Article

Moderate Deviation Principle for Linear Processes Generated by Dependent Sequences under Sub-Linear Expectation

Peiyu Sun ${ }^{1,2}$, Dehui Wang ${ }^{3}$, Xue Ding ${ }^{1, *}$, Xili Tan ${ }^{2}$ and Yong Zhang ${ }^{1}$

1 School of Mathematics, Jilin University, Changchun 130012, China; sunpeiyu5148@126.com (P.S.); zyong2661@jlu.edu.cn (Y.Z.)
2 School of Mathematics and Statistics, Beihua University, Jilin 132000, China; txl@beihua.edu.cn
3 School of Mathematics and Statistics, Liaoning University, Shenyang 110031, China; wangdehui@lnu.edu.cn

* Correspondence: dingxue83@jlu.edu.cn

Citation: Sun, P.; Wang, D.; Ding, X.; Tan, X.; Zhang, Y. Moderate
Deviation Principle for Linear Processes Generated by Dependent Sequences under Sub-Linear
Expectation. Axioms 2023, 12, 781.
https://doi.org/10.3390/ axioms12080781

Academic Editors: Yolanda Gómez and Inmaculada
Barranco-Chamorro
Received: 17 July 2023
Revised: 4 August 2023
Accepted: 10 August 2023
Published: 11 August 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

We are interested in the linear processes generated by dependent sequences under sub-linear expectation. Using the Beveridge-Nelson decomposition of linear processes and the inequalities, the moderate deviation principle for linear processes produced by an m-dependent sequence is established. We also prove the upper bound of the moderate deviation principle for linear processes produced by negatively dependent sequences via different methods from m-dependent sequences. These conclusions promote and improve the corresponding results from the traditional probability space to the sub-linear expectation space.

Keywords: moderate deviation principle; linear process; m-dependent; negatively dependent; sub-linear expectation

MSC: 60F10; 60F05

1. Introduction

An important method for analyzing the limiting behavior of a family of probability measures is the large (moderate) deviation principle (abbreviated as LDP (MDP)) which plays a significant role in probability theory. It can describe the tail probability with an exponential rate of convergence. It is widely used in various areas, such as statistical mechanics, partial differential equations, dynamical systems, statistics, stochastic processes and their related fields and so on. It has been widely studied by numerous scholars. For example, refs. [1,2] established the basic and groundbreaking work for the LDP (MDP) on a traditional probability space. We also refer to refs. [3-7] and the references therein for more information on the large deviation principle on a traditional probability space.

One of the research hotspots in risk measurement, assets pricing, cooperative game and decision theory is model uncertainty, see refs. [8-11], etc. Recently, by relaxing the linear property of the traditional linear expectation to subadditivity and positive homogeneity, ref. [12] introduced a systematic framework of the sub-linear expectation of random variables in a general function space. Obviously, the natural extension of the classical linear expectation is sub-linear expectation. Subsequently, many limit theorems were established in the sub-linear expectation space. At the same time, some results on the LDP (MDP) were established on a traditional probability space, we refer to ref. [13], which obtained the LDP for stochastic differential equations driven by G-Brownian motion; ref. [14], which established relative entropy and the LDP under sub-linear expectations; ref. [15], which proved the LDP for negatively dependent random sequences in the sense of upper probability; ref. [16], which studied the self-normalized MDP and laws of the iterated logarithm under G-expectation; ref. [17], which proposed the LDP for random variables under sub-linear expectations on \mathbb{R}^{d}; ref. [18], which discussed the MDP for independent and nonidentical distributed random variables under sub-linear expectation; ref. [19], which presented the

MDP for the sequence of m-dependent strictly stationary random variables in the sense of sub-linear expectation; and ref. [20], which found the LDP for linear processes produced by independent stationary sequences under upper probability. We also refer to refs. [21-28] for the other limit properties under the sub-linear expectation. Most work on the LDP (MDP) assumes that the random variables under discussion are independent despite the different definitions of independence. Furthermore, there is no work on the MDP for linear processes under the sub-linear expectation. Therefore, we will discuss the MDP for linear processes generated by a dependent sequence.

The paper is organized as follows. In Section 1, the significance of the research is introduced. Some basic settings and definitions under sub-linear expectations are given in Section 2. Some lemmas required to demonstrate the main results are presented in Section 3. In Section 4, the MDP for linear processes generated by an m -dependent sequence is stated and proven. In Section 5, the upper bound of the MDP for linear processes generated by a negatively dependent sequence is established and proven.

Throughout the paper, C denotes a positive constant, which may take different values wherever it appears in different expressions. I_{A} denotes the indicator function of the set A, (Ω, \mathcal{F}, P) stands for a traditional probability space, and $(\Omega, \mathcal{H}, \mathbb{E})$ stands for a sub-linear expectation space.

2. Basic Settings and Definitions

In this section, we will recall some notations and definitions on sub-linear expectation spaces. We use the framework and notations of ref. [29]. Let Ω be a given set, $\mathcal{B}(\Omega)$ be the σ-algebra of subsets of the set Ω, and \mathcal{H} be a linear space of real measurable functions defined on $(\Omega, \mathcal{B}(\Omega))$. \mathcal{H} contains all I_{A}, where $A \in \mathcal{B}(\Omega)$. If $X \in \mathcal{H}$, then $|X| \in \mathcal{H}$. The space \mathcal{H} can be considered as a space of random variables.

Definition 1. A function $\mathbb{E}: \mathcal{H} \rightarrow[-\infty,+\infty]$ is said to be a sub-linear expectation if it satisfies for $\forall X, Y \in \mathcal{H}$,

1. Monotonicity: $X \geq Y$ implies $\mathbb{E}[X] \geq \mathbb{E}[Y]$.
2. Constant preserving: $\mathbb{E}[c]=c, \forall c \in \mathbb{R}$.
3. Subadditivity: $\mathbb{E}[X+Y] \leq \mathbb{E}[X]+\mathbb{E}[Y]$.
4. Positive homogeneity: $\mathbb{E}[\lambda X]=\lambda \mathbb{E}[X], \forall \lambda \geq 0$.

The triple $(\Omega, \mathcal{H}, \mathbb{E})$ is called a sub-linear expectation space. Given a sub-linear expectation \mathbb{E}, let us denote the conjugate expectation \mathcal{E} of \mathbb{E} by $\mathcal{E}[X]:=-\mathbb{E}[-X], \forall X \in \mathcal{H}$.

Now, we give the definitions of independence, m-dependence and negative dependence on a sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$, which can be found in refs. [15,30].

Definition 2. Let $X_{1}, X_{2}, \cdots, X_{n+1}$ be random variables in a sub-linear expectation space $(\Omega, \mathcal{H}, \mathbb{E})$. X_{n+1} is described to be independent from $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ under \mathbb{E} if

$$
\mathbb{E}\left[\prod_{i=1}^{n+1} \varphi_{i}\left(X_{i}\right)\right]=\mathbb{E}\left[\prod_{i=1}^{n} \varphi_{i}\left(X_{i}\right)\right] \mathbb{E}\left[\varphi_{n+1}\left(X_{n+1}\right)\right]
$$

for every nonnegative measurable function φ_{i} on \mathbb{R} with $\mathbb{E}\left[\varphi_{i}\left(X_{i}\right)\right]<\infty, 1 \leq i \leq n+1$. A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is described to be independent if X_{n+1} is independent of $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ for all $n \in \mathbb{N}$.

