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Abstract

:

The aim of this paper is to characterize a Riemannian 3-manifold   M 3   equipped with a semi-symmetric metric  ξ -connection   ∇ ˜   with  ρ -Einstein and gradient  ρ -Einstein solitons. The existence of a gradient  ρ -Einstein soliton in an   M 3   admitting   ∇ ˜   is ensured by constructing a non-trivial example, and hence some of our results are verified. By using standard tensorial technique, we prove that the scalar curvature of   (  M 3  ,  ∇ ˜  )   satisfies the Poisson equation   Δ R =   4 ( 2 − σ − 6 ρ )  ρ   .
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1. Introduction


The Ricci and other geometric flows are active topics of current research in mathematics, physics and engineering. The Ricci flow [1] is defined on a Riemannian n-manifold   (  M n  , g )   by an evolution equation for metric   g ( t )   of the form     ∂ g   ∂ t   = − 2 S  , where S is the Ricci tensor of   M n   and t indicates the time. The metric g on   M n   satisfies the Ricci soliton (in short, RS) equation    £ E  g + 2 σ g + 2 S = 0 ,   where E is a vector field on   M n  ,   σ ∈ R   (the set of real numbers), and   £ E   represents the Lie derivative operator in the direction of E on   M n  . A RS is called expanding (steady or shrinking) if   σ > 0   (  σ = 0   or   σ < 0  ). If   E = 0   or Killing, then the RS is called a trivial RS, and   M n   becomes an Einstein manifold. Thus the RS is a basic generalization of an Einstein manifold [2]. If  F  is a smooth function such that   E = D F   for the gradient operator  D  of g, then the RS is described as a gradient Ricci soliton (GRS), E is referred to as the potential vector field, and  F  is called the potential function. Thus, the RS equation becomes   H e s s F + σ g + S = 0  , where   H e s s F   is the Hessian of  F  and    ( H e s s F )   (  ζ 1  ,  ζ 2  )  = g  (  ∇  ζ 1   D F ,  ζ 2  )    for all vector fields   ζ 1   and   ζ 2   on   M n  . Here, ∇ stands for the Levi–Civita connection.



The notion of Ricci–Bourguignon flow, a natural generalization of Ricci flow, has been proposed in [3] and is described on an   M n   as:


       ∂ g   ∂ t   = − 2  ( S − ρ R g )  ,   g  ( 0 )  =  g 0  ,     



(1)




where R is the scalar curvature and   ρ ∈ R  . It is to be noticed that for the specific values of  ρ , the following cases for the tensor   S − ρ R g   appeared in (1) [4] are obtained:




	(i)

	
  ρ =  1 2   , the Einstein tensor   S −  R 2  g  , (for Einstein soliton),




	(ii)

	
  ρ =  1 n   , the trace-less Ricci tensor   S −  R n  g  ,




	(iii)

	
  ρ =  1  2 ( n − 1 )    , the Schouten tensor   S −  R  2 ( n − 1 )   g ,   (for Schouten soliton),




	(iv)

	
  ρ = 0  , the Ricci tensor S (for RS).









An   (  M n  , g )  ,   n ≥ 3   is said to be a  ρ -Einstein soliton (or  ρ -ES)   ( g , E , σ , ρ )   if


      £ E  g + 2 S + 2  ( σ − ρ R )  g = 0 .     



(2)




Similar to the RS, a  ρ -ES is called expanding (steady or shrinking) if   σ > 0   (  σ = 0   or   σ < 0  ). If   E = D F  , then   (  M n  , g )   is called a gradient  ρ -Einstein soliton (or gradient  ρ -ES). Hence, (2) takes the form


     H e s s F + S + ( σ − ρ R ) g = 0 ,     



(3)




where   H e s s F   denotes the Hessian of   F ∈  C ∞   (  M n  )    and defined by   H e s s F = ∇ ∇ F  . Recently,  ρ -Einstein solitons have been studied by several authors, such as [5,6,7,8,9,10,11,12]. On the other hand, we recommend the papers [13,14,15,16,17,18,19] for the studies of Ricci, Yamabe, Ricci-Yamabe,  η -Ricci-Yamabe and quasi-Yamabe solitons on different geometric structures.



In this paper, we have made an effort to the solitonic study of a 3-dimensional Riemannian manifold   M 3   equipped with a semi-symmetric metric  ξ -connection   ∇ ˜  . To achieve the goal, we present our work as follows: In Section 2, we gather the basic information of a Riemannian 3-manifold equipped with a semi-symmetric metric  ξ -connection   (  M 3  ,  ∇ ˜  , g )  , definitions and Lemmas. The properties of  ρ -ES in   (  M 3  ,  ∇ ˜  , g )   are studied in Section 3. We address the properties of gradient  ρ -ES in   (  M 3  ,  ∇ ˜  , g )   in Section 4. In the last section, we model a non-trivial example of   (  M 3  ,  ∇ ˜  , g )   admitting a gradient  ρ -ES, and prove our results.




