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1. Introduction and Preliminaries

One of the most significant and vital tools utilized by authors in the fields of non-
linear analysis, quantum physics, hydrodynamics, number theory, and economics is
the Banach contraction principle [1]. This contraction has been generalized by weak-
ening the contraction principle and enhancing the working spaces in different structures
and generalized metrics, such as quasi-metric, b-metric, cone-metric, etc. For examples,
see [2–11].

One of the remarkable and interesting generalizations of contraction mappings is
Ćirić-type contractions (see [12]). For analyzing fixed points of self-mappings in different
metrics spaces, Ćirić-type contractions offer a broader framework. A variety of results,
such as the existence and uniqueness of fixed points, their stability, and the convergence of
iterative procedures are investigated in the study of Ćirić-type contractions.

Similarly, a weakened form of contraction mapping, the “almost contraction”, was
introduced in 2004 by Berinde [13]. This contraction comprises the class of many mappings,
notably Banach [14], Chatterjea [15], and Kannan [16]. However, it must be noted that
unlike traditional contractions, almost contractions do not guarantee a unique fixed point.

A new concept called b-metric space was introduced in 1989 by Bakhtin [17]. Several
important studies have been conducted by researchers in the field of b-metric space, in-
cluding refs. [18–21]. In 2011, the metric space in complex version was firstly presented by
Azam et al. [22]. Similarly, b-metric space in complex plane has been introduced in 2013 by
Rao et al. [23].

Let us now recall the mentioned notions.

Definition 1 ([24]). For complex numbers set C, relation of partial order � on C is defined by

℘1 - ℘2 if and only if Real(℘1) ≤ Real(℘2) and Img(℘1) ≤ Img(℘2).

Therefore, we can say that ℘1 - ℘2 if one of the below condition is fulfilled:
(I) Real(℘1) = Real(℘2), Img(℘1) < Img(℘2),
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(II) Real(℘1) < Real(℘2), Img(℘1) = Img(℘2),
(III) Real(℘1) < Real(℘2), Img(℘1) < Img(℘2),
(IV) Real(℘1) = Real(℘2), Img(℘1) = Img(℘2).
We can say that ℘1 � ℘2 if ℘1 6= ℘2 and one of the mentioned necessities is fulfilled and we can
say that ℘1 ≺ ℘2 only if condition (III) is satisfied.

Definition 2 ([25]). Let ℘1,℘2 ∈ C. The max function for the partial order �, defined on C as:
(a) max{ ℘1,℘2} � ℘2 ⇔ ℘1 � ℘2;
(b) ℘1 � max{℘2,℘3} ⇒ ℘1 � ℘2 or ℘1 � ℘3;
(c) max{℘1,℘2} = ℘2 ⇔ ℘1 � ℘2 or |℘1| ≤ |℘2|.

Another important lemma that is helpful in justifying our new results is the following.

Lemma 1 ([25]). Let ℘i ∈ C, i ∈ {1, 2, 3, 4, 5} and partial order relation � defined on C. Then,
these statements fulfil:
(a) If ℘1 � max{℘2,℘3} then, ℘1 � ℘2 if ℘3 � ℘2;
(b) If ℘1 � max{℘2,℘3,℘4} then, ℘1 � ℘2 if max{℘3,℘4} � ℘2;
(c) If ℘1 � max{℘2,℘3,℘4,℘5} then, ℘1 � ℘2 if max{℘3,℘4,℘5} � ℘2.

Definition 3 ([24]). For the provided real number b ≥ 1 and a nonempty set Z , a functional
Λ : Z × Z → C is termed as a complex valued b-metric (CVbM), if for all ℵ, ς, £ ∈ Z the
necessities below fulfil:

(1) Λ(ℵ, £) = 0 if and only if ℵ = £,
(2) Λ(ℵ, £) � 0,
(3) Λ(ℵ, £) = Λ(ℵ, £),
(4) Λ(ℵ, £) � b[Λ(ℵ, ς) + Λ(ς, £)].

Then (Z , Λ) is a complex valued b-metric space (CVbM space).

Example 1 ([24]). Let Z = C, define Λ : Z ×Z → C by

Λ(ν1, ν2) =| ν1 − ν2 |2 +i | ν1 − ν2 |2 for all ν1, ν2 ∈ Z .

Then (Z , Λ) is a CVbM space with b = 2.

Definition 4 ([23]). Let (Z , Λ) be a CVbM space and {ℵn} a sequence in Z and ℵ ∈ Z .
(i) A sequence ℵn in Z is convergent to ℵ ∈ Z if for every 0 ≺ c ∈ C there exists n0 ∈ N, such that
Λ(ℵn,ℵ) ≺ c for every n > n0. In that case, we use the notation limn→+∞ ℵn = ℵ or ℵn → ℵ as
n→ +∞.
(ii) If for every 0 ≺ c ∈ C there exists n0 ∈ N, such that Λ(ℵn,ℵn+m) ≺ c for every n > n0 and
m ∈ N. Then, {ℵn} is called a Cauchy sequence in (Z , Λ).
(iii) If every Cauchy sequence inZ is convergent inZ , then (Z , Λ) is called a complete CVbM space.

Lemma 2 ([23]). Let (Z , Λ) be a CVbM space and {ℵn} be a sequence in Z .
(i) Then, a sequence {ℵn} converges to ℵ if and only if |Λ(ℵn,ℵ)| → 0 as n→ +∞.
(ii) Then, a sequence {ℵn} is a Cauchy sequence if and only if |Λ(ℵn,ℵn+m)| → 0 as n → +∞,
where m ∈ N.

Next, the contraction principle in [12] is to be recalled, which is the generalization of
Lj Ćirić.