A natural extension of independence is the following.
Definition 3. If $\left(X_{n+m+1}, \cdots, X_{n+j}\right)$ is independent from $\left(X_{1}, \cdots, X_{n}\right)$ for fixed integer m and every n and every $j \geqslant m+1$, then $\left\{X_{n}, n \geq 1\right\}$ is called a sequence of m-dependent random variables. Especially, $\left\{X_{n}, n \geq 1\right\}$ is called an independent sequence for $m=0$.

Definition 4. X_{n+1} is described to be negatively dependent (abbreviated as ND) from $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ under \mathbb{E} if

$$
\mathbb{E}\left[\prod_{i=1}^{n+1} \varphi_{i}\left(X_{i}\right)\right] \leq \mathbb{E}\left[\prod_{i=1}^{n} \varphi_{i}\left(X_{i}\right)\right] \mathbb{E}\left[\varphi_{n+1}\left(X_{n+1}\right)\right],
$$

for every nonnegative measurable function φ_{i} on \mathbb{R} with $\mathbb{E}\left[\varphi_{i}\left(X_{i}\right)\right]<\infty, 1 \leq i \leq n+1$. A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is described to be $N D$ if X_{n+1} is $N D$ of $\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ for all $n \in \mathbb{N}$.

Ref. [20] gave the following definition of strictly stationary in a sub-linear expectation space.

Definition 5. A sequence of random variables $\left\{X_{n}, n \geq 1\right\}$ is said to be strictly stationary on the $(\Omega, \mathcal{H}, \mathbb{E})$ if

$$
\mathbb{E}\left[\phi_{n}\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)\right]=\mathbb{E}\left[\phi_{n}\left(\xi_{1+k}, \xi_{2+k}, \cdots, \xi_{n+k}\right)\right], \quad \forall n \geq 1, k \geq 1
$$

for any function $\phi_{n} \in C_{l, \text { Lip }}\left(\mathbb{R}^{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$, where $\varphi \in C_{l, \text { Lip }}\left(\mathbb{R}^{n}\right)$ denotes the linear space of local Lipschitz continuous functions φ satisfying

$$
|\varphi(\mathbf{x})-\varphi(\mathbf{y})| \leq c\left(1+|\mathbf{x}|^{m}+|\mathbf{y}|^{m}\right)|\mathbf{x}-\mathbf{y}|, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

for some $c>0, m \in \mathbb{N}$ depending on φ.
Next, we look back upon the definitions of the upper expectation and corresponding capacity. We also refer to Chapter 6 in [29] for more details. Let $\mathcal{B}(\Omega)$ be a σ-algebra on Ω. Let \mathcal{M} and $\mathcal{B}(\Omega)$ be the set of all probability measures and a σ-algebra on Ω, respectively. Every non-empty subset $\mathcal{P} \subseteq \mathcal{M}$ defines an upper probability/expectation and a lower probability/expectation

$$
\begin{gathered}
\mathbb{V}(A)=\sup _{P \in \mathcal{P}} P(A)=\mathbb{E}\left[I_{A}\right], \quad \mathcal{V}(A)=\inf _{P \in \mathcal{P}} P(A)=\mathcal{E}\left[I_{A}\right], A \in \mathcal{B}(\Omega) \\
\mathbb{E}[X]=\sup _{P \in \mathcal{P}} E_{P}[X], \quad \mathcal{E}[X]=\inf _{P \in \mathcal{P}} E_{P}[X], X \in \mathcal{H} .
\end{gathered}
$$

It is easy to check that $\mathbb{V}(\cdot)$ is a Choquet capacity (ref. [8]), which meets the following definition, $\mathcal{V}(\cdot)$ is the conjugate capacity of $\mathbb{V}(\cdot), \mathbb{E}[\cdot]$ is a sub-linear expectation which is given in Definition 1 and $\mathcal{E}[\cdot]$ is the conjugate expectation $\mathbb{E}[\cdot]$.

Definition 6. $\mathbb{V}(\cdot)$ is a Choquet capacity, i.e.,
(1). $0 \leqslant \mathbb{V}(A) \leqslant 1, \forall A \in \mathcal{B}(\Omega)$.
(2). $\mathbb{V}(A) \leqslant \mathbb{V}(B), \forall A \subset B \in \mathcal{B}(\Omega)$.
(3). $\mathbb{V}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leqslant \sum_{n=1}^{\infty} \mathbb{V}\left(A_{n}\right)$, for any $A_{n} \in \mathcal{B}(\Omega), n \geq 1$.
(4). $\lim _{n \rightarrow \infty} \mathbb{V}\left(A_{n}\right)=\mathbb{V}(A)$ if $A_{n} \uparrow A=\bigcup_{n=1}^{\infty} A_{n}, A_{n} \in \mathcal{B}(\Omega), n \geq 1$.

Next, we provide the definition of regularity of \mathbb{E} (ref. [29]), which will be used in the following.

Definition 7. The sub-linear expectation \mathbb{E} is regular for any sequence $\left\{X_{n}, n \geq 1\right\} \subset \mathcal{H}$ such that

$$
X_{n} \downarrow 0 \Longrightarrow \lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=0
$$

Next, we will give the definitions of a good rate function (ref. [2]) and the LDP (ref. [14]) in a sub-linear expectation space.

Definition 8. A function $I: \mathbb{R} \rightarrow[0, \infty)$ is called a good rate function if for all $l \geqslant 0$, the set $\{x: I(x) \leqslant l\}$ is a compact subset of \mathbb{R}.

Definition 9. Let Ω be a topological space and $\{a(n), n \geqslant 1\}$ be a sequence of positive functions satisfying $a(n) \rightarrow \infty$ as $n \rightarrow \infty$. A family of measurable maps $\left\{\mathbb{V}\left(V_{n} \in \cdot\right), n \geqslant 1\right\}$ satisfies the $L D P$ with speed $a(n)$ and rate function $I(x)$ if for any open set $G \subset \mathcal{B}(\mathbb{R})$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{a(n)} \log \mathbb{V}\left(V_{n} \in G\right) \geqslant-\inf _{x \in G} I(x) \tag{1}
\end{equation*}
$$

and for any closed subset $F \subset \mathcal{B}(\mathbb{R})$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{a(n)} \log \mathbb{V}\left(V_{n} \in F\right) \leqslant-\inf _{x \in F} I(x) \tag{2}
\end{equation*}
$$

Equations (1) and (2) are described as the lower bound of large deviations (LLD) and the upper bound of large deviations (ULD), respectively.

If Equations (1) and (2) are satisfied with $a(n)=\frac{b_{n}^{2}}{n}$ and $V_{n}=\frac{S_{n}}{b_{n}}$, we say that V_{n} satisfies the LDP with speed $\frac{n}{b_{n}^{2}}$ and rate function $I(\cdot)$, we also say that V_{n} satisfies the MDP, where $\left\{b_{n}, n \geq 1\right\}$ is a sequence of positive real numbers satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{b_{n}}{\sqrt{n}}=\infty, \lim _{n \rightarrow \infty} \frac{b_{n}}{n}=0 \tag{3}
\end{equation*}
$$

3. Preliminary Lemmas

Some useful lemmas which are needed to prove the main results are given in the following.