2. Riemannian Manifolds with a Semi-Symmetric Metric  ξ -Connection


In 1970, Yano [20] investigated the properties of a semi-symmetric metric connection   ∇ ˜   on Riemannian n-manifolds   M n   and defined by     ∇ ˜   ζ 1    ζ 2  =  ∇  ζ 1    ζ 2  + η  (  ζ 2  )   ζ 1  − g  (  ζ 1  ,  ζ 2  )  ξ   for all   ζ 1   and   ζ 2   on   M n  , where  η  is a 1-form associated with the unit vector field  ξ  such that   g ( ξ , ξ ) = η ( ξ ) = 1   and   g  (  ζ 1  , ξ )  = η  (  ζ 1  )   . Later, the properties of the semi-symmetric metric connection   ∇ ˜   have been explored by several researchers. One of these properties is the curvature invariant respecting to the semi-symmetric metric connection   ∇ ˜   and the Levi–Civita connection ∇. For example, the conformal curvature tensors corresponding to the semi-symmetric connection (Yano’s sense) and the Levi–Civita connection coincide. Similar results for different curvature tensors have been established by many geometers. A connection   ∇ ˜   is said to be semi-symmetric metric  ξ -connection if and only if    ∇ ˜  ξ = 0  . Afterwards, the properties of semi-symmetric metric  ξ -connection have been studied in [21,22,23,24].



In an   (  M n  ,  ∇ ˜  , g )  , we have [21]


      ∇  ζ 1   ξ = −  ζ 1  + η  (  ζ 1  )  ξ ,     g  ( ξ , ξ )  = 1  ,   and   η  (  ζ 1  )  = g  (  ζ 1  , ξ )      



(4)




for any   ζ 1   on   M n  . Next, we have [21]


      (  ∇  ζ 1   η )   ζ 2  = − g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )  ,     



(5)






     K  (  ζ 1  ,  ζ 2  )  ξ = η  (  ζ 1  )   ζ 2  − η  (  ζ 2  )   ζ 1  ,     



(6)






     K  (  ζ 1  , ξ )   ζ 2  = g  (  ζ 1  ,  ζ 2  )  ξ − η  (  ζ 2  )   ζ 1  ,     



(7)






     S  (  ζ 1  , ξ )  = −  ( n − 1 )  η  (  ζ 1  )  ⇔ Q ξ = −  ( n − 1 )  ξ ,     



(8)






      (  £ ξ  g )   (  ζ 1  ,  ζ 2  )  = 2  { − g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )  }  ,     



(9)




for all   ζ 1  ,   ζ 2   on    M n  .   Here, K and Q represent the curvature tensor and the Ricci operator of   M n  , respectively.



Definition 1. 

An   M n   is said to be quasi-Einstein if its   S ( ≠ 0 )   satisfies


   S  (  ζ 1  ,  ζ 2  )  = l  g  (  ζ 1  ,  ζ 2  )  + m  η  (  ζ 1  )  η  (  ζ 2  )  ,   








where  m  and  l  are smooth functions on   M n  . If   m = 0  , then the manifold is called an Einstein manifold.





Definition 2. 

A partial differential equation   Δ u = v   on a complete   M n   is called a Poisson equation for some smooth functions u and v.





Remark 1 

([21,22]). An   (  M 3  ,  ∇ ˜  , g )   is a quasi-Einstein manifold of the form


  S  (  ζ 1  ,  ζ 2  )  =  1 +  R 2   g  (  ζ 1  ,  ζ 2  )  −  3 +  R 2   η  (  ζ 1  )  η  (  ζ 2  )  .  



(10)









Remark 2 

([21,22]). In an   (  M 3  ,  ∇ ˜  , g )  , we have


     ξ ( R ) = 2 ( R + 6 ) ,     



(11)






     η  (  ∇ ξ  D R )  = 4  ( R + 6 )  ,     



(12)




where  D  is the gradient operator of g. From (11), it is noticed that R of   M 3   is constant if and only if   R = − 6  .






3.  ρ -ES on   (  M 3  ,  ∇ ˜  , g )  


First, we prove the following theorem.



Theorem 1. 

If   (  M 3  ,  ∇ ˜  , g )   admits a ρ-ES   ( g , E , σ , ρ )  , then its scalar curvature R satisfies the Poisson equation   Δ R =   4 ( 2 − σ − 6 ρ )  ρ  ,   provided   ρ ≠ 0  .





Proof. 