Theorem 1 ([12]). Let (k, Λ) be a metric space and for a mapping Q : k → k there exists
ς ∈ (0, 1), such that for all z1, z2 ∈ k, we have

Λ(Qz1, Qz2) ≤ ς max
{

Λ(z1, z2), Λ(z1, Qz1), Λ(z2, Tz2),
1
2
(Λ(z1, Qz2) + Λ(z2, Qz1))

}
.
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If k is complete Q-orbitally then:
(1) Fix(Q)=z*;
(2) For all z∗ ∈ k sequence (Qiz)i∈N converges to z*;

(3) Λ(Qiz, z∗) ≤ ςi

1−ς Λ(z, Qz), for all z ∈ k, i = 1, 2, . . .

Similarly, the generalisation of the fixed-point theorem of Zamfirescu [26] has been
further elongated in [13] to an almost contraction.

Theorem 2 ([13]). Let (C,z) be a complete metric space and G : C → C be an almost contraction,
that is a mapping for which exists a constant κ ∈ [0, 1) and for some $ ≥ 0, such that

z(Gu, Gw) ≤ κz(u, w) + $z(w, Gu),

for all u, w ∈ C. Then
(1) Fix(G) = u ∈ C : Gu = u 6= 0;
(2) For any u0 ∈ C, the Picard iteration un converges to u∗ ∈ Fix(G);
(3) The following estimate holds z(un+i−1, u∗) ≤ δi

1−δz(un, un−1), n = 1, 2, . . . , i = 1, 2, . . .

In this manuscript our aim is to combine and extend the Ćirić and almost contraction
conditions in the context of CVbM spaces. In addition, some examples and applications
have been provided for the authenticity of our new generalization results.

We will use the following variant of the results from Miculescu and Mihail [27]
(see also [28]).

Lemma 3 ([29]). Let {ωn} be a sequence in CVbM space (Z , Λ) and exists h̄ ∈ [0, 1), such that

Λ(ωn+1, ωn) � h̄Λ(ωn, ωn−1),

for all n ∈ N. Then {ωn} is a Cauchy sequence.

2. Main Results

Here we present our first new result in the case of a CVbM space for a unique and
common fixed point of almost Ćirić-type contractions.

Theorem 3. Let (C, db) be a complete CVbM space W, T : C → C be two continuous mappings,
such that:

db(Wz1, Tz2) � q max
{

db(z1, z2), db(z1, Wz1),
db(z2, Tz2)

1 + db(z2, Wz2)
, (1)

1
2
(db(z1, Tz2) + db(z2, W1))

}
+ qLmin

{
db(z1, z2), db(z1, Wz1), db(z2, Tz2),

db(z1, Tz2)db(z2, Wz1)

1 + db(z1, z2)

}
,

for all z1, z2 ∈ C, where 0 ≤ q < 1
s , L ≥ 0 and all elements on the right side can be compared to

one another with partial order �. Then, the pairs (W,T) has a unique common fixed point.

Proof. Let µ0 be an arbitrary point in C that defines a sequence µη , as follows:

µ2η+1 = Wµ2η and µ2η+2 = Tµ2η+1, n = 0, 1, . . . (2)

Then, by (1) and (2) we obtain
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db(µ2η+1, µ2η+2) = db(Wµ2η , Tµ2η+1)

� q max

{
db(µ2η , µ2η+1), db(µ2η , Wµ2η),

db(µ2η+1, Tµ2η+1)

1 + db(µ2η+1, Wµ2η)
,

1
2
(db(µ2η , Tµ2η+1) + db(µ2η+1, Wµ2η))

}
+ qL min

{
db(µ2η , µ2η+1), db(µ2η , Wµ2η), db(µ2η+1, Tµ2η+1),

db((µ2η , Tµ2η+1))db(µ2η+1, Wµ2η)

1 + db(µ2η , µ2η+1)

}

� q max

{
db(µ2η , µ2η+1), db(µ2η , µ2η+1),

db(µ2η+1, µ2η+2)

1 + db(µ2η+1, µ2η+1)
,

1
2
(db(µ2η , µ2η+2) + db(µ2η+1, µ2η+1))

}
+ qL min

{
db(µ2η , µ2η+1), db(µ2η , µ2η+1), db(µ2η+1, µ2η+2),

db((µ2η , µ2η+2))db(µ2η+1, µ2η+1)

1 + db(µ2η , µ2η+1)

}
,

so,

db(µ2η+1, µ2η+2) � q max
{

db(µ2η , µ2η+1), db(µ2η+1, µ2η+2),
1
2

db(µ2η , µ2η+2)

}
.

We have three possible maximums.
If

Case I.

max
{

db(µ2η , µ2η+1), db(µ2η+1, µ2η+2),
1
2

db(µ2η , µ2η+2)

}
= db(µ2η+1, µ2η+2),

we have
db(µ2η+1, µ2η+2) � qdb(µ2η+1, µ2η+2).

This implies that q ≥ 1, which is a contradiction.
Case II.

If

max
{

db(µ2η , µ2η+1), db(µ2η+1, µ2η+2),
1
2

db(µ2η , µ2η+2)

}
= db(µ2η , µ2η+1),

we have
db(µ2η+1, µ2+η2) � qdb(µ2η , µ2η+1). (3)

Next, we have

db(µ2η+2, µ2η+3) � q max
{

db(µ2η+1, µ2η+2), db(µ2η+2, µ2η+3),
1
2

db(µ2η+1, µ2η+3)

}
.

Then we find to have these three cases as below.
Case IIa.

db(µ2η+2, µ2η+3) � qdb(µ2η+2, µ2η+3),

which is again the same contradiction.
Case IIb.

db(µ2η+2, µ2η+3) � qdb(µ2η+1, µ2η+2). (4)
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From (3) and (4), for all n = 0, 1, 2, . . . we obtain

db(µη+1, µη+2) � qdb(µη , µη+1) � · · · � qη+1db(µ0, µ1). (5)

For m, η ∈ N and m > η, we have

db(µη , µm) � s[db(µη , µη+1) + db(µη+1, µm)]

� s(db(µη , µη+1)) + s2[db(µη+1, µη+2) + db(µη+2, µm)]

� s(db(µη , µη+1)) + s2(db(µη+1, µη+2)) + s3(db(µη+2, µη+3)

+ · · ·+sm−η−1(db(µm−2, µm−1)) + sm−η(db(µm−1, µm)).