Lemma 1 ([31]). Let $f(x) \geq 0$ be a nondecreasing function defined on \mathbb{R}; then, for any x,

$$
\mathbb{V}(X \geq x) \leq \frac{\mathbb{E}[f(X)]}{f(x)}
$$

Lemma 2 ([20]). Let $\left\{\eta_{i}, 1 \leq i \leq n\right\}$ be a sequence of random variables on $(\Omega, \mathcal{H}, \mathbb{E})$ and $\gamma_{i} \in[0,1], 1 \leq i \leq n$, such that $\sum_{i=1}^{n} \gamma_{i}=1$. Then,

$$
\log \mathbb{E} \exp \left\{\sum_{i=1}^{n} \gamma_{i} \eta_{i}\right\} \leq \sum_{i=1}^{n} \gamma_{i} \log \mathbb{E} \exp \left\{\eta_{i}\right\}
$$

Lemma 3 ([20]). Assume that a sequence of random variables $\left\{\eta_{i}, i \in \mathbb{Z}\right\}$ is strictly stationary on $(\Omega, \mathcal{H}, \mathbb{E})$ and $\left\{\beta_{i}, i \in \mathbb{Z}\right\}$ is a sequence of real numbers satisfying $\sum_{i \in \mathbb{Z}}\left|\beta_{i}\right|<\infty$. Then,

$$
\log \mathbb{E} \exp \left\{\sum_{k \in \mathbb{Z}}\left|\beta_{k}\right|\left|\eta_{k}\right|\right\} \leq \log \mathbb{E} \exp \left\{\left|\eta_{1}\right| \sum_{k \in \mathbb{Z}}\left|\beta_{k}\right|\right\} .
$$

Lemma 4 ([19]). Suppose that $\left\{X_{n}, n \geq 1\right\}$ is a sequence of strictly stationary m-dependent random variable in the sense of sub-linear expectation satisfying

$$
\begin{equation*}
\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[-X_{1}\right]=0, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]^{2}=\sigma^{2}<\infty \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[e^{\delta\left|X_{1}\right|}\right]<\infty, \tag{5}
\end{equation*}
$$

for some $\delta>0$. Then, $\left\{\mathbb{V}\left(\frac{S_{n}}{b_{n}} \in \cdot\right), n \geq 1\right\}$ satisfies the MDP with rate function $I_{1}(x)$:
(1) For every closed set $F \subset \mathcal{B}(\mathbb{R})$ such that

$$
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{S_{n}}{b_{n}} \in F\right) \leqslant-\inf _{x \in F} I_{1}(x) ;
$$

(2) For every open set $G \subset \mathcal{B}(\mathbb{R})$ such that

$$
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{S_{n}}{b_{n}} \in G\right) \geqslant-\inf _{x \in G} I_{1}(x),
$$

where $I_{1}(x):=\sup _{y \in \mathbb{R}}\left\{x y-\frac{y^{2} \sigma^{2}}{2}\right\}=\frac{x^{2}}{2 \sigma^{2}}, S_{n}=\sum_{k=1}^{n} X_{k}$ and $\left\{b_{n}, n \geq 1\right\}$ is defined as in (3).
Lemma 5 ([2]). Let N be a fixed integer. Then, for every $a_{\epsilon}^{i} \geq 0$,

$$
\limsup _{\epsilon \rightarrow 0} \epsilon \log \left(\sum_{i=1}^{N} a_{\epsilon}^{i}\right)=\max _{1 \leq i \leq N} \limsup _{\epsilon \rightarrow 0} \epsilon \log a_{\epsilon}^{i}
$$

The following lemma ensures that \mathbb{E} is not linear; Cramér's method can also be used for the ULD. Let $\bar{C}(\cdot)$ be a family of upper probabilities, obviously it is also a Choquet capacity (ref. [13], Lemma A. 2 in Appendix).

Lemma 6 ([13]). Let (S, ρ) be a Polish space. Let $\left(V^{\varepsilon}, \varepsilon>0\right): \Omega \rightarrow(S, \rho)$ be a family of measurable mappings and let $\{\lambda(\varepsilon), \varepsilon>0\}$ be a positive function with $\lambda(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Assume $S=\mathbb{R}^{d}$. For any $y \in \mathbb{R}^{d}$, if there exists $\delta>0$ such that

$$
\Lambda(\delta y):=\limsup _{\varepsilon \rightarrow 0} \lambda(\varepsilon) \log \mathbb{E} \exp \left\{\frac{\left\langle V^{\varepsilon}, \delta y\right\rangle}{\lambda(\varepsilon)}\right\} \in \mathbb{R},
$$

then $\left(\bar{C}\left(V^{\varepsilon} \in \cdot\right), \varepsilon>0\right)$ satisfies the ULD with speed $\lambda(\varepsilon)$ and good rate function Λ^{*} defined by

$$
\Lambda^{*}(x)=\sup _{y \in \mathbb{R}^{d}}\{\langle x, y\rangle-\Lambda(y)\}, \quad x \in \mathbb{R}^{d}
$$

Lemma 7 ([15]). Let X and Y be two random variables defined on $(\Omega, \mathcal{H}, \mathbb{E})$ with capacity \mathbb{V}. If for every $\varepsilon>0$,

$$
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}(X-Y>\varepsilon)=-\infty
$$

and, for every closed set $F \in \mathcal{B}(\mathbb{R})$,

$$
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}(X \in F) \leq-\inf _{x \in F} J(x),
$$

where $J(x)$ is a good rate function, then

$$
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}(Y \in F) \leq-\inf _{x \in F} J(x)
$$

4. The MDP for Linear Processes Generated by an m-Dependent Sequence

In this section, we will give the following MDP for linear processes generated by an m-dependent sequence.

Theorem 1. Consider the following linear processes,

$$
\begin{equation*}
Y_{k}=\sum_{j=-\infty}^{\infty} a_{j} X_{k-j}, \quad k \geq 1 \tag{6}
\end{equation*}
$$

where $\left\{X_{k}, k \in \mathbb{Z}\right\}$ is a sequence of strictly stationary m-dependent random variables defined on $(\Omega, \mathcal{H}, \mathbb{E})$ satisfying Equations (4) and (5), $\left\{a_{j}, j \in \mathbb{Z}\right\}$ is a sequence of real numbers satisfying $\sum_{j=-\infty}^{+\infty}\left|a_{j}\right|<\infty$ and $a=\sum_{j=-\infty}^{+\infty} a_{j} \neq 0$. Then, $\left\{\mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in \cdot\right), n \geq 1\right\}$ satisfies the MDP with rate function $I(x)$ and speed n / b_{n}^{2}, that is, for any closed set $F \in \mathcal{B}(\mathbb{R})$,

$$
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in F\right) \leq-\inf _{x \in F} I(x),
$$

for any open set $G \in \mathcal{B}(\mathbb{R})$,

$$
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in G\right) \geq-\inf _{x \in G} I(x),
$$

where

$$
I(x)=\sup _{y \in \mathbb{R}}\left\{x y-\frac{\sigma^{2} a^{2} y^{2}}{2}\right\}=\frac{x^{2}}{2 \sigma^{2} a^{2}}, \quad \forall x \in \mathbb{R}
$$

and $\left\{b_{n}, n \geq 1\right\}$ is defined as in Equation (3) and $T_{n}=\sum_{k=1}^{n} \Upsilon_{k}, n \geq 1$.
Proof. For $m, k \geq 1$, denote

$$
\begin{aligned}
& d_{m}=\sum_{j=-m}^{m} a_{j}, \quad Y_{k, m}=\sum_{j=-m}^{m} a_{j} X_{k-j}, \\
& \widetilde{a}_{m}=0, \quad \widetilde{a}_{j}=\sum_{i=j+1}^{m} a_{i}, \quad j=0,1,2, \cdots, m-1, \\
& \widetilde{\widetilde{a}}_{-m}=0, \quad \widetilde{a}_{j}=\sum_{i=-m}^{j-1} a_{i}, \quad j=-m+1,-m+2, \cdots, 0, \\
& \widetilde{X}_{k}=\sum_{j=0}^{m} \widetilde{a}_{j} X_{k-j}, \quad \widetilde{\widetilde{X}}_{k}=\sum_{j=-m}^{0} \widetilde{\widetilde{a}}_{j} X_{k-j} .
\end{aligned}
$$

