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Abstract: The main purpose of this research paper is to discuss the solution of the singular two-
dimensional pseudoparabolic equation by employing the double Sumudu-generalized Laplace
transform decomposition method (DSGLTDM). We establish two theorems related to the partial
derivatives. Furthermore, to investigate the relevance of the proposed method to solving singular
two-dimensional pseudo parabolic equations, three examples are provided.
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1. Introduction

Partial differential equations have several implementations in mathematical physics.
One of these implementations is the pseudoparabolic (also known as Sobolev-type differen-
tial equation) which is considered an important problem occurring in a kind of physical
situation like the flow of fluid out of fissured rocks, thermodynamics, and wave propa-
gation. The parabolic equation happens in many areas of applied mathematics physic,
for example, the heat diffusion equation and fluid mechanics; for more details, see [1-4].
The Adomian decomposition and the series expansion methods are used in solutions of
fractional diffusion equation problems in [5,6]. The existence, uniqueness, and contin-
uous dependence of powerful solutions of one-dimensional pseudoparabolic equation
were studied in [7]. Presently, several researchers have proposed a precise solution to a
one-dimensional connected parabolic equation; see [8,9]. The author in [10] suggested the
modification of the double Laplace decomposition method to find the analytical approxi-
mation solution of a coupled system of pseudoparabolic equations with initial conditions.
Newly, in [11], the authors applied the three-dimensional Laplace Adomian decomposition
method to solve singular pseudoparabolic equations. The convergence of the Adomian
method was studied by several researchers (we refer the readers to see [12-15]). The author
in [16] proposed Sumudu transform, later used by Belgacem et al. in [17] to generalize
the existence of Sumudu differentiation, integration, and convolution theorems. It was
also applied by the same authors for solving an integral production depreciation problem
in [18]. In [19], the researcher employed the Sumudu transform to obtain the solution of
Abel’s integral equation, an integrodifferential equation, a dynamic system with delayed
time signals, and a differential dynamic system. Moreover, the author in [20] expanded
the single Sumudu transform to a double Sumudu transform with a focus on solutions
to partial differential equations. Ahmeda et al. [21] discussed the convergence of the
double Sumudu transformation and used it to obtain the solution of the Volterra integro-
partial differential equation. The generalized Laplace transforms were used to study the
solution of partial differential equations (PDEs) and also, the suggested ideas gave an
easy solution to engineering problems by freely selecting integer « in the definition [22].
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Recently, the researchers in [23] studied the solution of fractional third-order dispersive
partial differential equations and symmetric KdV by utilizing Sumudu-generalized Laplace
transform decomposition.

The main goal of this work is to generate a new method by combining the decomposi-
tion method and double Sumudu-generalized Laplace transform, which is called the double
Sumudu-generalized Laplace transform decomposition method, to solve 2+1-singular pseu-
doparabolic equations. Here, we list some definitions that are applied in this work.

2. Properties of Double Sumudu-Generalized Laplace Transform

The definitions and existence conditions of the double Sumudu-generalized Laplace
transform are presented. Here, we work with the double Sumudu-generalized Laplace
transform, which is defined by

5:8yGi(f(x,y,1)) = F(81,C2,8) Céz/ / / -(a+ar f(x y, dtdydx (1)

Existence Condition for the Double Sumudu-Generalized Laplace Transform

In the following, the conditions for the existence of the double Sumudu-generalized
Laplace transform are offered. If f(x,y, t) is an exponential order a1,a; and b as x — oo,
y —> 0o,t — o0, and if IR > 0 similarly applies forallx > X,y > Yand t > T

[f(x,y,t)| < Re¥ oy tht, )
for some X,Y and T, then we write
flx,y,t)= O<e”]x+“2y+bt> as y —» 00, y — 00, t — 00,

and similarly,

lim e_%x_%y_%qf(x,y, t)‘ = R lim e_<%_a1)x (/\2 az)y (%_C)t =0, (3)
X—r00 X—r00
Y—r0 Yy—00
t—00 t—ro0

whenever /\% >a, > cand 3, > b. The function f (x,y,t) does not develop swifter than
K(x,y,t)asx—>oo Yy — 00, t — oo,