Moreover, using (5) we have

db(µη , µm) � sqη(db(µ0, µ1)) + s2qη+1(db(µ0, µ1)) + s3qη+2(db(µ0, µ1)) + · · ·
+ sm−η−1qm−2(db(µ0, µ1)) + sm−ηqm−1(db(µ0, µ1)).

This implies that

db(µη , µm) �
m−η

∑
i=η

siqi+η−1(db(µ0, µ1)).

Therefore, ∣∣∣∣db(µη , µm)

∣∣∣∣ � m−η

∑
i=η

siqi+η−1
∣∣∣∣(db(µ0, µ1))

∣∣∣∣
�

∞

∑
i=η

(sq)i
∣∣∣∣(db(µ0, µ1))

∣∣∣∣
=

(sq)η

1− sq

∣∣∣∣(db(µ0, µ1))

∣∣∣∣.
As a result, we have∣∣∣∣db(µη , µm)

∣∣∣∣ � (sq)η

1− sq

∣∣∣∣(db(µ0, µ1))

∣∣∣∣→ 0 as η → ∞.

Thus, {µη} has been proven to be a Cauchy sequence in C.
Case IIc.

db(µ2η+2, µ2η+3) � q
1
2

db(µ2η+1, µ2η+3)

� qs
2
(db(µ2η+1, µ2η+2) + db(µ2η+2, µ2η+3)),

this implies that

(1− qs
2
)db(µ2η+2, µ2η+3) �

qs
2

db(µ2η+1, µ2η+2).

In addition,

db(µ2η+1, µ2η+2) �
qs
2
(db(µ2η , µ2η+1) + db(µ2η+1, µ2η+2)),

which implies that

(1− qs
2
)db(µ2η+2, µ2η+3) �

qs
2

db(µ2η+1, µ2η+2).
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Thus we obtain
db(µ2n+2, µ2n+3) �

qs
2− qs

db(µ2n+1, µ2n+2). (6)

From (3) and (6) we obtain

db(µη+1, µη+2) � ςdb(µη , µη+1),

where ς = max
{

qs
2−qs , q

}
< 1, by Lemma 3, we conclude that {µn} is a Cauchy sequence.

Case III
If

I f max
{

db(µ2η , µ2η+1), db(µ2η+1, µ2η+2),
1
2

db(µ2η , µ2η+2)

}
=

1
2

db(µ2η , µ2η+2),

we have

db(µ2η+1, µ2η+2) �
1
2

db(µ2η , µ2η+2)

� qs
2
(db(µ2η , µ2η+1) + db(µ2η+1, µ2η+2)).

Thus,
(1− qs

2
)db(µ2η+1, µ2η+2) �

qs
2

db(µ2η , µ2η+1).

Then, we obtain
db(µ2n+1, µ2n+2) �

qs
2− qs

db(µ2n, µ2n+1). (7)

Further, for the next step we obtain

db(µ2η+2, µ2η+3) � q max[db(µ2η+1, µ2η+2), db(µ2η+2, µ2η+3),
1
2

db(µ2η+1, µ2η+3)].

Then, once again, we have three cases:
Case IIIa

db(µ2η+2, µ2η+3) � qdb(µ2η+2, µ2η+3),

which is a contradiction, because we have q ≥ 1 here.
Case IIIb

db(µ2η+2, µ2η+3) � qdb(µ2η+1, µ2η+2). (8)

It follows from (7) and (8) that

db(µη+1, µη+2) � ςdb(µη , µη+1),

where ς = max
{

qs
2−qs , q

}
< 1; by Lemma 3, we obtain that {µη} is a Cauchy sequence.

Case IIIc
db(µ2η+2, µ2η+3) �

1
2

db(µ2η+1, µ2η+3).

After some calculation, as completed before, we obtain

db(µ2η+2, µ2η+3) �
qs

2− qs
db(µ2η+1, µ2η+2). (9)

Then, by (7) and (9) we obtain

db(µη+1, µη+2) � h̄db(µη , µη+1), (10)
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where 0 ≤ h̄ = qs
2−qs < 1. Then, for all η = 0,1,2, . . . , we obtain

db(µη+1, µη+2) � h̄db(µη , µη+1) � · · · � h̄η+1db(µ0, µ1). (11)

This will implies

db(µη , µm) � s[db(µη , µη+1) + db(µη+1, µm)]

� s(db(µη , µη+1)) + s2[db(µη+1, µη+2) + db(µη+2, µm)]

� s(db(µη , µη+1)) + s2(db(µη+1, µη+2)) + s3(db(µη+2, µη+3))

+ · · ·+ sm−η−1(db(µm−2, µm−1)) + sm−n(db(µm−1, µm)).

Using (11), we obtained

db(µη , µm) � sh̄η(db(µ0, µ1)) + s2h̄η+1(db(µ0, µ1)) + s3h̄η+2(db(µ0, µ1)) + · · ·
+ sm−η−1h̄m−2(db(µ0, µ1)) + sm−η h̄m−1(db(µ0, µ1)).

This implies that

db(µη , µm) �
m−η

∑
i=η

si h̄i+η−1(db(µ0, µ1)).

Therefore, ∣∣∣∣db(µη , µm)

∣∣∣∣ � m−η

∑
i=η

si h̄i+η−1
∣∣∣∣(db(µ0, µ1))

∣∣∣∣
�

∞

∑
i=η

(sh̄)i
∣∣∣∣(db(µ0, µ1))

∣∣∣∣
=

(sh̄)η

1− sh̄

∣∣∣∣(db(µ0, µ1))

∣∣∣∣.
As a result, we have∣∣∣∣db(µη , µm)

∣∣∣∣ � (sh̄)η

1− sh̄

∣∣∣∣(db(µ0, µ1))

∣∣∣∣→ 0 as η goes to ∞.