By the above notation, it is obvious that

$$
\begin{align*}
Y_{k, m} & =\left(\sum_{j=-m}^{m} a_{j}\right) X_{k}-\left(\sum_{j=1}^{m} a_{j}\right) X_{k}+\sum_{j=1}^{m} a_{j} X_{k-j}-\left(\sum_{j=-m}^{-1} a_{j}\right) X_{k}+\sum_{j=-m}^{-1} a_{j} X_{k-j} \\
& =\left(\sum_{j=-m}^{m} a_{j}\right) X_{k}-\widetilde{a}_{0} X_{k}+\sum_{j=1}^{m}\left(\widetilde{a}_{j-1}-\widetilde{a}_{j}\right) X_{k-j}-\widetilde{\widetilde{a}}_{0} X_{k}+\sum_{j=-m}^{-1}\left(\widetilde{\widetilde{a}}_{j+1}-\widetilde{\widetilde{a}}_{j}\right) X_{k-j} \\
& =d_{m} X_{k}+\widetilde{X}_{k-1}-\widetilde{X}_{k}+\widetilde{\widetilde{X}}_{k+1}-\widetilde{\widetilde{X}}_{k} . \tag{7}
\end{align*}
$$

Then, by Equation (7), we have the following Beveridge-Nelson decomposition of linear processes

$$
\begin{align*}
T_{n}=\sum_{k=1}^{n} Y_{k} & =\sum_{k=1}^{n} Y_{k, m}+\left(\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right) \\
& =d_{m}\left(\sum_{k=1}^{n} X_{k}\right)+\left(\widetilde{X}_{0}-\widetilde{X}_{n}\right)+\left(\widetilde{\widetilde{X}}_{n+1}-\widetilde{\widetilde{X}}_{1}\right)+\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j} \tag{8}
\end{align*}
$$

Theorem 1 will be proved by the following two steps.
Step 1 The upper bound of the MDP.
In this step, we want to show

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in F\right) \leq-\inf _{x \in F} I(x) \tag{9}
\end{equation*}
$$

for any closed set $F \in \mathcal{B}(\mathbb{R})$.
By Equation (8) and Lemma 2, for every $y \in \mathbb{R}, m \geq 1, \epsilon>0$, we obtain

$$
\begin{align*}
\widetilde{\Lambda}(y) & :=\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left(y \frac{b_{n}}{n} T_{n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{y d_{m} \frac{b_{n}}{n}\left(\sum_{k=1}^{n} X_{k}\right)+|y| \frac{b_{n}}{n}\left|\widetilde{X}_{0}\right|+|y| \frac{b_{n}}{n}\left|\widetilde{X}_{n}\right|\right. \\
& \left.+|y| \frac{b_{n}}{n}\left|\widetilde{\widetilde{X}}_{n+1}\right|+|y| \frac{b_{n}}{n}\left|\widetilde{\widetilde{X}}_{1}\right|+|y| \frac{b_{n}}{n}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right|\right\} \\
& \leq \limsup _{n \rightarrow \infty} \frac{1}{1+\epsilon} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{(1+\epsilon) y d_{m} \frac{b_{n}}{n}\left(\sum_{k=1}^{n} X_{k}\right)\right\} \\
& +\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\widetilde{X}_{0}\right|\right\} \\
& +\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\widetilde{X}_{n}\right|\right\} \\
& +\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\widetilde{\widetilde{X}}_{n+1}\right|\right\} \\
& +\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\widetilde{\widetilde{X}}_{1}\right|\right\} \\
& +\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right|\right\} \\
& =E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6} . \tag{10}
\end{align*}
$$

By Lemma 3.2 from [19], we can obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left(y \frac{b_{n}}{n} \sum_{k=1}^{n} X_{k}\right)=\frac{\sigma^{2} y^{2}}{2} \tag{11}
\end{equation*}
$$

Then, following Equation (11), one can get

$$
\begin{equation*}
E_{1}=\frac{1}{1+\epsilon} \frac{\sigma^{2}}{2}\left[(1+\epsilon) y d_{m}\right]^{2}=\frac{(1+\epsilon) \sigma^{2} y^{2} d_{m}^{2}}{2} \tag{12}
\end{equation*}
$$

Next, we will consider the second term E_{2}. It follows from the definition of \widetilde{X}_{0}, Lemma 3 and Equation (3) with Equation (5) that

$$
\begin{aligned}
E_{2} & \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n} \sum_{j=0}^{m-1} \sum_{i=j+1}^{m}\left|a_{i}\right|\left|X_{-j}\right|\right\} \\
& \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|X_{1}\right| \sum_{j=0}^{m-1} \sum_{i=j+1}^{m}\left|a_{i}\right|\right\} \\
& \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| m \sum_{i=-\infty}^{+\infty}\left|a_{i}\right| \frac{b_{n}}{n}\left|X_{1}\right|\right\} \\
& =0
\end{aligned}
$$

Therefore, by the same arguments as in E_{2}, we have

$$
\begin{equation*}
E_{i} \leq 0, \quad 2 \leq i \leq 5 \tag{13}
\end{equation*}
$$

Next, we will estimate the last term E_{6}. Combining Lemmas 3 and 5 , the stationarity of $\left\{X_{k}\right\}, e^{|x|} \leq e^{x}+e^{-x}, x \in \mathbb{R}$ and Equation (11), one can obtain

$$
\begin{align*}
E_{6} & \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n} c_{m}\left|\sum_{k=1}^{n} X_{k-j}\right|\right\} \\
& \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{\frac{5(1+\epsilon)}{\epsilon}|y| \frac{b_{n}}{n}\left|\sum_{k=1}^{n} X_{k}\right| c_{m}\right\} \\
& \leq \limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \left[\mathbb{E} \exp \left\{y \frac{5(1+\epsilon)}{\epsilon} \frac{b_{n}}{n} \sum_{k=1}^{n} X_{k} c_{m}\right\}\right. \\
& \left.+\mathbb{E} \exp \left\{-y \frac{5(1+\epsilon)}{\epsilon} \frac{b_{n}}{n} \sum_{k=1}^{n} X_{k} c_{m}\right\}\right] \\
& =\limsup _{n \rightarrow \infty} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{y \frac{5(1+\epsilon)}{\epsilon} \frac{b_{n}}{n} \sum_{k=1}^{n} X_{k} c_{m}\right\} \\
& \vee \limsup _{n \rightarrow \infty}^{\epsilon} \frac{\epsilon}{5(1+\epsilon)} \frac{n}{b_{n}^{2}} \log \mathbb{E} \exp \left\{-y \frac{5(1+\epsilon)}{\epsilon} \frac{b_{n}}{n} \sum_{k=1}^{n} X_{k} c_{m}\right\} \\
& =\frac{\epsilon}{5(1+\epsilon)} \frac{\sigma^{2}}{2}\left\{y \frac{5(1+\epsilon)}{\epsilon} c_{m}\right\}^{2} \vee \frac{\epsilon}{5(1+\epsilon)} \frac{\sigma^{2}}{2}\left\{-y \frac{5(1+\epsilon)}{\epsilon} c_{m}\right\}^{2} \\
& =\frac{5(1+\epsilon)}{\epsilon} \frac{\sigma^{2}}{2} c_{m}^{2} . \tag{14}
\end{align*}
$$