Theorem 1. The function f(x,y,t) is defined on (0,X), (0,Y) and (0, T) and is of exponential
order (x,y,t), then the double Sumudu-generalized Laplace transform of f(x,y, t) exists for all
R(Z)> 4 R(G) >4 RE> 5

Proof. By putting Equation (1) into Equation (2), we obtain

@152// &t f(xy, )dxdydt
/// a>x(“12b>y(‘ic)tdxdydt’

@1 0o
Rsterl

T A=) —cl)(1—bs)’ (4)

|P(§1/ gZ/s)‘

IN

From using the condition %(g—l) > %1, R(A = ) > % L gl > =, we yield

JCli_r}x(;lo|F(ul,uz,v)| =0or lim F(uj,up,v)=0.

X—»00
Y y—eo
t—oc0
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Theorem 2. If the double Sumudu-generalized Laplace transform of the function f(x,y,t) is
presented by S.SyGi(f(x,y,t)) = F(C1,02,5), then the double Sumudu-generalized Laplace
transform of the function

xyf(x,y,t),

is determined by

SxSyGi[xyf(x,y,t)] = G102 =5=57(0102F (81, 82,8)). (5)

35 902

Proof. By applying a partial derivative according to {; for Equation (1), we obtain

aF(Calégz'S) B a@/ / / 2y (st t>f(x,y/t>dxdydt,
1 1 162
(Gyrte)([° 0 1 A«
/ / ot (0 001 é f(x,y,t)dx)dydt, ©

and by computing the partial derivative within the brackets, we obtain

o0 1 e} 1
ilefﬁxf(x,y,t)dx = / (13x— 12>egle(x,y,t)dx
0

0 90101 SN
= Ooglxe a’f(x,y, t)dx
1
[T e )
1

then substituting Equation (7) into Equation (6), we obtain

162, _ © 1  _1,
(Calgfz / / 2 e (Zy+k) (/0 ae G f(x,y,t)dx)dydt

1

/ / 2 e €2y+t ( oole a f(x,y,t)dx)dydt, (8)
0o g2

and by taking the derivative according to (» for Equation (8), we achieve

azF(€1/CZIS> o T % o) 7izy 1 B 1
90195 gB/ / xe. (/0 e’ @z f(x,y,t) | dxdydt

. © 1,1 1
/ / (et (/0 e Cﬂ(gy—g>f(x,y,t)>dxdydt. )

Then, Equation (9), becomes

azF(Cl/ CZ/ S)

Cutas) _ gzézs UGl f(xy,0)] - gzé 5.5,Gilef ()
- ASS G ] + 2 SSGI ),
by arranging the above equation, we achieve
S, Glayn ) = GREs) g Fl )
10 @e)  nr ),

G2
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and thus, through simplifying, we obtain
92

aé' aé' (€1€2F(€1/€2/S))'

5:SyGilxyf (x,y, )] = G1la57—=+

The proof is finished. O

The following theorem offers the double Sumudu-generalized Laplace transform of
the partial derivatives xyi;.

Theorem 3. The double Sumudu-generalized Laplace transform of the partial derivatives xy; is

presented by
82
SxSyGrlxyys] = glfz 3 ag (C162¥(C1,G2/5)) (11)
—G102s" (C182¥(C1,02,0)),

ag P

Proof. By taking the partial derivative according to {; for Equation (22), we have

3 ;
5 (5:8,Gp)) = agl/ / / %e (F 59 4) y, dxayat,

_ °°S—M+sf)< R d)d i, (12
‘/0 ‘/0 gze 2 0 aglgle 1 lpt X yat, ( )

we calculate the partial derivative inside brackets as shown below:

© 9 1 _1.dp of1 1
_ RSy = _ a
A 351516 Btdx /0 (C% C2>e Uy dx

= /Ooo glg)xeélxlpt dx (13)

