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Abstract: We are interested in the linear processes generated by dependent sequences under sub-linear
expectation. Using the Beveridge–Nelson decomposition of linear processes and the inequalities,
the moderate deviation principle for linear processes produced by an m-dependent sequence is
established. We also prove the upper bound of the moderate deviation principle for linear processes
produced by negatively dependent sequences via different methods from m-dependent sequences.
These conclusions promote and improve the corresponding results from the traditional probability
space to the sub-linear expectation space.
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1. Introduction

An important method for analyzing the limiting behavior of a family of probability
measures is the large (moderate) deviation principle (abbreviated as LDP (MDP)) which
plays a significant role in probability theory. It can describe the tail probability with an
exponential rate of convergence. It is widely used in various areas, such as statistical
mechanics, partial differential equations, dynamical systems, statistics, stochastic processes
and their related fields and so on. It has been widely studied by numerous scholars. For
example, refs. [1,2] established the basic and groundbreaking work for the LDP (MDP) on a
traditional probability space. We also refer to refs. [3–7] and the references therein for more
information on the large deviation principle on a traditional probability space.

One of the research hotspots in risk measurement, assets pricing, cooperative game
and decision theory is model uncertainty, see refs. [8–11], etc. Recently, by relaxing the
linear property of the traditional linear expectation to subadditivity and positive homogene-
ity, ref. [12] introduced a systematic framework of the sub-linear expectation of random
variables in a general function space. Obviously, the natural extension of the classical linear
expectation is sub-linear expectation. Subsequently, many limit theorems were established
in the sub-linear expectation space. At the same time, some results on the LDP (MDP) were
established on a traditional probability space, we refer to ref. [13], which obtained the LDP
for stochastic differential equations driven by G-Brownian motion; ref. [14], which estab-
lished relative entropy and the LDP under sub-linear expectations; ref. [15], which proved
the LDP for negatively dependent random sequences in the sense of upper probability;
ref. [16], which studied the self-normalized MDP and laws of the iterated logarithm under
G-expectation; ref. [17], which proposed the LDP for random variables under sub-linear
expectations on Rd; ref. [18], which discussed the MDP for independent and nonidentical
distributed random variables under sub-linear expectation; ref. [19], which presented the
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MDP for the sequence of m-dependent strictly stationary random variables in the sense of
sub-linear expectation; and ref. [20], which found the LDP for linear processes produced by
independent stationary sequences under upper probability. We also refer to refs. [21–28]
for the other limit properties under the sub-linear expectation. Most work on the LDP
(MDP) assumes that the random variables under discussion are independent despite the
different definitions of independence. Furthermore, there is no work on the MDP for linear
processes under the sub-linear expectation. Therefore, we will discuss the MDP for linear
processes generated by a dependent sequence.

The paper is organized as follows. In Section 1, the significance of the research is
introduced. Some basic settings and definitions under sub-linear expectations are given in
Section 2. Some lemmas required to demonstrate the main results are presented in Section 3.
In Section 4, the MDP for linear processes generated by an m-dependent sequence is stated
and proven. In Section 5, the upper bound of the MDP for linear processes generated by a
negatively dependent sequence is established and proven.

Throughout the paper, C denotes a positive constant, which may take different values
wherever it appears in different expressions. IA denotes the indicator function of the set A,
(Ω,F , P) stands for a traditional probability space, and (Ω,H,E) stands for a sub-linear
expectation space.

2. Basic Settings and Definitions

In this section, we will recall some notations and definitions on sub-linear expectation
spaces. We use the framework and notations of ref. [29]. Let Ω be a given set, B(Ω) be the
σ−algebra of subsets of the set Ω, and H be a linear space of real measurable functions
defined on (Ω,B(Ω)). H contains all IA, where A ∈ B(Ω). If X ∈ H, then |X| ∈ H. The
spaceH can be considered as a space of random variables.

Definition 1. A function E : H → [−∞,+∞] is said to be a sub-linear expectation if it satisfies
for ∀ X, Y ∈ H,

1. Monotonicity: X ≥ Y implies E[X] ≥ E[Y].
2. Constant preserving: E[c] = c, ∀c ∈ R.
3. Subadditivity: E[X + Y] ≤ E[X] +E[Y].
4. Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0.

The triple (Ω,H,E) is called a sub-linear expectation space. Given a sub-linear expec-
tation E, let us denote the conjugate expectation E of E by E [X] := −E[−X], ∀X ∈ H.

Now, we give the definitions of independence, m-dependence and negative depen-
dence on a sub-linear expectation space (Ω,H,E), which can be found in refs. [15,30].

Definition 2. Let X1, X2, · · · , Xn+1 be random variables in a sub-linear expectation space (Ω,H,E).
Xn+1 is described to be independent from (X1, X2, · · · , Xn) under E if

E
[

n+1

∏
i=1

ϕi(Xi)

]
= E

[
n

∏
i=1

ϕi(Xi)

]
E[ϕn+1(Xn+1)],

for every nonnegative measurable function ϕi on R with E[ϕi(Xi)] < ∞, 1 ≤ i ≤ n + 1. A
sequence of random variables {Xn, n ≥ 1} is described to be independent if Xn+1 is independent of
(X1, X2, · · · , Xn) for all n ∈ N.

A natural extension of independence is the following.