Thus, µη is a Cauchy sequence in C. We obtain µη in all the above discussed cases as a
Cauchy sequence. Because C is a complete space there, we have ḡ ∈ C, such that db(µη , ḡ)→
0 as η → ∞. This yields db(µ2η , ḡ) → 0 as η → ∞. Because we have W continuous, this
implies that µ2η+1 = Wµ2η →Wḡ as η → ∞. In the same way, db(µ2η+1, ḡ)→ 0 as η → ∞.
As we have T continuous, this implies that µ2η+2 = Tµ2η+1 → Tḡ as η → ∞. Since the
limit is unique, we obtain ḡ = Tḡ. Thus, ḡ is a common fixed point of the pair (W,T).
Uniqueness
To justify that ḡ is unique, let ` ∈ C be considered as another common fixed point of (W,T).
Therefore, we have

db(`, ḡ) = db(W`, Tḡ)

� q max
{

db(`, ḡ), db(`, W`),
db(ḡ, Tḡ)

1 + db(ḡ, Tḡ)
,

1
2
(db(`, Tḡ) + db(ḡ, W`))

}
+ qL min

{
db(`, ḡ), db(`, W`), db(ḡ, Tḡ),

db(`, Tḡ)db(ḡ, W`)

1 + db(`, ḡ)

}
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This implies that

db(`, ḡ) = db(W`, Tḡ)

� q max
{

db(`, ḡ), db(`, `),
db(ḡ, ḡ)

1 + db(ḡ, ḡ)
,

1
2
(db(`, ḡ) + db(ḡ, `))

}
+ qL min

{
db(`, ḡ), db(`, ḡ), db(ḡ, ḡ),

db(`, ḡ)db(ḡ, `)
1 + db(`, ḡ)

}
,

so db(`, ḡ) � qdb(`, ḡ). This means that q ≥ 1, which causes a contradiction. Thus, ` = ḡ.
Thus, b̄ is unique.

Theorem 4. Let (C, db) be a complete CVbM space with s ≥ 1, a provided real number, and
W, T : C → C be two mappings such that:

db(Wz1, Tz2) � q max
{

db(z1, z2), db(z1, Wz1),
db(z2, Tz2)

1 + db(z2, Wz1)
,

1
2
(db(z1, Tz2) + db(z2, Wz1))

}
+ L min

{
db(z1, z2), db(z1, Wz1), db(z2, Tz2),

db(z1, Tz2)db(z2, Wz1)

1 + db(z1, z2)

}
,

for all z1, z2 ∈ C, where 0 ≤ q ≤ 1
s and L ≥ 0 and all the element on the right side can be compared

to one another with partial order �. Then, W and T possess a unique common fixed point.

Proof. The sequence {uη} could be obtained as a Cauchy sequence using the same proce-
dure used in Theorem 3. Because C is complete, there exists ḡ ∈ C, such that db(uη , ḡ)→ 0
as η → ∞. Because W and T omitted to have continuity, we have db(ḡ, Wḡ) = k > 0. Then,
we can estimate that

k = db(ḡ, Wḡ) � s[db(ḡ, u2η+2) + db(u2η+2, Wḡ)]

� sdb(ḡ, u2η+2) + sdb(Tu2η+1, Wḡ)

� sdb(ḡ, u2η+2) + sq max{db(ḡ, u2η+1), db(ḡ, Wḡ),
db(u2η+1, Tu2η+1)

1 + db(u2η+1, Wu2η+1)
,

1
2
(db(ḡ, Tu2η+1) + db(u2η+1, Wḡ))}+ L min{db(ḡ, u2η+1), db(ḡ, Wḡ)},

db(u2η+1, Tu2η+1)
db(ḡ, Tu2η+1)db(u2η+1, Wḡ)

1 + db(ḡ, u2η+1)

� sdb(ḡ, ḡ) + sq max{d(ḡ, ḡ), d(ḡ, Wḡ),
db(ḡ, ḡ)

1 + db(ḡ, Wḡ)
1
2
(db(ḡ, ḡ) + db(ḡ, Wḡ))}

+ L min{db(ḡ, ḡ), db(ḡ, Wḡ), db(ḡ, ḡ),
db(ḡ, ḡ)db(ḡ, Wḡ)

1 + db(ḡ, ḡ)
}

� sqdb(ḡ, Wḡ),

so, k � sqk. This implies that |k| ≤ sq|k|, which causes a contradiction. Consequently,
ḡ = Wḡ. In the same way, one can obtain ḡ = Tḡ. Hence, ḡ is a common fixed point
of (W,T). To justify the uniqueness of ḡ, one can use the similar approach as followed in
Theorem 3.

Taking W = T we achieve the results below for, almost Ćirić, type operators on
CVbM spaces.
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Theorem 5. Let (C, db) be a complete CVbM space with s ≥ 1, a real number and W : C → C be
a continuous mapping that fulfils:

db(Wz1, Wz2) � q max
{

db(z1, z2), db(z1, Wz1),
db(z2, Wz2)

1 + db(z2, Wz1)
,

1
2
(db(z1, Wz2) + db(z2, Wz1))

}
+ qL min

{
db(z1, z2), db(z1, Wz1), db(z2, Wz2),

db(z1, Wz2)db(z2, Wz1)

1 + db(z1, z2)

}
for all z1, z2 ∈ C, where 0 ≤ q ≤ 1

s and L ≥ 0, and all the element on the right side can be compared
to one another with partial order -. Then, W possesses a unique fixed point.

Remark 1. If operator W is omitted to be continuous, we would have a similar fixed point result.

Corollary 1. Let (C, db) be a complete CVbM space with s ≥ 1, coefficient, and W : C → C be a
continuous mapping that fulfils:

db(Wnz1, Wnz2) � q max
{

db(z1, z2), db(z1, Wnz1),
db(z2, Wnz2)

1 + db(z2, Wnz1)
,

1
2
(db(z1, Wnz2) + db(z2, Wnz1))

}
+ L min

{
db(z1, z2), db(z1, Wnz1), db(z2, Wnz2),

db(z1, Wnz2)db(z2, Wnz1)

1 + db(z1, z2)

}
for all z1, z2 ∈ C, where 0 ≤ q ≤ 1

s , L ≥ 0 n ∈ N and all the elements of the right side can be
compared to one another’s partial order �. Then W possesses a unique fixed point.