1

© 1 _1,
— —e a7y dx,
/o ¢t

substituting Equation (13) into Equation (12), we obtain

0 - © 1 _1
G (SxSyGilyr]) / / —e (Fv+i) (/0 g—?xe oy dx)dydt
- /Oo /oo ie_<éy+%t) /oo lefixzpt dx |dydt,  (14)
o Jo & 0o g
by taking the partial derivative according to ¢, for Equation (14),
02 +3 t) © 1 —Lx
= (& —xe ©
.00 (SxSyGe[yr]) (/ / 2 /o Qxe Uy dx | dydt
© 1 1
(/ / ~(Fv+l) (/0 Z%e Tatyy dx) dydt)

and therefore, Equation (15) becomes

(15)
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ag?gg (SxSyGelyrl) = gf;g%( / / / (& 5043 vy, dxdydt)
% /w/w/ (Fergreit)y, dxdydt)
1g 2/o°° [ e gy sty
C%éz % / ) / ) / e (B dxdydt),(l6)
and hence,
22 1
S, SxSyGlY) C1Cz 2 SiSuGilayp] + - C L 5.5,Gi[p]
O Cz 5 5xSyGelyr] — ng SxSyGilxpi], (17)
by reordering Equation (17), we prove Equation (11):
S:SyGilxyyp] = glfz aga;g (0122% (31, 02,9))
—0102s" BC 0 (C102¥(21,02,0)),

O

Double Sumudu transform of function ¢(x,t) is given by SyS¢[¢(x,t)] = ¢(ly,5).
Moreover, the Sumudu-generalized Laplace transform of ¢, xy, 1 and ¢; is determined by

¥(C1,8) — ¥(0,5)

Sthw’x] = gl ’
$(C1,s)  ¥(O0,5)  ¥x(0,s)
5<Gilpx) 2 2 G
and
SxGi[yr] = @ —s"(01,0),
SxGe(yn) = @ —s"71(21,0) — s"9r (21, 0).

Double Sumudu-generalized Laplace transform of the function ¢(x,y, t) is presented
by S¢S, Gi[p(x,y,t)] = (L1, {2, 5); therefore, the double Sumudu -generalized Laplace
transform of ¢, Pxx, P+ and Py is provided by

5:8,Gilp] = w(él,éz,s)gzlp(o,gz,s)/ )
S:8yGil¥ar) = lp(gléfLS) _IP(Olggz’S) _IPX(Oéfz’S) (19)
1 1
,62,8) — ,0,
$:8,Gi[py] = (01, 02 5)52 ¥(C1 s),
/O/
S:SyGi (Pyy) = #](glé;z,s)lp(gg%o,s)I,Dy(ggz s) o0)

and
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ss,Glp) = P2 w00
SxSyG(pn) = @ — "7 9(01,02,0) — s"4(01, 02, 0).-

3. Double Sumudu-Generalized Laplace Decomposition Method and 2+1-Dimensional
Linear Pseudoparabolic Equation

The following is the procedure showing two problems that are concerning to the linear
and nonlinear singular 2+1-D pseudoparabolic equation.
The general singular 2+1-D pseudo parabolic equation is considered as follows:

1 1 1
l/Jt = ;(XIle)x‘Fg(]/lpy)y‘i‘;(xq&)xt"'f(x/]// t>’ (21)

dependent on the initial condition

¥(x,y,0) = filx,y), (22)

where the functions f;(x,y) and f(x,y,t). Firstly, we obtain the product of both sides of
Equation (21) by xy, and implementing double Sumudu-generalized Laplace, we yield
Equation (21), and implementing double Sumudu transform for Equation (22), we obtain

SxSyGilxyp] = &%QPW%%+xW%y]
+5xSyGr [y (x9px) o + xyf (%, y,£)], (23)

and by arranging Equation (23), it becomes

82
e % GIA TN
= 105" ag T ——=(C102F(C1,02))

+sxsyct[ (xtpx), +x(y9y), +yy(xtlﬂx)xt]

+0102 5= (0102F (81, 02,9)), (24)

aC 902

and therefore, Equation (24) becomes

ag ag (€1€2T(€1/€2/ ))