$\sum_{j=-\infty}^{+\infty}\left|a_{j}\right|<\infty$ implies

$$
\begin{equation*}
\lim _{m \rightarrow \infty} d_{m}=a, \quad \lim _{m \rightarrow \infty} c_{m}=\sum_{|j|>m}\left|a_{j}\right|=0 . \tag{15}
\end{equation*}
$$

Moreover, it follows from Equations (10), (12) and (13) with Equation (15) that

$$
\begin{align*}
\widetilde{\Lambda}(y) & \leq \lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty}\left[E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6}\right] \\
& \leq \lim _{\epsilon \rightarrow 0} \lim _{m \rightarrow \infty}\left[\frac{(1+\epsilon) \sigma^{2} y^{2} d_{m}^{2}}{2}+\frac{5(1+\epsilon)}{\epsilon} \frac{\sigma^{2}}{2} c_{m}^{2}\right] \\
& =\lim _{\epsilon \rightarrow 0} \frac{(1+\epsilon) \sigma^{2} y^{2} a^{2}}{2}=\frac{\sigma^{2} y^{2} a^{2}}{2}<\infty . \tag{16}
\end{align*}
$$

Then, by Equation (16), one can calculate that

$$
\begin{equation*}
\tilde{\Lambda}^{*}(x)=\sup _{y \in \mathbb{R}}\{x y-\widetilde{\Lambda}(y)\} \geq \sup _{y \in \mathbb{R}}\left\{x y-\frac{\sigma^{2} y^{2} a^{2}}{2}\right\}=\frac{x^{2}}{2 \sigma^{2} a^{2}}=I(x) \tag{17}
\end{equation*}
$$

Therefore, the proof of Equation (9) is complete by combining Equation (17) with Lemma 6.

Step 2 The lower bound of the MDP.
In order to prove the lower bound of the MDP, it suffices to show that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{B_{n}} T_{n} \in B(x, \delta)\right) \geq-\frac{x^{2}}{2 \sigma^{2} a^{2}}=-I(x) \tag{18}
\end{equation*}
$$

where $B(x, \delta)=\{y ;|x-y|<\delta\} \in G, \delta>0$ and $G \in \mathcal{B}(\mathbb{R})$ is an open set.
In fact, Equation (18) implies

$$
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in G\right) \geq \liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in B(x, \delta)\right) \geq-\frac{x^{2}}{2 \sigma^{2} a^{2}}=-I(x)
$$

Thus, by the arbitrariness of x, one can get

$$
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in G\right) \geq-\inf _{x \in G} \frac{x^{2}}{2 \sigma^{2} a^{2}}=-\inf _{x \in G} I(x)
$$

By Lemma 4, we know that $\left\{\frac{1}{b_{n}} \sum_{k=1}^{n} X_{k}, n \geq 1\right\}$ satisfies the MDP with rate function $I_{1}(x)=\frac{x^{2}}{2 \sigma^{2}}$; hence,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(d_{m} \frac{1}{b_{n}} \sum_{k=1}^{n} X_{k} \in B\left(x, \frac{\delta}{6}\right)\right) & \geq-\inf _{d_{m} y \in B\left(x, \frac{\delta}{6}\right)}\left\{\frac{y^{2}}{2 \sigma^{2}}\right\} \\
& =-\inf _{\frac{d_{m y} y}{a} \in B\left(x, \frac{\delta}{6}\right)}\left\{\frac{y^{2}}{2 \sigma^{2} a^{2}}\right\} \\
& =-\inf _{y \in B\left(\frac{a x}{d_{m}}, \frac{|a| \delta}{6\left|d_{m}\right|}\right)}\left\{\frac{y^{2}}{2 \sigma^{2} a^{2}}\right\} .
\end{aligned}
$$

Following Equation (15), we can obtain $x \in B\left(a x / d_{m},|a| \delta /\left(6\left|d_{m}\right|\right)\right)$ for sufficiently large m. Therefore,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(d_{m} \frac{1}{b_{n}} \sum_{k=1}^{n} X_{k} \in B\left(x, \frac{\delta}{6}\right)\right) \geq-\frac{x^{2}}{2 \sigma^{2} a^{2}}=-I(x) \tag{19}
\end{equation*}
$$

We can show, by triangle inequality and Equation (8), that

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(d_{m} \frac{1}{b_{n}} \sum_{k=1}^{n} X_{k} \in B\left(x, \frac{\delta}{6}\right)\right) \\
& =\liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\left(\frac{T_{n}}{b_{n}}-\frac{\left(\widetilde{X}_{0}-\widetilde{X}_{n}\right)}{b_{n}}-\frac{\left(\widetilde{X}_{n+1}-\widetilde{\widetilde{X}}_{1}\right)}{b_{n}}-\frac{\sum_{k=1}^{n} \sum_{|j|>m} \alpha_{j} X_{k-j}}{b_{n}}\right) \in B\left(x, \frac{\delta}{6}\right)\right) \\
& \leq \liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{V}\left(\frac{T_{n}}{b_{n}} \in B(x, \delta)\right)+\mathbb{V}\left(\frac{\left|\widetilde{X}_{0}\right|}{b_{n}} \geq \frac{\delta}{6}\right)+\mathbb{V}\left(\frac{\left|\widetilde{X}_{n}\right|}{b_{n}} \geq \frac{\delta}{6}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\mathbb{V}\left(\frac{\left|\widetilde{\widetilde{X}}_{n+1}\right|}{b_{n}} \geq \frac{\delta}{6}\right)+\mathbb{V}\left(\frac{\left|\widetilde{\widetilde{X}}_{1}\right|}{b_{n}} \geq \frac{\delta}{6}\right)+\mathbb{V}\left(\frac{\left|\sum_{k=1}^{n} \sum_{|j|>m} \alpha_{j} X_{k-j}\right|}{b_{n}} \geq \frac{\delta}{6}\right)\right\} \\
\leq & \liminf _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{T_{n}}{b_{n}} \in B(x, \delta)\right) \\
& \vee \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\left|\widetilde{X}_{0}\right|}{b_{n}} \geq \frac{\delta}{6}\right) \vee \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\left|\widetilde{X}_{n}\right|}{b_{n}} \geq \frac{\delta}{6}\right) \\
& \vee \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\left|\widetilde{\widetilde{X}}_{n+1}\right|}{b_{n}} \geq \frac{\delta}{6}\right) \vee \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\left|\widetilde{\widetilde{X}}_{1}\right|}{b_{n}} \geq \frac{\delta}{6}\right) \\
& \vee \limsup ^{n} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right| \geq \frac{\delta}{6}\right) \\
& \quad: F_{1} \vee F_{2} \vee F_{3} \vee F_{4} \vee F_{5} \vee F_{6} \tag{20}
\end{align*}
$$

Thus, by Equation (20), in order to show Equation (18), it suffices to calculate

$$
\begin{equation*}
F_{i} \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-1,2 \leq i \leq 6 \tag{21}
\end{equation*}
$$