Proof. Considering Theorem 3, one can obtain ḡ ∈ C, such that Wη ḡ = ḡ. Therefore, we
can obtain

db(Wḡ, ḡ) = d(WWη ḡ, Wη ḡ) = db(WηWb̄, Wη b̄).

� qdb(Wḡ, ḡ).

Then Wη ḡ = Wḡ = ḡ and fixed point ḡ is unique.

Remark 2. From Corollary 1, if one omits and does not consider the continuity of T, a similar
result can be achieved.

Next, for almost Ćirić type operators in CVbM spaces, we extend another generaliza-
tion of a common fixed-point theorem.

Theorem 6. Let (C, db) be a complete CVbM space with s ≥ 1, a provided real number, and
W, T : C → C be two continuous mappings, such that:

db(Wb1, Tb2) � q max
{

db(b1, b2),
db(b1, Wb1)db(b2, Tb2)

1 + db(b1, b2)
,

db(b1, Tb2)db(b2, Wb1)

1 + db(b1, b2)

}
(12)

+ qL min
{

db(b1, b2),
db(b1, Wb1)db(b2, Tb2)

1 + db(b1, b2)
,

db(b1, Tb2)db(b2, Wb1)

1 + db(b1, b2)

}
for all b1, b2 ∈ C, where 0 ≤ q < 1

s , L ≥ 0 and all the elements of the right side can be compared to
one another with partial order �. Then, the pairs W and T possess a unique common fixed point.
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Proof. Let b0 be an arbitrary point in C and define a sequence bη as follows:

b2η+1 = Wb2η and b2η+2 = Tb2η+1, n = 0, 1, . . . (13)

Then by (12) and (13) we obtain

db(b2η+1, b2η+2) = db(Wb2η , Tb2η+1)

� q max

{
db(b2η , b2η+1),

db(b2η , Wb2ηdb(b2η+1Tb2η+1))

1 + db(b2η , b2η+1)
,

db(b2η , Tb2η+1)db(b2η+1, Wb2η)

1 + db(b2η , b2η+1)

}

+ L min

{
db(b2η , b2η+1),

db(b2η , Wb2η)db(b2η+1, Tb2η+1)

1 + db(b2η+1, Wb2η)
,

db((b2η , Tb2η+1))db(b2η+1, Wb2η)

1 + db(b2η , b2η+1)

}

� q max

{
db(b2η , b2η+1),

db(b2η , b2η+1db(b2η+1b2η+2))

1 + db(b2η , b2η+1)
,

db(b2η , b2η+2)db(b2η+1, b2η+1)

1 + db(b2η , b2η+1)

}

+ L min

{
db(b2η , b2η+1),

db(b2η , b2η+1)db(b2η+1, b2η+2)

1 + db(b2η+1, b2η+1)
,

db((b2η , b2η+2))db(b2η+1, b2η+1)

1 + db(b2η , b2η+1)

}
� q max

{
db(b2η , b2η+1), db(b2η+1, b2η+2)

}
.

If
max

{
db(b2η , b2η+1), db(b2η+1, b2η+2)

}
= db(b2η+1, b2η+2)

then
db(b2η+1, b2η+2) � qdb(b2η+1, b2η+2).

This yields q ≥ 1, which is a contradiction. Therefore,

db(b2η+1, b2η+2) � qdb(b2η , b2η+1). (14)

In the same way, we can obtain

db(b2η+2, b2η+3) � qdb(b2η+1, b2η+2). (15)

From (14) and (15) for all η = 0, 1, 2, 3 . . ., we obtain

db(bη+1, bη+2) � qdb(bη , bη+1) � qη+1db(b0, b1).

For m, η ∈ N, and m > η, we obtain

db(bη , bm) � s[db(bη , bη+1) + db(bη+1, bm)]

� s(db(bη , bη+1)) + s2[db(bη+1, bη+2) + db(bη+2, bm)]

� s(db(bη , bη+1)) + s2(db(bη+1, bη+2)) + s3(db(bη+2, bη+3)

+ · · ·+sm−η−1(db(bm−2, bm−1)) + sm−η(db(bm−1, bm)).

This implies that

db(bη , bm) � ∑
m−η
i=η siqi+η−1(db(b0, b1)).

Therefore,
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∣∣∣∣db(bη , bm)

∣∣∣∣ � m−η

∑
i=η

siqi+η−1
∣∣∣∣(db(b0, b1))

∣∣∣∣
�

∞

∑
i=η

(sq)i
∣∣∣∣(db(b0, b1))

∣∣∣∣
=

(sq)η

1− sq

∣∣∣∣(db(b0, b1))

∣∣∣∣.
Thus, we have ∣∣∣∣db(bη , bm)

∣∣∣∣ � (sq)η

1− sq

∣∣∣∣(db(b0, b1))

∣∣∣∣→ 0 as η → ∞.

Consequently, bη is referred to as a Cauchy sequence in C. Because C is complete, there
exists ḡ ∈ C, such that db(bη , ḡ) → 0 as η → ∞. This results in db(b2η , ḡ) → 0 as η → ∞.
Because W is continuous, this implies that b2η+1 = Wb2η → Wḡ as η → ∞. In the same
way, d(b2η+1, ḡ) → 0 as η → ∞. Similarly, T is continuou, so b2η+2 = Tb2η+1 → Tḡ as
η → ∞. Because the limit is unique, we obtain ḡ = Tḡ. Thus, ḡ is a common fixed point of
the pair (W,T).