- s”‘“aé e (C182F(C1,82))

+ﬁsxsyct [+ x (), + vy ().

aé % (C102F (81, G2/8))- (25)

By taking the integral for Equation (25), from 0 to {; and 0 to {» according to {; and
{», we have

(gll €2/
o o 2
N gng / / 1a€ ag gléZF(gl, gZ))déldgz

G o
+@/ 0 ésxsy@ [y(xlp")ijx(y‘/’y)y}d@ldCz

G o
€1§2/ 0 élsézs SyGely (x9x) ]d1d

01 1o 2
+m/0 /0 Smglng(CL52/5))d§1d§2- (26)



Axioms 2023, 12, 799

7 of 15

The solution is obtained by using the inverse double Sumudu-generalized Laplace for
Equation (26):

v(xyt) = filxy)

1e—1,~— [ 4] 4] :l
+S€1 Séz Gs _C1€2/ 0 glgzsxSyGt[ (x#’x)x]deCz

[ 01 6
+Sc115 161 glg2/ [ ng?sxs Gt[ (ylpy)y}d€1d§2:|

i Goh s ]
455155670 = [ [ 2SS Gl g diadta

+5:15.1G,! L /§1 /Czs2(€1€2P(€1 02 S))déldCz}- (27)
G e 0o Jo 901000 i

where S; 15~ 1G ! indicates the inverse double Sumudu-generalized Laplace. The double
Sumudu—generahzed Laplace decomposition method (DSGLTDM) defines the solutions
P(x,y, t) with the help of infinite series as

P(x,y,t) Z Pu(x,y,1) (28)

By substituting Equation (28) into Equation (27), we receive

2

_ g1 1 g2 9
Y puxyt) = Aluy) +Sg sgz G; [% 1 samgz(clgzp@,@z,s))dadgz]

4+S-1s-1G! /gl © s 566
6176 7 5152 0 102 oyt Y

(x o %) ] d§1d§2]

a1 G o g ©
+5,°5. G5 C1§2/ ; 61625 xS Gt[ (J/E%y)y] d€1d€2]

(x 2 lpru) ‘|d€1d€2‘| . (29)
n=0 xt

By matching both sides of Equation (29), we obtain
Yo(xyt) = filxy)
1 (o 2 92
+5—1s—1c—1[/ |7 5555 @ (@, 2,9)dnd ] 30
%% \nnh b Saglagz(élCz (C1,02,5))dC1dE2 |- (30)

+s€15§1c;s1 /gl “ S 5.8,G
1o C1C2 o G102

In general, the remaining terms are given by
Pns1(x,y,t) =
a (g
slslc—l{ | 258Gl dd]
076 010 o 01Gp ¥ e[y (xPnx) A1 4T,

o o
571516 LH@Z / / glsgsxSyGt{X(ylpny)y}déldéz]

el ,— a (o g :|
+5;15,1G; [QQ/ L 25 e Gl (xpne) o Jd1d0a (31)

where the inverse double Sumudu-generalized Laplace transform is given by S*llsgzl Gs L
Here, we assume that the inverse exists for Equations (30) and (31). In order to demonstrate
the advantages and the preciseness of the (DSGLTDM) for solving singular 2+1-D parabolic
equations, we employed the method proposed in the example below.
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Example 1. Consider a singular 2+1-D parabolic equation

¥ = %(xt,l)x)x + ]l/(]/lpy)y + (xz - yz) cost (32)

subject to the initial condition
$(x,0) =0, (33)
and by utilizing Equation (27), we have

G o
P(x,y,t) = 55115521(;; &1@2/ [ §15§2sxsyGt[ (xl[)x)x]dgldgz}

et G o2 g
+S§1 ng G [&Cz/o 0 Esxsyct [x(ylpy)y} d€1d€2:|
+5;151G; (zg%—gg) [s“+2—s“+4+s“+6—s“+8+...]. (34)
Therefore,