Taking $y_{0} \geq 6\left(\frac{x^{2}}{2 \sigma^{2} a^{2}}+1\right) / \delta$, by Lemma 1 and the same discussion as in E_{2}, it is easily seen that

$$
\begin{aligned}
F_{2} & =\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}}\left|\widetilde{X}_{0}\right| \geq \frac{\delta}{6}\right) \\
& =\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{y_{0} b_{n}}{n}\left|\widetilde{X}_{0}\right| \geq \frac{y_{0} \delta b_{n}^{2}}{6 n}\right) \\
& \leq \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left(\exp \left\{-\frac{y_{0} \delta b_{n}^{2}}{6 n}\right\} \mathbb{E}\left[\exp \left\{\frac{y_{0} b_{n}}{n}\left|\widetilde{X}_{0}\right|\right\}\right]\right) \\
& \leq-\frac{y_{0} \delta}{6}+\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E}\left[e^{\frac{y_{0} b_{n}}{n}\left|\widetilde{X}_{0}\right|}\right] \\
& =-\frac{y_{0} \delta}{6} \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-1 .
\end{aligned}
$$

Therefore, by the same arguments as in F_{2}, we have

$$
\begin{equation*}
F_{i} \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-1, \quad 2 \leq i \leq 5 \tag{22}
\end{equation*}
$$

Finally, we want to show that $F_{6} \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-1$. Taking $y_{0} \geq 6\left(\frac{x^{2}}{2 \sigma^{2} a^{2}}+2\right) / \delta$ and following Lemma 1 and the same argument as in Equation (14), then

$$
\begin{aligned}
J_{6} & =\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right| \geq \frac{\delta}{6}\right) \\
& =\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{y_{0} b_{n}}{n}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right| \geq \frac{y_{0} \delta b_{n}^{2}}{6 n}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left(\exp \left\{-\frac{y_{0} \delta b_{n}^{2}}{6 n}\right\} \mathbb{E}\left[\exp \left\{\frac{y_{0} b_{n}}{n}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right|\right\}\right]\right) \\
& \leq-\frac{y_{0} \delta}{6}+\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E}\left[\exp \left\{\frac{y_{0} b_{n}}{n}\left|\sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}\right|\right\}\right] \\
& \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-2+\frac{\sigma^{2}}{2}\left\{\sum_{|j|>m}\left|a_{j}\right|\right\} \tag{23}
\end{align*}
$$

Noting that $\sum_{|j|>m}\left|a_{j}\right| \rightarrow 0, m \rightarrow \infty$, then, by Equation (23), for sufficiently large m, one can get

$$
\begin{equation*}
F_{6} \leq-\frac{x^{2}}{2 \sigma^{2} a^{2}}-1 \tag{24}
\end{equation*}
$$

Thus, the above arguments yield Equation (21). Therefore, the proof is complete.
Remark 1. If taking $a_{0}=1, a_{j}=0, j \neq 0$ in Theorem 1 , then $\left\{Y_{k}, k \geq 1\right\}$ is a special linear process. Thus, we need to emphasize that

$$
\mathbb{V}\left(\frac{1}{b_{n}} \sum_{k=1}^{n} X_{k} \in \cdot\right), \quad n \geq 1
$$

satisfies the MDP for an m-dependent sequence, that is Theorem 3.1 from [19]. Thus, our theorem extends the known result.

5. The Upper Bound of the MDP for Linear Processes Generated by an ND Sequence

In this section, we will discuss the upper bound of the MDP for linear processes generated by an ND sequence. The method of proof is different from that used in the above section depending on the existence of a logarithmic moment generating function; however, the limit of the logarithmic moment generating function of an ND sequence may not exist. Therefore, we adopt another method to prove the upper bound of the MDP.

Theorem 2. Assume that $\left\{X_{k}, k \in \mathbb{Z}\right\}$ is a strictly stationary $N D$ random variable sequence on $(\Omega, \mathcal{H}, \mathbb{E})$ satisfying

$$
\begin{equation*}
\mathbb{E}\left[X_{1}\right]=\mathbb{E}\left[-X_{1}\right]=0, \quad \mathbb{E}\left[\left|X_{1}\right|^{2+\eta}\right]<\infty \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left[e^{t\left|X_{1}\right|}\right]<\infty, \tag{26}
\end{equation*}
$$

for some $\eta>0$ and all $t \in \mathbb{R}$. Suppose that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left(\sum_{i=1}^{n} \mathbb{V}\left(\left|X_{i}\right|>b_{n}\right)\right)=-\infty \tag{27}
\end{equation*}
$$

and moreover, for all $t \in \mathbb{R}$ and $n \geq 1$,

$$
\begin{equation*}
\mathbb{E}\left[\exp \left(t \sum_{i=1}^{n} X_{i} I_{\left\{\left|X_{i}\right|<\frac{n}{b_{n}}\right\}}\right)\right]=\left(\mathbb{E}\left[\exp \left(t \sum_{i=1}^{n} X_{1} I_{\left\{\left|X_{1}\right|<\frac{n}{b_{n}}\right\}}\right)\right]\right)^{n} \tag{28}
\end{equation*}
$$

Furthermore, let $\left\{a_{j}, j \in \mathbb{Z}\right\}$ be sequence of real numbers satisfying $\sum_{j=-\infty}^{+\infty}\left|a_{j}\right|<\infty$ and $a=\sum_{j=-\infty}^{+\infty} a_{j} \neq 0$ and $\left\{Y_{k}, k \geq 1\right\}$ be a linear process defined by Equation (6) and partial sum
$T_{n}=\sum_{k=1}^{n} Y_{k}, n \geq 1$. Then, $\left\{\mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in \cdot\right), n \geq 1\right\}$ satisfies the upper bound of the MDP with speed n / b_{n}^{2} and rate function $J(x / a)$, that is, for any closed set $F \in \mathcal{B}(\mathbb{R})$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} T_{n} \in F\right) \leq-\inf _{x \in F} J(x / a), \tag{29}
\end{equation*}
$$

where $\left\{b_{n}, n \geq 1\right\}$ is defined as in Equation (3) and

$$
J(x)=\sup _{y \in \mathbb{R}}\left\{x y-\frac{y^{2}}{2} \mathbb{E}\left[X_{1}^{2}\right]\right\}=\frac{x^{2}}{2 \mathbb{E}\left[X_{1}^{2}\right]}
$$

Proof. We will adopt the same notation defined in the proof of Theorem 1. By Lemma 7, in order to prove Equation (29), we only need to show that for all $\varepsilon>0$

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{T_{n}}{b_{n}}-\frac{d_{m}}{b_{n}}\left(\sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right|<\frac{n}{b_{n}}\right\}}\right)>\varepsilon\right)=-\infty \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{d_{m}}{b_{n}}\left(\sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right|<\frac{n}{b_{n}}\right\}}\right) \in F\right) \leq-\inf _{x \in F} J(x / a) \tag{31}
\end{equation*}
$$

Next, we will prove Equation (30). By Equation (8), it suffices to show that

$$
\begin{gather*}
G_{1}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{d_{m}}{b_{n}}\left(\sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right| \geq \frac{n}{\left.b_{n}\right\}}\right.}\right)>\varepsilon / 6\right)=-\infty, \tag{32}\\
G_{2}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \widetilde{X}_{0}>\varepsilon / 6\right)=-\infty, \tag{33}\\
G_{3}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \widetilde{X}_{n}>\varepsilon / 6\right)=-\infty, \tag{34}\\
G_{4}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \widetilde{X}_{1}>\varepsilon / 6\right)=-\infty, \tag{35}\\
G_{5}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \widetilde{X}_{n+1}>\varepsilon / 6\right)=-\infty, \tag{36}\\
G_{6}:=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \sum_{k=1}^{n} \sum_{|j|>m} a_{j} X_{k-j}>\varepsilon / 6\right)=-\infty . \tag{37}
\end{gather*}
$$