Let the metric of an   (  M 3  ,  ∇ ˜  , g )   be a ρ-ES   ( g , E , σ , ρ )  , then in view of (10), (2) leads to


      (  £ E  g )   (  ζ 1  ,  ζ 2  )     =    − 2  1 + σ + (  1 2  − ρ ) R  g  (  ζ 1  ,  ζ 2  )          +  ( R + 6 )  η  (  ζ 1  )  η  (  ζ 2  )  ,     



(13)




for any vector fields   ζ 1  ,   ζ 2   on   M 3  .



Taking covariant derivative of (13) respecting to   ζ 3  , we find


      (  ∇  ζ 3    £ E  g )   (  ζ 1  ,  ζ 2  )     =     (  ζ 3  R )    ( 2 ρ − 1 )  g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )           −  ( R + 6 )   g  (  ζ 1  ,  ζ 3  )  η  (  ζ 2  )  + g  (  ζ 2  ,  ζ 3  )  η  (  ζ 1  )  − 2 η  (  ζ 1  )  η  (  ζ 2  )  η  (  ζ 3  )   .     



(14)




As g is parallel with respect to ∇, then the formula [25]


   (  £ E   ∇  ζ 1   g −  ∇  ζ 1    £ E  g −  ∇  [ E ,  ζ 1  ]   g )   (  ζ 2  ,  ζ 3  )  = − g  (  (  £ E  ∇ )   (  ζ 1  ,  ζ 2  )  ,  ζ 3  )  − g  (  (  £ E  ∇ )   (  ζ 1  ,  ζ 3  )  ,  ζ 2  )   








turns to


   (  ∇  ζ 1    £ E  g )   (  ζ 2  ,  ζ 3  )  = g  (  (  £ E  ∇ )   (  ζ 1  ,  ζ 2  )  ,  ζ 3  )  + g  (  (  £ E  ∇ )   (  ζ 1  ,  ζ 3  )  ,  ζ 2  )  .  








Since    £ E  ∇   is symmetric, therefore we have


  2 g  (  (  £ E  ∇ )   (  ζ 1  ,  ζ 2  )  ,  ζ 3  )  =  (  ∇  ζ 1    £ E  g )   (  ζ 2  ,  ζ 3  )  +  (  ∇  ζ 2    £ E  g )   (  ζ 1  ,  ζ 3  )  −  (  ∇  ζ 3    £ E  g )   (  ζ 1  ,  ζ 2  )  ,  








which in view of (14) gives


     2 g (  (  £ E  ∇ )   (  ζ 1  ,  ζ 2  )  ,  ζ 3  )    =     (  ζ 1  R )    ( 2 ρ − 1 )  g  (  ζ 2  ,  ζ 3  )  + η  (  ζ 2  )  η  (  ζ 3  )           +  (  ζ 2  R )    ( 2 ρ − 1 )  g  (  ζ 1  ,  ζ 3  )  + η  (  ζ 1  )  η  (  ζ 3  )           −  (  ζ 3  R )    ( 2 ρ − 1 )  g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )           − 2  ( R + 6 )   g  (  ζ 1  ,  ζ 2  )  η  (  ζ 3  )  − η  (  ζ 1  )  η  (  ζ 2  )  η  (  ζ 3  )   ,     








from which it follows that


     2  (  £ E  ∇ )   (  ζ 1  ,  ζ 2  )     =     (  ζ 1  R )    ( 2 ρ − 1 )   ζ 2  + η  (  ζ 2  )  ξ          +  (  ζ 2  R )    ( 2 ρ − 1 )   ζ 1  + η  (  ζ 1  )  ξ          −  ( D R )    ( 2 ρ − 1 )  g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )           − 2  ( R + 6 )   g  (  ζ 1  ,  ζ 2  )  ξ − η  (  ζ 1  )  η  (  ζ 2  )  ξ  .     



(15)




Replacing   ζ 2   by ξ and   ζ 1   by   ζ 2   in (15), we have


      (  £ E  ∇ )   (  ζ 2  , ξ )     =    ρ g  ( D R ,  ζ 2  )  ξ − ρ  ( D R )  η  (  ζ 2  )          +  ( R + 6 )    ( 2 ρ − 1 )   ζ 2  + η  (  ζ 2  )  ξ  .     