S

0162
+Séllséz {glgz /Cl OC2 51225 Syct{ (ylpy)y} dgld@}

S R
2 2
+(x —y)[t—3|+5, TR }

our desired recursive relation is given by

] e 01 o2
Pyt = S;IS;lG; [Clgz / [ =55,y (xlpx)x]dgldgz]

B P
_(2_.2
1/;0—<x —y){t—?"—i-S' 7,—0— ]

and

(SIs:
bl = Salsgﬁcsl[gf@/ [ 2 siS,Galytap) Jitraca|

1 G 2o :|
+S S . |:§1€2/ 0 glgzs x5 Gt{ (ylpﬂy)y]dﬁdé ,

forn=0,1,2,...; hence,at n =0,

01 10
pi(xyt) = ngsgjcl[m / A gfgzs SyGily(xox) }déldgz}

S

‘1 1@
+S€_115€_2165_1 |:€1€2 / i 2 ﬁSxSyGt |:.X (ywoy)y} dCld€2:|
S P | G e s BB
= Sute {Q@z / 0o G162 T ny (t BRI ﬂdéldé]

—515161{ /él “ s 5 ye: [4xy< i+i Py .ﬂdg”ldgz}
a7 00 0o 102 50 7!
pi(xyt) = 0
atn =1
¥2(x,y,t) =
and at n = 2,
¥2(x,y,t) =
By applying Equation (28), we obtain
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o

Y u(xyt) = otpritiot....

n=0
vt = (PP i-grg -t
Thus, the solution of Equation (32) is given by
P(x,y,t) = (x2 - yz) sin f.
Example 2. Consider the singular 2+1-D pseudoparabolic equation given by
b= St ),
Lt (2 )4,

subject to the initial condition
P(x,y,0) = =y,
For the purpose of keep on with our method for Equation (35), we obtain

9 2 3
go = (x y)[1+t+ +3,+ ]
2
4[t+ +g e ]

the exponential function formula is defined by

2
e =1+t+ 4o+
and
e 01 2 g
lpn+1(x Y, ) §1 ng G {5152/ 0 €1Cz SxSyGt[An]dg1d€2}/
where

Ay =y(xXPpy), + x(yany)y + Y (XPnx) s

at n = 0, we have

¥i(x,y, 1) = 515216, { /gl 25 s Gt[Ao]de@]
" I FeTe 0 6152 ey
and therefore,
Ay = y(xIPOx)erx(leJOy) + y(xtpox) o

2 13
= 4xy[1+t+ TR }

21 3!
hence
_ 1 1 oc+2 a+3 a+4 a+5
lpl(x/y/t) Sg ng G +S +S +S + 7
2 3
= 4[t+ 3t }

In a similar way, at n = 1, we have

Pa(x,y,t) =

(35)

(36)
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In the same way, at n = 1, we obtain

P3(x,y,t) =

Therefore, the approximate solution of Equation (35) is presented as follows:

Yo pu(xyt) = ottt

n=0 2 3
P(x,y,t) = (x2 y)[1+t—|— —|-3,—|- }
2 83
—4[t+2! g‘f' :|

2
P(x,y,t) = (xz—yz){1+t+2!+3!+...}

Hence,

P(x,y,t) = (x2 - yz)et.

4. Double Sumudu-Generalized Laplace Decomposition Method and 2+1-Dimensional
Nonlinear Pseudoparabolic Equation

We must illustrate the double Sumudu-generalized Laplace decomposition method
to solve the singular 2+1-dimensional nonlinear pseudoparabolic equation:

Consider the following general form of the singular 2+1-dimensional nonlinear pseu-
doparabolic equation of the model:

1 1 1
veo= )t ), (g
=20 (x)Pxpx + v(x) (x)* + f(x, 1, 1) (37)

with initial condition
P(x,y,0) =h(x,y), (38)

where the functions y(x) and v(x) are arbitrary. With a view to procure the solution
of Equation (37), first, obtain the product of both sides of Equation (37) by xy, and
implementing double the Sumudu-generalized Laplace transform, we find