By Equation (26) and by the same argument as in page 409-410 of [15], one can get

$$
\begin{equation*}
G_{1}=\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{d_{m}}{b_{n}}\left(\sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right| \geq \frac{n}{b_{n}}\right\}}\right)>\varepsilon / 6\right)=-\infty . \tag{38}
\end{equation*}
$$

By the definition of \widetilde{X}_{0}, Lemma 3 and Equation (5), for every $\beta>1$, we have

$$
\begin{aligned}
G_{2} & =\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{1}{b_{n}} \sum_{j=0}^{m-1} \sum_{i=j+1}^{m} a_{i} X_{-j}>\varepsilon / 6\right) \\
& \leq \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\beta}{b_{n}} \sum_{j=0}^{m-1} \sum_{i=j+1}^{m}\left|a_{i}\right|\left|X_{-j}\right|>\varepsilon \beta / 6\right) \\
& \leq \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\beta}{b_{n}}\left|X_{1}\right| \sum_{j=0}^{m-1} \sum_{i=j+1}^{m}\left|a_{i}\right|>\varepsilon \beta / 6\right) \\
& \leq \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\beta}{b_{n}} m \sum_{i=-\infty}^{+\infty}\left|a_{i}\right|\left|X_{1}\right|>\varepsilon \beta / 6\right) \\
& =\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\beta b_{n}}{n} m \sum_{i=-\infty}^{+\infty}\left|a_{i}\right|\left|X_{1}\right|>\frac{\varepsilon \beta b_{n}^{2}}{6 n}\right) \\
& \leq \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\exp \left\{-\frac{\varepsilon \beta b_{n}^{2}}{6 n}\right\} \mathbb{E}\left[\exp \left\{\frac{\beta b_{n}}{n} m \sum_{i=-\infty}^{+\infty}\left|a_{i}\right|\left|X_{1}\right|\right\}\right]\right\} \\
& =-\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \lim \operatorname{lup}_{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{E}\left[\exp \left\{\frac{\beta b_{n}}{n} m \sum_{i=-\infty}^{+\infty}\left|a_{i}\right|\left|X_{1}\right|\right\}\right] \\
& =-\frac{\varepsilon \beta}{6}
\end{aligned}
$$

By the arbitrariness of β, let $\beta \rightarrow \infty$, then we can obtain $G_{2}=-\infty$. Since the arguments of $G_{2}-G_{5}$ are essentially similar, we obtain the following:

$$
\begin{equation*}
G_{i}=-\infty, \quad 2 \leq i \leq 5 \tag{39}
\end{equation*}
$$

By Lemmas 1, 3 and 5, noting that $e^{|x|} \leq e^{x}+e^{-x}, x \in \mathbb{R}$ and $e^{x}=1+x+x^{2}+$ $o\left(x^{2}\right), x \rightarrow 0$ and $\log (1+x) \leq x, x \geq 0$ and $c_{m}=\sum_{|j|>m}\left|a_{j}\right| \rightarrow 0, m \rightarrow \infty$, the definitions of ND and stationary, then one can obtain

$$
\begin{aligned}
& G_{6} \leq \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{\beta b_{n} c_{m}}{n}\left|\sum_{k=1}^{n} X_{k-j}\right|>\frac{\varepsilon \beta b_{n}^{2}}{6 n}\right) \\
\leq & \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\exp \left\{-\frac{\varepsilon \beta b_{n}^{2}}{6 n}\right\} \mathbb{E}\left[\exp \left\{\frac{\beta b_{n} c_{m}}{n}\left|\sum_{k=1}^{n} X_{k-j}\right|\right\}\right]\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{\left.\frac{\beta b_{n} c_{m}}{n} \sum_{k=1}^{n} X_{k} \right\rvert\,\right\}\right]\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{\frac{\beta b_{n} c_{m}}{n} \sum_{k=1}^{n} X_{k}\right\}+\exp \left\{-\frac{\beta b_{n} c_{m}}{n} \sum_{k=1}^{n} X_{k}\right\}\right]\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{\frac{\beta b_{n} c_{m}}{n} \sum_{k=1}^{n} X_{k}\right\}\right]\right\} \\
& \vee \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{-\frac{\beta b_{n} c_{m}}{n} \sum_{k=1}^{n} X_{k}\right\}\right]\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup \sup _{n \rightarrow \infty} \frac{n^{2}}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{\frac{\beta b_{n} c_{m}}{n} X_{1}\right\}\right]\right\} \\
& \vee \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n^{2}}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{-\frac{\beta b_{n} c_{m}}{n} X_{1}\right\}\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n^{2}}{b_{n}^{2}} \log \left\{\mathbb{E}\left[1+\frac{\beta b_{n} c_{m}}{n} X_{1}+\frac{\beta^{2} b_{n}^{2} c_{m}^{2}}{2 n^{2}} X_{1}^{2}+o\left(\frac{b_{n}^{2} c_{m}^{2}}{n^{2}} X_{1}^{2}\right)\right]\right\} \\
& \vee \lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n^{2}}{b_{n}^{2}} \log \left\{\mathbb{E}\left[1-\frac{\beta b_{n} c_{m}}{n} X_{1}+\frac{\beta^{2} b_{n}^{2} c_{m}^{2}}{2 n^{2}} X_{1}^{2}+o\left(\frac{b_{n}^{2} c_{m}^{2}}{n^{2}} X_{1}^{2}\right)\right]\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{n^{2}}{b_{n}^{2}} \log \left\{1+\frac{\beta^{2} b_{n}^{2} c_{m}^{2}}{2 n^{2}} \mathbb{E}\left[X_{1}^{2}\right]+o\left(\frac{b_{n}^{2} c_{m}^{2}}{n^{2}}\right)\right\} \\
\leq & -\frac{\varepsilon \beta}{6}+\lim _{m \rightarrow \infty}\left\{\frac{\beta^{2}}{2} c_{m}^{2} \mathbb{E}\left[X_{1}^{2}\right]+o\left(c_{m}^{2}\right)\right\} \\
= & -\frac{\varepsilon \beta}{6} .
\end{aligned}
$$

Moreover, by the arbitrariness of β, let $\beta \rightarrow \infty$. Then, we can obtain

$$
\begin{equation*}
G_{6}=-\infty . \tag{40}
\end{equation*}
$$

Then, Equation (30) follows by putting Equations (32)-(41) together.
Finally, we want to prove Equation (31). Using the same arguments as in page 410-411 of [15], one can get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \left\{\mathbb{E}\left[\exp \left\{\frac{t d_{m} b_{n}}{n} \sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right|<\frac{n}{b_{n}}\right\}}\right\}\right]\right\}=\frac{t^{2} d_{m}^{2}}{2} \mathbb{E}\left[X_{1}^{2}\right]<\infty \tag{41}
\end{equation*}
$$

Then, by Equation (41) and Lemma 6, one can get

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{n}{b_{n}^{2}} \log \mathbb{V}\left(\frac{d_{m}}{b_{n}}\left(\sum_{k=1}^{n} X_{k} I_{\left\{\left|X_{i}\right|<\frac{n}{b_{n}}\right\}}\right) \in F\right) & \leq-\inf _{x \in F} \sup _{t \in \mathbb{R}}\left\{x t-\frac{t^{2} d_{m}^{2}}{2} \mathbb{E}\left[X_{1}^{2}\right]\right\} \\
& =-\inf _{x \in F} \frac{x^{2}}{2 d_{m}^{2} \mathbb{E}\left[X_{1}^{2}\right]} \tag{42}
\end{align*}
$$

Noting $d_{m} \rightarrow a$ as $m \rightarrow \infty$, Equation (31) follows by letting $m \rightarrow \infty$ in Equation (42). The proof is complete.