(16)




The covariant differentiation of (16) respecting to   ζ 1   yields


      (  ∇  ζ 1    £ E  ∇ )   (  ζ 2  , ξ )     =    2  (  ζ 1  R )    ( 2 ρ − 1 )   ζ 2  + η  (  ζ 2  )  ξ          +  (  ζ 2  R )    ( ρ − 1 )   ζ 1  + η  (  ζ 1  )  ξ          −  ( D R )    ( ρ − 1 )  g  (  ζ 1  ,  ζ 2  )  + η  (  ζ 1  )  η  (  ζ 2  )           − 3  ( R + 6 )   g  (  ζ 1  ,  ζ 2  )  ξ − η  (  ζ 1  )  η  (  ζ 2  )  ξ          −  ( R + 6 )    ( 2 ρ − 1 )  η  (  ζ 1  )   ζ 2  + η  (  ζ 2  )   ζ 1           + ρ g  (  ∇  ζ 1   D R ,  ζ 2  )  ξ − ρ  (  ∇  ζ 1   D R )  η  (  ζ 2  )  ,     



(17)




where (4), (5) and (16) being used.



Again from [25], we have


      (  £ E  K )   (  ζ 1  ,  ζ 2  )   ζ 3  =  (  ∇  ζ 1    £ E  ∇ )   (  ζ 2  ,  ζ 3  )  −  (  ∇  ζ 2    £ E  ∇ )   (  ζ 1  ,  ζ 3  )  ,     



(18)




which by putting    ζ 3  = ξ   and using (17) becomes


      (  £ E  K )   (  ζ 1  ,  ζ 2  )  ξ    =    g  ( D R ,  ζ 1  )    ( 3 ρ − 1 )   ζ 2  + η  (  ζ 2  )  ξ          − g  ( D R ,  ζ 2  )    ( 3 ρ − 1 )   ζ 1  + η  (  ζ 1  )  ξ          + 2  ( R + 6 )   ( ρ − 1 )   η  (  ζ 2  )   ζ 1  − η  (  ζ 1  )   ζ 2           + ρ g  (  ∇  ζ 1   D R ,  ζ 2  )  ξ − ρ g  (  ∇  ζ 2   D R ,  ζ 1  )  ξ         − ρ  (  ∇  ζ 1   D R )  η  (  ζ 2  )  + ρ  (  ∇  ζ 2   D R )  η  (  ζ 1  )  .     



(19)




Contracting (19) respecting to   ζ 1   then using (4) and (11) we lead to


      (  £ E  S )   (  ζ 2  , ξ )     =     ( 1 − 6 ρ )   ζ 2   ( R )  + 2  ( R + 6 )   ( 2 ρ − 1 )  η  (  ζ 2  )          + ρ g  (  ∇ ξ  D R ,  ζ 2  )  ξ − ρ  ( Δ R )  η  (  ζ 2  )  .     



(20)




By putting    ζ 2  = ξ   in (20) then using (4), (11) and (12), we find


      (  £ E  S )   ( ξ , ξ )     =    − 4 ρ ( R + 6 ) − ρ ( Δ R ) .     



(21)




The Lie derivative of (8) respecting to E leads to


      (  £ E  S )   ( ξ , ξ )  = 4 η  (  £ E  ξ )  .     



(22)




Putting    ζ 1  =  ζ 2  = ξ   in (13) infers


      (  £ E  g )   ( ξ , ξ )  = − 2 σ + 2 ρ R + 4 .     



(23)




The Lie derivative of   g ( ξ , ξ ) = 1   gives


      (  £ E  g )   ( ξ , ξ )  = − 2 η  (  £ E  ξ )  .     



(24)




Now combining (21)–(25) we deduce


     Δ R =   4 ( 2 − σ − 6 ρ )  ρ  ,    provided   ρ ≠ 0  .     



(25)




This completes the proof. □





It is well-known that the  ρ -ES Equation (2) on   M n   with the soliton constant   ρ =  1 2  ,  1 n  ,  1  2 ( n − 1 )     reduces to the Einstein soliton, traceless Ricci soliton, Schouten soliton, respectively. It is also known that a smooth function  f  on an   M n   is called harmonic, subharmonic or superharmonic if   Δ f = 0 ,   ≥ 0   or   ≤ 0  , respectively. These facts together with Theorem 1 state the following:



Corollary 1. 

Let   (  M 3  ,  ∇ ˜  , g )   admit a ρ-ES, then we have



	Value of  ρ 
	Solitons
	Poisson equation
	Condition for R to be subharmonic and superharmonic



	   ρ =  1 2    
	Einstein soliton
	   Δ R = − 8 ( σ + 1 )   
	  ( i )    R is subharmonic if   σ ≤ − 1  ,

  ( i i )    R is superharmonic if   σ ≥ − 1  ,



	   ρ =  1 3    
	traceless Ricci soliton
	   Δ R = − 12 σ   
	  ( i )    R is subharmonic if   σ ≤ 0  ,

  ( i i )    R is superharmonic if   σ ≥ 0  ,



	   ρ =  1 4    
	Schouten soliton
	   Δ R = 16 (  1 2  − σ )   
	  ( i )    R is subharmonic if   σ ≤  1 2   ,

  ( i i )    R is superharmonic if   σ ≥  1 2   .