SxSyGixyi] = Sx5,Gi [V(xIPX)x + x(.‘/lpy)y + y(xwx)xt}
+5x5yGt {*nyﬂ(x)#’xl/’xx + xyV(x)(¢x)2 +xyf(x,y, t)} . 39)

Second, applying theorem 1 and 2 into Equation (39), we obtain

ag T (C102¥(C1,C2,9))
2

= gutl agaag (C102H1(1,22))

7 iz = 5x8yGt [y(xtpx) + X (y¥y) , + ¥ (x¥2)

_@sty(;t [zxy.“(x)l/]xl/]xx - xyv(x)(lpx)z}
2

aé' aé' (€1€2F(€1/€2/ )) (40)
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By taking the integral for Equation (40), from 0 to {; and 0 to {» according to {7 and (>,
we have

(€11€2/ )
a 1o
B ClCz/ / 185 30 (C182H1(81,82))d01dE,

G e
ClCz/ 0 glsgzsxsyct[ (xl/’x)xJFx(]/le)y}dCldCz

o
gng/ 0 Clsézsxsyct[ (¥x) ]dC1dTa

SIS
_@/0 0 isxSyGt[nyy(x)gbx%x_xyv(x)(%f]dgldgz

1 G o 92
+m/0 /O Sm(€1§2F(§1,€2,s))d§1d§2_ (41)

The third step, now using inverse double Sumudu-generalized Laplace for both sides
of Equation (41), the solution of Equation (37) can be written as

v(xyt) = hi(xy)
I &1 0
+S;:1s: 161
b0 e _@1@2/ 0 QCQ

gy | 0 s
+S§115€21(;51_€1€2/ ; élézs S Gt[ (ytpy)y}dgd@z]

] O oo s }
+S§1 SCZ Gs _€1€2/ 0 51525 xS Gt[ (xwx)xt]d€1d€2

olo-1p,-1 _7 01 CZL :|
S§1 SCz G _Clgz/ 0 0102 SxSyGt[2xyp (x)Pxipxx|d1dEr

[ 01 o
+S€115621G;1 Clgz/ 0 ngzsxsycf [xyv( )Wx)z}déld@z]

o] o 2 92
+5;,°5;, Gs E/O /o Sagl(§1§2F(§1,€2,5))d51d€2]- (42)

SxSyGt[ (xwx)x]dgldgz]

902

By substituting Equation (28) into Equation (42), we obtain

Y u(xyt) = hi(xy)

o] G b g 00
55,5, G 2 / o TG {y(xzowx)jdadéz]

n=|

G o2 g 00
S:1s1G! ——5:5,G N dc,d
+ 010 s €1€2/ 0 010 t[ (]/ngolp y)y] 01 @2]

Lol G o2 g 00
555 G ClCz/ 0 €1Czsxsyctl <x,;01’bnx>xj dad@]

_sigigt [ L (B s oo o A, ldTd
01 50 s Cléz 0 1o x9y f[ x]/.u(x) n] 01dC

+571571G;1 /gl ® 5 g 5, Gilyv(x)BaldC dg}
G150 78 Cl§2 o 01l yGt| XY n]A61a62

] G 1o 92
+Sg115§2165 ' @/0 /0 Saglagz(Clng(CLCz,s))d@ldgz}. (43)
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wheren =0,1,2,.... Hence, from Equation (43) above, we have

Yo(x,y,t) = h(xy)+182(xy)
e[ 1 8 92
+5. 151G [%/O /0 Saglagz(@1521?(@1/52/5))‘151!1@2]

and
el ,—1 1 01 02 s
Pna(x,y,t) = 5., 5z, Gs E/O 0 ESxSyGt[y(x‘/’nx)x]dgldCZ
1 01 2 g
-l—Sg 1S€21G 1 _C1Cz / 0 ﬁsxSyGt [x (]/lpny)y} d@ﬁ@z}
o] I G (o g
+S§1 SZz Gs glgz/ 0 QCzsxsyGt[ (anx)xt]déldgz
Tee11l 01 02 s
=505, Cs 6162/ o 710, SyGi2xyn(x) Anldgidly
g1 G (o2 g
+S§1 SCz Gs glgz/ 0 glgzsffsyct[xyv( x)By]d1dls |,
where nonlinear terms A, and B,, are addressed as
= E ¢nxlpnxx/ Bn = Z (1an)2/ (44)
n=0 n=0

where the nonlinear terms ¢y, and (IIJX)Z are in the following forms:

AO = ¢0xlp0xx
A1 = PoxPixx + Px1Poxxs
Az = Poxhoxx + P1xP1xx + P2xPoxx,

A3 = lPOle?axx + lplleZxx + IPZxIPlxx + 1P3x¢0xx~ (45)
and
BO = (¢Ox)2
By = 2¢oxt1x
By = 2toxtpoy + (P11)?
By = 2oxP3x + 2122y (46)

To ascribe this method to a linear singular 2+1-dimensional nonlinear pseudoparabolic
equation, we give the next example.

Example 3. The singular 2+1-dimensional nonlinear pseudoparabolic equation is offered by

1 1 1
Yy = ;(W’x)x + g(ylpy)y + ;(xwx)xt

=20 () Pxprx + v (x) ()
+2 (xz - yz)EZt — 8¢ (47)

with the initial condition

¥(x,y,0) = x* — 2. (48)
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In order to flow with our method for Equation (47), we obtain

Yo(x,y,t)

(22 2 (2> (2p*
- (x —y)<1+2t+ sttt
212 43 8t

3!

{

+tor gt T

)

and

Yn1(x, Y, t) ——5:5yGtly (anx)x]déldéz]

5715161 { /gl @ s

b7 s 5_1@2 0o 102
+85115521G;1 _§152 /g1 ng élSCz
5 1S€21GS_1 _@152 /g1 ng Clsgz
7551155_2%;5_1 m /4,”1 OZJZQZ
5056 6 5102 /gl ng @1352

sxsyct[ (ywny)y}dg1d€2}
SxSyGily (XIan)xt]délng]

S5+S, Gt [nyy(x)An]de@z}

SxSyGi[xyv(x )Bn]d€1d§2:|/

the first repeat at n = 0 is denoted by

¥1(x,y,t)

1 l -1
Sél SCz

G 1o
{Q@z / 0
[ G o
_m/ o

1G 1

[ G o
b2 5102 / Jo

—1ec—-1,~-1
57,54, Gs

1
+5.°5,,

0102

S

S 5.8,Gily <x¢0x>x]dé1dzsz}

S

G2

S

0102

884Gt [x(vipoy), | déldéz]

S, Gily (o) 61

a1
=5z, 5¢, Gs

4 8] S
€1§2/ 0 €1§25 xSy Gr[2xyp(x )Ao]dgldgz]

S 15 1G 1 [ a1 02 S S S G 5 d ;
it ClCz 0o i Y t[xyv(x)Bo]dC1dl> |,
_ 1 gl €2 S 4t2 12t3 321.4
lpl(x/y/t) = S, 1S§21 S l|:€]§2/0 0 @SxSyGt |:8x]/|:1+2|+3'+4'+ :|:|d€1d€2:|

s;1s; 16, [8 [s““ 253 gty 10505 } }
212 43 8t )

8(t+t+2l+3'+4'+

at n =1, we have
Pa(x,y,t) =
and letting n = 2, we obtain
P3(xy,t) =0,
and therefore, by using Equation (28), the series solutions are denoted by

B e

Yo+ +yPo+....

(xz —yz) (1 + 2t +

(21)°
2!

(2t)°
3!

(21)
4!

+

+>
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and therefore, the accurate solutions become
P(x,y,t) = (x2 - yz)EZt.

5. Conclusions

In this study, we established a new hybrid method, which is named the double
Sumudu-generalized Laplace transform decomposition method (DSGLTDM). This ap-
proach is successfully applied in singular 2+1-D pseudoparabolic equations. The (DS-
GLTDM) is an analytical process and works by utilizing the initial conditions only. Three
examples are offered to examine the accuracy of the method.
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