Remark 2. If taking $a_{0}=1, a_{j}=0, j \neq 0$ in Theorem 2 , then $\left\{Y_{k}, k \geq 1\right\}$ is a simple linear process. Then,

$$
\mathbb{V}\left(\frac{1}{b_{n}} \sum_{k=1}^{n} X_{k} \in \cdot\right), \quad n \geq 1
$$

satisfies the upper bound of the MDP, that is Theorem 4.1 in [15]. Thus, our theorem extends the known result.

Remark 3. In this section, we obtain the upper bound of the MDP for linear processes generated by an ND sequence; the lower bound of MDP leaves the problem open. One of the methods to prove the lower bound is the central limit theorem. To our knowledge, the central limit theorem for ND random variables under sub-linear expectation is not yet detailed; we will consider this problem in future work.

6. Conclusions

In this paper, using the Beveridge-Nelson decomposition of linear processes and the inequalities under sub-linear expectation, the authors establish the MDP for linear processes produced by an m-dependent sequence and the upper bound of the MDP for linear processes produced by an ND sequence. The results extend the MDP from the traditional probability space to the sub-linear expectation space. Furthermore, they also
extend the MDP to linear processes. In the future, we will try to establish the lower bound of the MDP for ND sequences and other dependent sequences under sub-linear expectations.

Author Contributions: Methodology, P.S., D.W., X.D., X.T. and Y.Z.; Formal analysis, P.S., D.W., X.D., X.T. and Y.Z.; Writing—review \& editing, P.S., D.W., X.D., X.T. and Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 11771178, 12171198, 12271231, 12001229, 11901053); the Science and Technology Development Program of Jilin Province (Grant No. 20210101467JC); Department of Science and Technology of Jilin Province (Grant No. YDZJ202102ZYTS156); and Fundamental Research Funds for the Central Universities and Cultivation Plan for Excellent Young Scholar Candidates of Jilin University.

Data Availability Statement: No data were used to support this study.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Donsker, M.D.; Varadhan, S.R.S. Large deviations for stationary Gaussian processes. Commun. Math. Phys. 1985, 97, 187-210. [CrossRef]
2. Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications; Springer: New York, NY, USA, 1992.
3. Burton, R.M.; Dehling, H. Large deviations for some weakly dependent random processes. Stat. Probab. Lett. 1990, 9, $397-401$. [CrossRef]
4. Dong, Z.S.; Tan, X.L.; Yang, X.Y. Moderate deviation principles for moving average processes of real stationary sequences. Stat. Probab. Lett. 2006, 74, 139-150. [CrossRef]
5. Sun, G.M.; Xie, J.S. Asymptotic normality and moderate deviation principle for high-dimensional likelihood ratio statistic on block compound symmetry covariance structure. Statistics 2020, 54, 114-134. [CrossRef]
6. Chen, H.T.; Zhang, Y. Moderate deviations for the total population arising from a nearly unstable sub-critical Galton-Watson process with immigration. Commun. Stat. Theory Methods 2021, 50, 432-445. [CrossRef]
7. Bai, Y.S.; Zhang, Y.; Liu, C.M. Moderate deviation principle for likelihood ratio test in multivariate linear regression model. J. Multivar. Anal. 2023, 194, 105139. [CrossRef]
8. Denis, L.; Martini, C. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 2006, 16, 827-852. [CrossRef]
9. Gilboa, I. Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 1987, 16, 65-88. [CrossRef]
10. Marinacci, M. Limit laws for non-additive probabilities and their frequentist interpretation. J. Econ. Theory 1999, 84, 145-195. [CrossRef]
11. Peng, S.G. Backward SDE and related G-Expectation. Backward Stoch. Differ. Equ. 1997, 141-159.
12. Peng, S.G. G-Gxpectation, G-Brownian motion and related stochastic calculus of Ito's type. Stoch. Anal. Appl. 2006, 2, 541-567.
13. Gao, F.Q.; Jiang, H. Large deviations for stochastic differential equations driven by G-Brownian motion. Stoch. Process. Appl. 2010, 120, 2212-2240. [CrossRef]
14. Gao, F.Q.; Xu, M.Z. Relative entropy and large deviations under sublinear expectations. Acta Math. Sci. Ser. B 2012, 32, 1826-1834.
15. Chen, Z.J.; Feng, X.F. Large deviation for negatively dependent random variables under sublinear expectation. Commun. Stat. Theory Methods 2016, 45, 400-412. [CrossRef]
16. Zhang, L.X. Self-normalized moderate deviation and laws of the iterated logarithm under G-expectation. Commun. Math. Stat. 2016, 4, 229-263. [CrossRef]
17. Tan, Y.Z.; Zong, G.F. Large deviation principle for random variables under sublinear expectations on \mathbb{R}^{d}. J. Math. Anal. Appl. 2020, 488, 124110. [CrossRef]
18. Zhou, Q.Q.; Logachov, A.V. Moderate deviations principle for independent random variables under sublinear expectations. Sib. Elektron. Mat. Izv. 2021, 18, 817-826. [CrossRef]
19. Guo, S.; Zhang, Y. Moderate deviation principle for m-dependent random variables under the sublinear expectation. AIMS Math. 2022, 7, 5943-5956. [CrossRef]
20. Liu, W.; Zhang, Y. Large deviation principle for linear processes generated by real stationary sequences under the sub-linear expectation. Commun. Stat. Theory Methods 2023, 52, 5727-5741. [CrossRef]
21. Wu, Q.Y.; Jiang, Y.Y. Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations. J. Math. Anal. Appl. 2018, 460, 252-270. [CrossRef]
22. Fang, X.; Peng, S.G.; Shao, Q.M.; Song, Y.S. Limit theorems with rate of convergence under sublinear expectations. Bernoulli 2019, 25, 2564-2596. [CrossRef]
23. Song, Y.S. Normal approximation by Stein's method under sublinear expectations. Stoch. Process. Appl. 2020, 130, 2838-2850. [CrossRef]
24. Liu, W.; Zhang, Y. Central limit theorem for linear processes generated by IID random variables under the sub-linear expectation. Appl. Math. J. Chin. Univ. Ser. B 2021, 36, 243-255. [CrossRef]
25. Liu, W.; Zhang, Y. The law of the iterated logarithm for linear processes generated by a sequence of stationary independent random variables under the sub-linear expectation. Entropy 2021, 23, 1313. [CrossRef]
26. Ding, X. A general form for precise asymptotics for complete convergence under sublinear expectation. AIMS Math. 2022, 7, 1664-1677. [CrossRef]
27. Wu, Y.; Wang, X.J. General results on precise asymptotics under sub-linear expectations. J. Math. Anal. Appl. 2022, 511, 126090. [CrossRef]
28. Guo, S.; Zhang, Y. Central limit theorem for linear processes generated by m-dependent random variables under the sublinear expectation. Commun. Stat. Theory Methods 2023, 52, 6407-6419. [CrossRef]
29. Peng, S.G. Nonlinear Expectations and Stochastic Calculus under Uncertainty; Springer: Berlin/Heidelberg, Germany, 2019.
30. Li, X.P. A central limit theorem for m-dependent random variables under sublinear expectations. Acta Math. Appl. Sin. Engl. Ser. 2015, 31, 435-444. [CrossRef]
31. Chen, Z.J.; Wu, P.Y.; Li, B.M. A strong law of large numbers for non-additive probabilities. Int. J. Approx. Reason. 2013, 54, 365-377. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