Remark 3. 

The ρ-ES on an   M n   with   ρ = 0   reduces to the RS. The properties of RS on   (  M 3  ,  ∇ ˜  , g )   have been explored by Chaubey and De [22]. Thus, we can say that the Theorem 1 generalizes the study of Einstein soliton, traceless RS and the Schouten soliton on   (  M 3  ,  ∇ ˜  , g )  .





It is well-known that the Poisson equation   Δ u = v   with   v = 0   becomes a Laplace equation. Suppose that an   (  M 3  ,  ∇ ˜  , g )   does not admit RS. Then, Theorem 1 and above discussion state:



Corollary 2. 

If   (  M 3  ,  ∇ ˜  , g )   admits a ρ-ES, which is not a RS   ( ρ ≠ 0 )  , then R of   M 3   satisfies Laplace equation if and only if   σ = 2 ( 1 − 3 ρ )  .





Let   (  M 3  ,  ∇ ˜  , g )   admit a  ρ -ES. If R of   M 3   satisfies the Laplace equation, then   σ = 2 ( 1 − 3 ρ )  . The  ρ -ES under consideration to be steady, shrinking or expanding if  ρ  is equal to, less than or greater than   1 3  . Thus, we write our corollary as



Corollary 3. 

Let the metric of an   (  M 3  ,  ∇ ˜  , g )   be ρ-ES, which is not a RS   ( ρ ≠ 0 )  . If R of   M 3   satisfies the Laplace equation, then the ρ-ES is steady, shrinking or expanding if   ρ =  1 3   ,   ρ <  1 3    or   ρ >  1 3   , respectively.






4. Gradient  ρ -ES on   (  M 3  ,  ∇ ˜  , g )  


Theorem 2. 

Let   (  M 3  ,  ∇ ˜  , g )   admit a gradient ρ-ES. Then, either   M 3   is Einstein or the gradient ρ-ES is steady type gradient traceless RS.





Proof. 

Let the metric of an   (  M 3  ,  ∇ ˜  , g )   be a gradient ρ-ES. Then, (3) can be written as


      ∇  ζ 1   D F + Q  ζ 1  +  ( σ − ρ R )   ζ 1  = 0 ,     



(26)




for all   ζ 1   on   M 3  .



The covariant differentiation of (26) with respect to   ζ 2   leads to


      ∇  ζ 2    ∇  ζ 1   D F = −  (  ∇  ζ 2   Q )   ζ 1  − Q  (  ∇  ζ 2    ζ 1  )  −  ( σ − ρ R )   ∇  ζ 2    ζ 1  + ρ  ζ 2   ( R )   ζ 1  .     



(27)




Interchanging   ζ 1   and   ζ 2   in (27) leads to


      ∇  ζ 1    ∇  ζ 2   D F = −  (  ∇  ζ 1   Q )   ζ 2  − Q  (  ∇  ζ 1    ζ 2  )  −  ( σ − ρ R )   ∇  ζ 1    ζ 2  + ρ  ζ 1   ( R )   ζ 2  .     



(28)




By plugging of (26)–(28), we find


     K  (  ζ 1  ,  ζ 2  )  D F = −  (  ∇  ζ 1   Q )   ζ 2  +  (  ∇  ζ 2   Q )   ζ 1  + ρ   ζ 1   ( R )   ζ 2  −  ζ 2   ( R )   ζ 1   .     








Contracting the forgoing equation along   ζ 1  , we obtain


     S  (  ζ 2  , D F )  =   ( 1 − 4 ρ )  2   ζ 2   ( R )  .     



(29)




In account of (10), we have


     S  (  ζ 2  , D F )  =  ( 1 +  R 2  )   ζ 2   ( F )  −  ( 3 +  R 2  )  η  (  ζ 2  )  ξ  ( F )  .     



(30)




Thus, from (29) and (30), it follows that


      ( 1 − 4 ρ )   ζ 2   ( R )  =  ( R + 2 )   ζ 2   ( F )  −  ( R + 6 )  η  (  ζ 2  )  ξ  ( F )  .     



(31)




By putting    ζ 2  = ξ   in (31), then using (4) and (11), we find


     ξ  ( F )  = −  1 2   ( 1 − 4 ρ )   ( R + 6 )  .     



(32)




By using (32) and (31) turns to


      ( 1 − 4 ρ )   ζ 2   ( R )  =  ( R + 2 )   ζ 2   ( F )  +  1 2    ( R + 6 )  2   ( 1 − 4 ρ )  η  (  ζ 2  )  .     