To justify the uniqueness, l̄ ∈ C is supposed to be another common fixed point of
(W,T). Therefore,

db(l̄, ḡ) = db(Wl̄, Tḡ)

� q max
{

db(l̄, ḡ),
db(l̄, Wl̄)db(ḡ, Tḡ)

1 + db(l̄, ḡ)
,

db(l̄, Tḡ)db(ḡ, Wl̄)
1 + db(l̄, ḡ)

}
+ L min

{
db(l̄, ḡ),

db(l̄, Wl̄)db(ḡ, Tḡ)
1 + db(l̄, ḡ)

,
db(l̄, Tḡ)db(ḡ, Wl̄)

1 + db(l̄, ḡ)

}
This implies that db(l̄, ḡ) � db(l̄, ḡ), which causes a contradiction. Consequently, ḡ is a
unique fixed point.

If the continuity of T and W is omitted in the above theorem, the below common fixed
point result would be obtained.

Theorem 7. Let (C, db) be a complete CVbM space with s ≥ 1, a provided real number, and
W, T : C → C be two mappings such that

db(Wb1, Tb2) � q max
{

db(b1, b2),
db(b1, Wb1)db(b2, Tb2)

1 + db(b1, b2)
,

db(b1, Tb2)db(b2, Wb1)

1 + db(b1, b2)

}
+ L min

{
db(b1, b2),

db(b1, Wb2)db(b2, Tb2)

1 + db(b1, B2)
,

db(b1, Tb2)db(b2, Wb1)

1 + db(b1, b2)

}
,

for all b1, b2 ∈ C where 0 ≤ q < 1
s , L ≥ 0 and all the elements of the right side can be compared to

one another with partial order �. Then, the pair (W,T) possesses a unique common fixed point.

Proof. It could be obtained that bη is a Cauchy sequence, using the same procedure used in
Theorem 6. Because C is a complete space, there exists b∗ ∈ C, such that db(bη , b∗)→ 0 as
n→ ∞. Because we cannot consider the continuity of W and T, we obtain db(b∗, Wb∗) =
k > 0. Then, we can estimate that
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k = db(b∗, Wb∗) � s[db(b∗, b2η+2) + db(b2η+2, Wb∗)]
� sdb(b∗, b2η+2) + sdb(Tb2η+1, Wb∗)
� sdb(b∗, b2η+2) + sq max{db(b∗, b2η+1),

db(b∗, Wb∗)db(b2η+1Tb2η+1)

(1 + db(b∗, b2η+1))
,

db(b∗, Tb2η+1)db(b2η+1, Wb∗)
(1 + db(b∗, b2η+1))

}+

L min{db(b∗, b2η+1),
db(b∗, Wb∗)db(b2η+1, Tb2η+1)

(1 + db(b∗, b2η+1))
,

db(b∗, Tb2η+1)db(b2η+1, Wb∗)
(1 + db(b∗, b2η+1))

}

→ sqd(b∗, Wb∗) as η → ∞.

This implies that |k| ≤ sq|k|, which causes the contradiction. Thus, b∗ = Wb∗. Simi-
larly, one can obtain b∗ = Tb∗. Hence, b* is common fixed point of (W,T). To justify the
uniqueness of b*, we can use the similar approach as followed proving Theorem 6.

For W = T in the previous result, we have the following result.

Theorem 8. Let (C, db), a complete CVbM space with coefficient s ≥ 1, and W : C → C be a
continuous mapping such that

db(Wb1, Wb2) � q max
{

db(b1, b2),
db(b1, Wb2)db(b2, Wb2)

1 + db(b1, b2)
,

db(b1, Wb2)db(b2, Wb1)

1 + db(b1, b2)

}
+ qL min

{
db(b1, b2),

db(b1, Wb1)db(b2, Wb2)

1 + db(b1, b2)
,

db(b1, Wb2)db(b2, Wb1)

1 + db(b1, b2)

}
,

for all b1, b2 ∈ C where 0 ≤ q < 1
s , L ≥ 0 and all the elements of the right side can be compared to

one another with partial order �. Then, W has a unique fixed point.

Remark 3. If continuity of W is to be excluded, we can obtain the similar result.

Corollary 2. Let (C, db) be a complete CVbM space with coefficient s ≥ 1, and W : C → C be a
continuous mapping fulfilling

db(Wηb1, Wη
2 ) � q max

{
db(b1, b2),

db(b1, Wηb1)db(b2, Wηb2)

1 + db(b1, b2)
,

db(b1, Wηb2)db(b2, Wηb1)

1 + db(b1, b2)

}
+ L min

{
db(b1, b2),

db(b1, Wηb1)db(b2, Wηb2)

1 + db(b1, b2)
,

db(b1, Wηb2)db(b2, Wηb1)

1 + db(b1, b2)

}
for all b1, b2 ∈ C, where 0 ≤ q ≤ 1

s , L ≥ 0, and all the element at the right side can be compared to
one another with partial order �. Then W possess a unique fixed point.

Proof. Considering Theorem 8, one can obtain b∗ ∈ C, in such a way that Wηb∗ = b∗.
Then, one could obtain

db(Wb∗, b∗) = db(WWηb∗, Wηb∗) = db(WηWb∗, Wηb∗).
� qdb(Wb∗, b∗) + L(0).

� qdb(Wb∗, b∗).

Then, Wηb∗ = Wb∗ = b∗. Therefore, the fixed point of W is unique.

Remark 4. (i) Omitting continuity of W, we can obtain similar result from Corollary 2.
(ii) Plugging L = 0 into all the above results, one can obtain the results of [29].
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Example 2. Let Υ = C be a complex numbers set. Define db : Υ× Υ→ C by

db(℘1,℘2) = |ϑ1 − ϑ2|2 + i|η1 − η2|2,

for all ℘1,℘2 ∈ Υ, where ℘1 = ϑ1 + iη1 = (ϑ1, η1) and ℘2 = ϑ2 + iη2 = (ϑ2, η2).
Certainly, Υ is a complete CVbM space having coefficient s ≥ 1.
Let us define two mappings

W(℘) = W(ϑ + η) =


0, if ϑ, η ∈ Q
i, if ϑ, η ∈ Q́
3− 2i, if ϑ ∈ Q́, η ∈ Q
1, if ϑ ∈ Q, η ∈ Q́

and

T(℘) = T(ϑ + η) =


0, if ϑ, η ∈ Q
2− 2i, if ϑ, η ∈ Q́
2, if ϑ ∈ Q́, η ∈ Q
2i, if ϑ ∈ Q, η ∈ Q́

where Q is a set of rational numbers and Q́ a set of irrational numbers.
(i) if ϑ, η ∈ Q let ϑ = 1

2 and η = 0 then

d(Wϑ, Tη) = d(W(
1
2
), T(0)) = d(0, 0) = 0

d(ϑ, η) = d(
1
2

, 0) =
1
4

.

