The above discussions state the following:

Corollary 4. Let a complete (M3, ∇̃, g) admit a proper gradient ρ-ES. Then the gradient function
of the gradient ρ-ES is harmonic.

Contracting (38) over ζ1, we find

∆F = ξ(ξ(F ))− 2ξ(F ).
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Again, considering σ = 0, ρ = 1
3 and then contracting (26) over ζ1, we conclude that

∆F = 0.

The last two equations show that ξ(ξ(F ))− 2ξ(F ) = 0. Let ξ = ∂
∂t . Thus, we notice that

the potential function F satisfies the PDE

∂2F
∂t2 − 2

∂F
∂t

= 0.

It is obvious that F = Ae2t + B for smooth functions A and B, which are independent of t,
is the solution of the above PDE. Now, we list our results in the following:

Corollary 5. Let the metric of a complete (M3, ∇̃, g) admit a proper gradient ρ-ES. Then, the
potential function F of such soliton satisfies the PDE ∂2F

∂t2 − 2 ∂F
∂t = 0, and it can be evaluated by

F = Ae2t + B.

5. Example

We consider the manifold M3 = {(w1, w2, w3) ∈ R3}, where (w1, w2, w3) are the usual
coordinates in R3. Let u1, u2 and u3 be the vector fields on M3 given by

u1 = ebw3+w1
∂

∂w1
, u2 = ebw3+w2

∂

∂w2
, u3 =

1
b

∂

∂w3
= ξ,

where b( 6= 0) ∈ R. Then, {u1, u2, u3} forms a basis in the module of the vector fields
of M3.
Let the Riemannian metric g be defined by

g(up, uq) =

{
1, 1 ≤ p = q ≤ 3,
0, otherwise.

Hence, M3 is a Riemannian manifold of dimension 3. Let the 1-form η on M3 be defined
by η(ζ1) = g(ζ1, u3) = g(ζ1, ξ) for all ζ1 on M3. Now, by direct computations, we obtain

[u1, u2] = 0, [u1, u3] = −u1, [u2, u3] = −u2.

By using Koszul’s formula, we obtain

∇up uq =


−up, p = 1, 2, q = 3,
u3, 1 ≤ p = q ≤ 2,
0, otherwise.

Now we suppose that ζ1 = ζ1
1u1 + ζ2

1u2 + ζ3
1u3, then for ξ = u3 it follows that

∇ζ1 ξ = −ζ1 + η(ζ1)ξ. It can be easily seen that ∇̃ defined on M3 satisfies the conditions

T̃(ζ1, ζ2) = −η(ζ1)ζ2 + η(ζ2)ζ1, ∇̃g = 0, and ∇̃ξ = 0,

for arbitrary vector fields ζ1 and ζ2 on M3, where T̃ indicates the torsion tensor of ∇̃. Thus,
we can say that ∇̃ is a semi-symmetric metric ξ-connection on M3.

The non-zero constituents of K are obtained as follows:

K(u1, u3)u1 = u3, K(u1, u2)u1 = u2, K(u2, u3)u2 = u3,

K(u1, u2)u2 = K(u1, u3)u3 = −u1, K(u2, u3)u3 = −u2.
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By using above components of the curvature tensor K we obtain

S(up, uq) = −2, 1 ≤ p = q ≤ 3,

from which we obtain R = −6.
Now, by taking DF = (u1F )u1 + (u2F )u2 + (u3F )u3, we have

∇u1DF = (u1(u1F )− u3F )u1 + (u1(u2F ))u2 + (u1(u3F ) + u1F )u3,

∇E2DF = (u2(u1F ))u1 + (u2(u2F )− u3F )u2 + (u2(u3F ) +F2F )F3,

∇E3DF = (u3(u1F ))u1 + (u3(u2F ))u2 + (u3(u3F ))u3.

Thus, by virtue of (26), we obtain

u1(u1F )− u3F = 2− 6ρ− σ,
u2(u2F )− u3F = 2− 6ρ− σ,
u3(u3F ) = 2− 6ρ− σ,
u1(u2F ) = 0,
u2(u1F ) = 0,
u2(u3F ) + u2F = 0.

(42)

Thus, the relations in (42) are, respectively, amounting to

e2(bw3+w1)
[∂2F

∂w2
1
+

∂F
∂w1

]
− 1

b

∂F
∂w3

= 2− 6ρ− σ,

e2(bw3+w1)
[∂2F

∂w2
2
+

∂F
∂w2

]
− 1

b

∂F
∂w3

= 2− 6ρ− σ,

1
b2

∂2F
∂w2

3
= 2− 6ρ− σ,

∂2F
∂w1∂w2

= 0,

∂2F
∂w2∂w1

= 0,

1
b
[

∂2F
∂w2∂w3

+
∂F
∂w2

] = 0.

From the above relations, it is noticed that F ∈ R for σ = 2− 6ρ. Hence, the Equation (26)
is satisfied. Thus, g is a gradient ρ-ES with the soliton vector field E = DF , where F ∈ R
and σ = 2− 6ρ. For ρ = 1

3 , we obtain σ = 0, i.e., the gradient ρ-ES is trivial with constant
σ = 2− 6ρ. Thus, Theorem 2 is verified.

6. Results and Discussion

It is well known that the ρ-Einstein soliton Equation (2) with ρ = 0 becomes the Ricci
soliton equation, which has been studied in [22]. Thus, we can say that the ρ-Einstein
soliton is a natural generalization of Ricci soliton. In this manuscript, we have explored
the properties of ρ-Einstein solitons in Riemannian geometry, which generalizes the results
of [22].
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7. Conclusions

To prove the curvatures invariant, Chauey et al. [23] defined the notion of semi-
symmetric metric P-connection in Riemannian setting, which is a particular case of Rieman-
nian concircular structure manifold [26]. This topic has great applications in differential
equations. We proved that the scalar curvature of Riemannian 3-manifolds endowed with
a semi-symmetric metric ξ-connection and Ricci–Bourguignon soliton satisfies the Poisson
and Laplace equations. It is well known that the Poisson and Laplace equations play a
crucial role in the development of engineering, physics, mathematics, etc. We have also
established the conditions for which the scalar curvature is harmonic, sub-harmonic and
super-harmonic. We also established the existence condition of a gradient ρ-Einstein soliton
in the Riemannian 3-manifolds, and consequently we proved some results. To verify our
results, we constructed a non-trivial example of a three-dimensional Riemannian manifold
equipped with a semi-symmetric metric ξ-connection. These topics are modern and have a
lot of scope for researchers.
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