(33)




The covariant differentiation of (33) along   ζ 1   leads to


      ( 1 − 4 ρ )  g  (  ∇  ζ 1   D R ,  ζ 2  )     =     ζ 1   ( R )   ζ 2   ( F )  +  ( R + 2 )  g  (  ∇  ζ 1   D F ,  ζ 2  )          +  ( R + 6 )   ( 1 − 4 ρ )   ζ 1   ( R )  η  (  ζ 2  )          +  1 2    ( R + 6 )  2   ( 1 − 4 ρ )   η  (  ζ 1  )  η  (  ζ 2  )  − g  (  ζ 1  ,  ζ 2  )   .     



(34)




Interchanging   ζ 1   and   ζ 2   in (34), we have


         ( 1 − 4 ρ )  g  (  ∇  ζ 2   D R ,  ζ 1  )     =     ζ 2   ( R )   ζ 1   ( F )  +  ( R + 2 )  g  (  ∇  ζ 2   D F ,  ζ 1  )          +  ( R + 6 )   ( 1 − 4 ρ )   ζ 2   ( R )  η  (  ζ 1  )          +  1 2    ( R + 6 )  2   ( 1 − 4 ρ )   η  (  ζ 1  )  η  (  ζ 2  )  − g  (  ζ 1  ,  ζ 2  )   .     



(35)




Equating the left hand sides of last two equations gives


      ζ 1   ( R )   ζ 2   ( F )  +  ( R + 6 )   ( 1 − 4 ρ )   ζ 1   ( R )  η  (  ζ 2  )              −  ζ 2   ( R )   ζ 1   ( F )  −  ( R + 6 )   ( 1 − 4 ρ )   ζ 2   ( R )  η  (  ζ 1  )  = 0 ,     








which by replacing    ζ 2  = ξ   then using (4), (11) and (32) takes the form


      ( R + 6 )  {  ( 1 − 4 ρ )   ζ 1   ( R )  − 4  ζ 1   ( F )  − 4  ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   } = 0 .      








Thus, we have either   R = − 6  , or    ( 1 − 4 ρ )   ζ 1   ( R )  = 4  ζ 1   ( F )  + 4  ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   . If we firstly suppose that   R ≠ − 6   and    ( 1 − 4 ρ )   ζ 1   ( R )  = 4  ζ 1   ( F )  + 4  ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   , which by virtue of (33) turns to


      ( R − 2 )   2  ζ 1   ( F )  +  ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   = 0 ,     



(36)




which refers that either   R = 2   or    ζ 1   ( F )  = −  1 2   ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   . From (11), it is obvious that if R is constant, then its value must be   − 6  , which shows that   R = 2   is inadmissible. Thus, we have    ζ 1   ( F )  = −  1 2   ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   , which is equivalent to


     D F = −  1 2   ( R + 6 )   ( 1 − 4 ρ )  ξ = ξ  ( F )  ξ .     



(37)




Thus, the gradient of  F  is pointwise collinear with   ξ .   Now, taking the covariant derivative of (37) with respect to   ζ 1   and using (4), we have


      ∇  ζ 1   D F =  ζ 1   ( ξ  ( F )  )  ξ − ξ  ( F )   (  ζ 1  − η  (  ζ 1  )  ξ )  .     



(38)




Therefore, from (26) and (38), we obtain


     Q  ζ 1  +  ( σ − ρ R )   ζ 1  = −  ζ 1   ( ξ  ( F )  )  ξ + ξ  ( F )   (  ζ 1  − η  (  ζ 1  )  ξ )  .     



(39)




Now, by replacing   ζ 1   by ξ in (39) then using (8), (11) and (32) we lead to


     σ = ( 1 − 3 ρ ) ( R + 8 ) .     



(40)




Let us suppose that   ρ =  1 3   , that is, the gradient ρ-ES on an   M 3   is gradient traceless RS. This fact together with Equation (40) leads to   σ = 0  . Thus, the gradient traceless RS is steady. This completes the proof. □





Theorem 3. 

Let an   (  M 3  ,  ∇ ˜  , g )   be a non-gradient traceless RS. Then, the gradient ρ-ES is trivial soliton with constant   σ = 2 ( 1 − 3 ρ )  . Also, the ρ-ES is shrinking and expanding according to   ρ >  1 3    and   ρ <  1 3   .





Proof. 

Now, we suppose that   ρ ≠  1 3   . Thus, (40) leads to


     R =  σ  1 − 3 ρ   − 8 ,     



(41)




which informs that R is constant and hence (11) infers that   R = − 6  . This contradicts our hypothesis   R ≠ − 6  .