There is no need to check the other conditions, because they fulfil the inequality (1) in Theorem 3.
(ii) If ϑ, η ∈ Q́, let ϑ = 1√

2
and η = π then

d(Wϑ, Tη) = d(W(
1√
2
), T(π)) = d(ι, 2− 2ι) = ι2 + ι(2− 2ι)2 = 3,

d(ϑ, η) = d(
1√
2

, 2− 2ι) = (
1√
2
)2 + ι(2− 2ι)2 =

9
5

.

Similarly, one can check (iii) and (iv). Thus, the fixed point of W and T is unique and common.

3. Applications
3.1. Applications to Integral-Type Contractions

In the present section, the fixed point results, derived in the above section, are imple-
mented to prove common fixed points of some integral-type contractions. Initially, let us
define altering distance function.

Definition 5. A function Γ : [0, ∞) → [0, ∞) is referred to as an altering distance function if it
fulfils these necessities:
(a) Γ is continuous and nondecreasing.
(b) Γ(ν) = 0 iff ν=0.

Now, let us provide the following definition.

Definition 6. Let ℵ be the set of the functions h̄ : [0, ∞)→ [0, ∞) that fulfills these requirements:
(i) h̄ for each subset of [0, ∞), such that the subset is compact, is Lebesgue integrable.
(ii)
∫ β

0 h̄(ν)dν > 0, for all β > 0.
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Remark 5. It is quite simple to demonstrate whether the mapping τ; [0, ∞)→ [0, ∞) defined as

τ(t) =
∫ ζ

0
h̄(t)dt > 0

is an altering distance function.

Further, the first new result of this section is presented.

Theorem 9. Let (C, db) be a complete CVbM space having s ≥ 1, a given real number, and
W, T : C → C are two continuous mappings holding

∫ db(Wz1,Tz2)

0
h̄(ν)dν � q

∫ M(z1,z2)+Lm(z1,z2)

0
h̄(ν)dν,

for all z1, z2 ∈ C, 0 ≤ q ≤ 1
s , L ≥ 0 and h̄ ∈ ℵ with

M(z1, z2) = max
[

db(z1, z2), db(z1, Wz1),
db(z2, Tz2)

1 + db(z2, Wz2)
,

1
2
(db(z1, Tz2) + db(z2, Wz1))

]
and

m(z1, z2) = min
[

db(z1, z2), db(z1, Wz1), db(z2, Tz2),
db(z1, Tz2)db(z2, Wz1)

1 + db(z1, z2)

]
,

where all the element of M(z1, z2) and m(z1, z2) can be compared to one another w.r.t �. Then
(W,T) possess a unique common fixed point.

Proof. Considering Theorem 3, such that τ(w) =
∫ w

0 h̄(v)dv, one can achieve the required
solution.

Remark 6. The same result can be achieved, if one omit continuity of the mappings.

We deduce two fixed points theorems of integral-type results, if we take W = T, with
and without continuity of W.

Theorem 10. Let (C, db) be a complete CVbM space having s ≥ 1, a provided real number, and
W : C → C be a continuous mappings that fulfil

∫ db(Wz1,Wz2)

0
h̄(t)dt � q

∫ M(z1,z2)+Lm(z1,z2)

0
h̄(t)dt,

for all z1, z2 ∈ C, 0 ≤ q ≤ 1
s , L ≥ 0 and h̄ ∈ ℵ with

M(z1, z2) = max
{

db(z1, z2), db(z1, Wz1),
db(z2, Wz2)

1 + db(z2, Wz2)
,

1
2
(db(z1, Wz2) + db(z2, Wz1))

}
and

m(z1, z2) = min
{

db(z1, z2), db(z1, Wz1), db(z2, Wz2),
db(z1, Wz2)db(z2, Wz1)

1 + db(z1, z2)

}
,

where all the elements of M(z1, z2) and m(z1, z2) can be compared to one another w.r.t �. Then, W
posses a unique common fixed point.

Proof. Considering Theorem 5, such that (t)ג =
∫ t

0 h̄(ν)dν, one can obtain the required.
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We would have the following common fixed-point integral-type result for the extension
and generalization of almost Ćirić-type contractions.

Theorem 11. Let (C, db) be a complete CVbM space with coefficient s ≥ 1, and W, T : C → C be
continuous mappings that fulfil

∫ db(Wz1,Tz2)

0
h̄(t)dt � q

∫ Q(z1,z2)+p(z1,z2)

0
h̄(t)dt,

for all z1, z2 ∈ C, 0 ≤ q ≤ 1
s , L ≥ 0 and h̄ ∈ ℵ with

Q(z1, z2) = max
{

db(z1, z2),
db(z1, Wz1)db(z2, Tz2)

1 + db(z1, z2)
,

db(z1, Tz2)db(z2, Wz1)

1 + db(z1, z2)

}
and

p(z1, z2) = min
{

db(z1, z2),
db(z1, Wz1)db(z2, Tz2)

1 + db(z1, z2)
,

db(z1, Tz2)db(z2, Wz1)

1 + db(z1, z2)

}
,

where all the element of M(z1, z2) and m(z1, z2) can be compared to one another with �. Then,
(W,T) possesses a unique common fixed point.

Proof. Utilizing Theorem 6, such that taking (t)ג =
∫ t

0 h̄(v)dv one can achieve the required
result.