Secondly, we consider that   R = − 6   and    ( 1 − 4 ρ )   ζ 1   ( R )  ≠ 4  ζ 1   ( F )  + 4  ( R + 6 )   ( 1 − 4 ρ )  η  (  ζ 1  )   . For   R = − 6  , (33) informs that   F ∈ R   and hence the GRBS on the manifold is trivial. Moreover, the Riemannian 3-manifold under assumption is an Einstein manifold with   σ = 2 ( 1 − 3 ρ )  . This completes the proof. □





Let us suppose that an   (  M 3  ,  ∇ ˜  , g )   admits a proper gradient  ρ -ES. Then, the  ρ -ES reduces to the gradient traceless RS and   ρ =  1 3  , σ = 0  . Using these facts in (26) and then contracting the foregoing equation over   ζ 1   gives   Δ F = 0  .



A smooth function  h  on an   M n   is called harmonic if   Δ h = 0 .  



The above discussions state the following:



Corollary 4. 

Let a complete   (  M 3  ,  ∇ ˜  , g )   admit a proper gradient ρ-ES. Then the gradient function of the gradient ρ-ES is harmonic.





Contracting (38) over   ζ 1  , we find


  Δ F = ξ ( ξ ( F ) ) − 2 ξ ( F ) .  








Again, considering   σ = 0 ,     ρ =  1 3    and then contracting (26) over   ζ 1  , we conclude that


  Δ F = 0 .  








The last two equations show that   ξ ( ξ ( F ) ) − 2 ξ ( F ) = 0  . Let   ξ =  ∂  ∂ t    . Thus, we notice that the potential function  F  satisfies the PDE


     ∂ 2  F   ∂  t 2    − 2   ∂ F   ∂ t   = 0 .  








It is obvious that   F = A  e  2 t   + B   for smooth functions A and B, which are independent of t, is the solution of the above PDE. Now, we list our results in the following:



Corollary 5. 

Let the metric of a complete   (  M 3  ,  ∇ ˜  , g )   admit a proper gradient ρ-ES. Then, the potential function  F  of such soliton satisfies the PDE      ∂ 2  F   ∂  t 2    − 2   ∂ F   ∂ t   = 0  , and it can be evaluated by   F = A  e  2 t   + B  .






5. Example


We consider the manifold    M 3  =  {  (  w 1  ,  w 2  ,  w 3  )  ∈  R 3  }   , where   (  w 1  ,  w 2  ,  w 3  )   are the usual coordinates in   R 3  . Let    u 1  ,    u 2   and   u 3   be the vector fields on   M 3   given by


   u 1  =  e  b  w 3  +  w 1     ∂  ∂  w 1    ,      u 2  =  e  b  w 3  +  w 2     ∂  ∂  w 2    ,        u 3  =  1 b   ∂  ∂  w 3    = ξ ,  








where   b ( ≠ 0 ) ∈ R  . Then,   {  u 1  ,  u 2  ,  u 3  }   forms a basis in the module of the vector fields of   M 3  .



Let the Riemannian metric g be defined by


     g  (  u p  ,  u q  )  =      1 ,   1 ≤ p = q ≤ 3 ,       0 ,   o t h e r w i s e .          








Hence,   M 3   is a Riemannian manifold of dimension 3. Let the 1-form  η  on   M 3   be defined by   η  (  ζ 1  )  = g  (  ζ 1  ,  u 3  )  = g  (  ζ 1  , ξ )    for all   ζ 1   on   M 3  . Now, by direct computations, we obtain


   [  u 1  ,  u 2  ]  = 0 ,     [  u 1  ,  u 3  ]  = −  u 1  ,     [  u 2  ,  u 3  ]  = −  u 2  .  








By using Koszul’s formula, we obtain


      ∇  u p    u q  =      −  u p  ,   p = 1 , 2 , q = 3 ,        u 3  ,   1 ≤ p = q ≤ 2 ,       0 ,   o t h e r w i s e .          








Now we suppose that    ζ 1  =  ζ 1 1   u 1  +  ζ 1 2   u 2  +  ζ 1 3   u 3   , then for   ξ =  u 3    it follows that    ∇  ζ 1   ξ = −  ζ 1  + η  (  ζ 1  )  ξ .   It can be easily seen that   ∇ ˜   defined on   M 3   satisfies the conditions


   T ˜   (  ζ 1  ,  ζ 2  )  = − η  (  ζ 1  )   ζ 2  + η  (  ζ 2  )   ζ 1  ,    ∇ ˜  g = 0 ,   and    ∇ ˜  ξ = 0 ,  








for arbitrary vector fields   ζ 1   and   ζ 2   on   M 3  , where   T ˜   indicates the torsion tensor of   ∇ ˜  . Thus, we can say that   ∇ ˜   is a semi-symmetric metric  ξ -connection on   M 3  .