Remark 7. One can reach a similar conclusion if one excludes continuity and take the mappings as
non-continuous.

Taking W = T, one can deduce two fixed-point theorems of integral-type results for
the almost Ćirić-type contractions, with and without continuous W.

Theorem 12. Let (C, db) be a complete CVbM space having s ≥ 1, a provided real number, and
W : C → C be continuous mapping which fulfils

∫ d(Wz1,Wz2)

0
h̄(t)dt � q

∫ Q(z1,z2)+p(z1,z2)

0
h̄(t)dt,

for all z1, z2 ∈ C, 0 ≤ q ≤ 1
s , L ≥ 0 and h̄ ∈ ℵ, with

Q(z1, z2) = max
{

db(z1, z2),
db(z1, Wz1)db(z2, Wz2)

1 + db(z1, z2)
,

db(z1, Wz2)db(z2, Wz1)

1 + db(z1, z2)

}
and

p(z1, z2) = min
{

db(z1, z2),
db(z1, Wz1)db(z2, Wz2)

1 + db(z1, z2)
,

db(z1, Wz2)db(z2, Wz1)

1 + db(z1, z2)

}
,

where all the element of M(z1, z2) and m(z1, z2) can be compared to one another w.r.t �. Then, W
possesses a unique fixed point.

Proof. Utilizing Theorem 8, such that taking Υ(t) =
∫ t

0 h̄(v)dv, we would achieve
the result.

3.2. Application to the System of Urysohn-Type Integral Equations

In the last decades, the Banach contraction principle has troubled many researchers as it
was considered to be one of the most prominent tools in the formulation of the existence and
uniqueness of a common solution to integral-type equations in many disciplines, notably
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non-linear analysis. In this section, for the authenticity of our results, we implement the
results we achieved in previous sections, to establish the existence of a unique and common
solution to system of integral-type equations. The motivation we had to consider these
applications is from the publication of W. Sintunavarat et al. [30]. Let us take the system of
Urysohn integral equations under consideration.{

γ1(ω) = g(ω) +
∫ p2

p1
K1(ω, s, γ1(s))ds

γ2(ω) = g(ω) +
∫ p2

p1
K2(ω, s, γ2(s))ds

(16)

where
(i) γ1(ω) and γ2(ω) are variables which are unknown for all ω ∈ [p1, p2], p1 > 0,
(ii) g(ω) is the term which is deterministic free, defined for ω ∈ [p1, p2],
(iii) K1(ω, s) and K2(ω, s) are deterministic kernels defined for ω, s ∈ [p1, p2].

Let z = (C[p1, p2], Rn), ` > 0 and db : z×z→ Rn defined by

db(γ1, γ2) = ||γ1(ω)− γ2(ω)||∞ = sup |γ1(ω)− γ2(ω)|2
√

1 + `2eι tan−1 `,

for all γ1, γ2 ∈ z, ι =
√
−1 ∈ C. Certainly, (C[p1, p2], Rn, ||.||∞) is a complete CVbM

with s = 2. Moreover, let us take the Urysohn integral equations system (16) under the
following requirements;
(Q1); g(ω) ∈ z,
(Q2); K1, K2:[p1, p2]× [p1, p2]× Rn → Rn are continuous functions satisfying

|K1(ω, s, u(s))− K2(ω, s, v(s))| � 1√
(p2 − p1)e`

M(ν1, ν2),

where

M(ν1, ν1) = max
{

db(ν1, ν2), db(ν1, Wν1),
db(ν2, Tν2)

1 + db(ν2, Wν2)
,

1
2
(db(ν1, Tν2) + db(ν2, Wν1))

}
+ L min

{
db(ν1, ν2), db(ν1, Wν1), db(ν2, Tν2),

db(ν1, Tν2)db(ν2, Wν1)

1 + db(ν1, ν2)

}
In this portion, with the help of the result from the previous section, Theorem 3 we attempt
to prove the existence of a unique solution of system (16).

Theorem 13. If (C[p1, p2], Rn, ||.||∞) is a complete CVbM space, then the above system (16)
under the assumptions (Q1) and (Q2) has a unique common solution.

Proof. Define two continuous mappings, T,W: z → z, for γ1, γ2 ∈ (C[p1, p2], Rn) and
ω ∈ [p1, p2] as

Wγ1(ω) = g(ω) +
∫ p1

p2

K1(ω, s, γ1(s))ds

Tγ2(ω) = g(ω) +
∫ p1

p2

K2(ω, s, γ2(s))ds.
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Then,

|Wγ1(ω)− Tγ2(ω)|2 =
∫ p2

p1

|K1(ω, s, γ1(s))− K2(ω, s, γ2(s))|2ds

�
∫ p2

p1

1
(p2 − p1)e`

M(γ1, γ2)

=
1

(p2 − p1)e`

∫ p2

p1

e−i tan−1 `

√
1 + `2

|M(γ1, γ2)|2
√

1 + `2ei tan−1 `ds

� 1
(p2 − p1)e`

e−i tan−1 `

√
1 + `2

||M(γ1, γ2)||∞
∫ p2

p1

ds

=
1
e`

e−i tan−1 `

√
1 + `2

||M(γ1, γ2)||∞.

Then, we obtain

|Wγ1(ω)− Tγ2(ω)|2
√

1 + `2ei tan−1 ` � 1
e` ||M(γ1, γ2)||∞.

This also implies that

||Wγ1(ω)− Tγ2(ω)|| � 1
ei ||M(γ1, γ2)||∞.

Then,

db(Wγ1, Tγ2) � $M(γ1, γ2).

Therefore, the conditions of Theorem 3 are fulfilled for 0 < $ = 1
e` < 1 and ` > 0. Thus, the

system (16) has a unique solution on z.

4. Conclusions

In the framework of CVbM spaces, the main goal of this publication is to combine and
expand the Ćirić and almost contraction conditions. Numerous applications and examples
support the validity of our proposed generalization. These findings have significance for
future studies in this field and provide useful insights into the behavior of mappings in
complex-valued b-metric spaces.
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