The non-zero constituents of K are obtained as follows:


  K  (  u 1  ,  u 3  )   u 1  =  u 3  ,   K  (  u 1  ,  u 2  )   u 1  =  u 2  ,   K  (  u 2  ,  u 3  )   u 2  =  u 3  ,  










    K  (  u 1  ,  u 2  )   u 2  = K  (  u 1  ,  u 3  )   u 3  = −  u 1  ,   K  (  u 2  ,  u 3  )   u 3  = −  u 2  .  








By using above components of the curvature tensor K we obtain


            S (  u p  ,  u q  ) = − 2 ,   1 ≤ p = q ≤ 3 ,  








from which we obtain   R = − 6  .



Now, by taking   D F =  (  u 1  F )   u 1  +  (  u 2  F )   u 2  +  (  u 3  F )   u 3   , we have


      ∇  u 1   D F =  (  u 1   (  u 1  F )  −  u 3  F )   u 1  +  (  u 1   (  u 2  F )  )   u 2  +  (  u 1   (  u 3  F )  +  u 1  F )   u 3  ,     










      ∇  E 2   D F =  (  u 2   (  u 1  F )  )   u 1  +  (  u 2   (  u 2  F )  −  u 3  F )   u 2  +  (  u 2   (  u 3  F )  +  F 2  F )   F 3  ,     










      ∇  E 3   D F =  (  u 3   (  u 1  F )  )   u 1  +  (  u 3   (  u 2  F )  )   u 2  +  (  u 3   (  u 3  F )  )   u 3  .     








Thus, by virtue of (26), we obtain


          u 1   (  u 1  F )  −  u 3  F = 2 − 6 ρ − σ ,        u 2   (  u 2  F )  −  u 3  F = 2 − 6 ρ − σ ,        u 3   (  u 3  F )  = 2 − 6 ρ − σ ,        u 1   (  u 2  F )  = 0 ,        u 2   (  u 1  F )  = 0 ,        u 2   (  u 3  F )  +  u 2  F = 0 .         



(42)




Thus, the relations in (42) are, respectively, amounting to


      e  2 ( b  w 3  +  w 1  )       ∂ 2  F   ∂  w 1 2    +   ∂ F   ∂  w 1     −  1 b    ∂ F   ∂  w 3    = 2 − 6 ρ − σ ,     










      e  2 ( b  w 3  +  w 1  )       ∂ 2  F   ∂  w 2 2    +   ∂ F   ∂  w 2     −  1 b    ∂ F   ∂  w 3    = 2 − 6 ρ − σ ,     










      1  b 2      ∂ 2  F   ∂  w 3 2    = 2 − 6 ρ − σ ,     










        ∂ 2  F   ∂  w 1  ∂  w 2    = 0 ,     










        ∂ 2  F   ∂  w 2  ∂  w 1    = 0 ,     










      1 b   [    ∂ 2  F   ∂  w 2  ∂  w 3    +   ∂ F   ∂  w 2    ]  = 0 .     








From the above relations, it is noticed that   F ∈ R   for   σ = 2 − 6 ρ  . Hence, the Equation (26) is satisfied. Thus, g is a gradient  ρ -ES with the soliton vector field   E = D F  , where   F ∈ R   and   σ = 2 − 6 ρ  . For   ρ =  1 3  ,   we obtain   σ = 0  , i.e., the gradient  ρ -ES is trivial with constant   σ = 2 − 6 ρ  . Thus, Theorem 2 is verified.




6. Results and Discussion


It is well known that the  ρ -Einstein soliton Equation (2) with   ρ = 0   becomes the Ricci soliton equation, which has been studied in [22]. Thus, we can say that the  ρ -Einstein soliton is a natural generalization of Ricci soliton. In this manuscript, we have explored the properties of  ρ -Einstein solitons in Riemannian geometry, which generalizes the results of [22].




7. Conclusions


To prove the curvatures invariant, Chauey et al. [23] defined the notion of semi-symmetric metric P-connection in Riemannian setting, which is a particular case of Riemannian concircular structure manifold [26]. This topic has great applications in differential equations. We proved that the scalar curvature of Riemannian 3-manifolds endowed with a semi-symmetric metric  ξ -connection and Ricci–Bourguignon soliton satisfies the Poisson and Laplace equations. It is well known that the Poisson and Laplace equations play a crucial role in the development of engineering, physics, mathematics, etc. We have also established the conditions for which the scalar curvature is harmonic, sub-harmonic and super-harmonic. We also established the existence condition of a gradient  ρ -Einstein soliton in the Riemannian 3-manifolds, and consequently we proved some results. To verify our results, we constructed a non-trivial example of a three-dimensional Riemannian manifold equipped with a semi-symmetric metric  ξ -connection. These topics are modern and have a lot of scope for researchers.
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