Definition 3. If (Xn+m+1, · · · , Xn+j) is independent from (X1, · · · , Xn) for fixed integer m and
every n and every j > m + 1, then {Xn, n ≥ 1} is called a sequence of m-dependent random
variables. Especially, {Xn, n ≥ 1} is called an independent sequence for m = 0.
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Definition 4. Xn+1 is described to be negatively dependent (abbreviated as ND) from (X1, X2, · · · , Xn)
under E if

E
[

n+1

∏
i=1

ϕi(Xi)

]
≤ E

[
n

∏
i=1

ϕi(Xi)

]
E[ϕn+1(Xn+1)],

for every nonnegative measurable function ϕi on R with E[ϕi(Xi)] < ∞, 1 ≤ i ≤ n + 1. A
sequence of random variables {Xn, n ≥ 1} is described to be ND if Xn+1 is ND of (X1, X2, · · · , Xn)
for all n ∈ N.

Ref. [20] gave the following definition of strictly stationary in a sub-linear expectation
space.

Definition 5. A sequence of random variables {Xn, n ≥ 1} is said to be strictly stationary on the
(Ω,H,E) if

E[φn(ξ1, ξ2, · · · , ξn)] = E[φn(ξ1+k, ξ2+k, · · · , ξn+k)], ∀n ≥ 1, k ≥ 1,

for any function φn ∈ Cl,Lip(Rn) : Rn → R, where ϕ ∈ Cl,Lip(Rn) denotes the linear space of
local Lipschitz continuous functions ϕ satisfying

|ϕ(x)− ϕ(y)| ≤ c(1 + |x|m + |y|m)|x− y|, ∀ x, y ∈ Rn,

for some c > 0, m ∈ N depending on ϕ.

Next, we look back upon the definitions of the upper expectation and corresponding
capacity. We also refer to Chapter 6 in [29] for more details. Let B(Ω) be a σ-algebra on Ω.
LetM and B(Ω) be the set of all probability measures and a σ-algebra on Ω, respectively.
Every non-empty subset P ⊆ M defines an upper probability/expectation and a lower
probability/expectation

V(A) = sup
P∈P

P(A) = E[IA], V(A) = inf
P∈P

P(A) = E [IA], A ∈ B(Ω),

E[X] = sup
P∈P

EP[X], E [X] = inf
P∈P

EP[X], X ∈ H.

It is easy to check that V(·) is a Choquet capacity (ref. [8]), which meets the following
definition, V(·) is the conjugate capacity of V(·), E[·] is a sub-linear expectation which is
given in Definition 1 and E [·] is the conjugate expectation E[·].

Definition 6. V(·) is a Choquet capacity, i.e.,
(1). 0 6 V(A) 6 1, ∀A ∈ B(Ω).
(2). V(A) 6 V(B), ∀A ⊂ B ∈ B(Ω).

(3). V
(

∞⋃
n=1

An

)
6

∞
∑

n=1
V(An), for any An ∈ B(Ω), n ≥ 1.

(4). lim
n→∞

V(An) = V(A) if An ↑ A =
∞⋃

n=1
An, An ∈ B(Ω), n ≥ 1.

Next, we provide the definition of regularity of E (ref. [29]), which will be used in the
following.

Definition 7. The sub-linear expectation E is regular for any sequence {Xn, n ≥ 1} ⊂ H
such that

Xn ↓ 0 =⇒ lim
n→∞

E[Xn] = 0.

Next, we will give the definitions of a good rate function (ref. [2]) and the LDP (ref. [14])
in a sub-linear expectation space.
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Definition 8. A function I: R → [0, ∞) is called a good rate function if for all l > 0, the set
{x : I(x) 6 l} is a compact subset of R.

Definition 9. Let Ω be a topological space and {a(n), n > 1} be a sequence of positive functions
satisfying a(n) → ∞ as n → ∞. A family of measurable maps {V(Vn ∈ ·), n > 1} satisfies the
LDP with speed a(n) and rate function I(x) if for any open set G ⊂ B(R),

lim inf
n→∞

1
a(n)

logV(Vn ∈ G) > − inf
x∈G

I(x), (1)

and for any closed subset F ⊂ B(R),

lim sup
n→∞

1
a(n)

logV(Vn ∈ F) 6 − inf
x∈F

I(x). (2)

Equations (1) and (2) are described as the lower bound of large deviations (LLD) and
the upper bound of large deviations (ULD), respectively.

If Equations (1) and (2) are satisfied with a(n) = b2
n

n and Vn = Sn
bn

, we say that Vn

satisfies the LDP with speed n
b2

n
and rate function I(·), we also say that Vn satisfies the MDP,

where {bn, n ≥ 1} is a sequence of positive real numbers satisfying

lim
n→∞

bn√
n
= ∞, lim

n→∞

bn

n
= 0. (3)

3. Preliminary Lemmas

Some useful lemmas which are needed to prove the main results are given in the
following.

Lemma 1 ([31]). Let f (x) ≥ 0 be a nondecreasing function defined on R; then, for any x,

V(X ≥ x) ≤ E[ f (X)]

f (x)
.

Lemma 2 ([20]). Let {ηi, 1 ≤ i ≤ n} be a sequence of random variables on (Ω,H,E) and
γi ∈ [0, 1], 1 ≤ i ≤ n, such that ∑n

i=1 γi = 1. Then,

logE exp

{
n

∑
i=1

γiηi

}
≤

n

∑
i=1

γi logE exp{ηi}.

Lemma 3 ([20]). Assume that a sequence of random variables {ηi, i ∈ Z} is strictly stationary on
(Ω,H,E) and {βi, i ∈ Z} is a sequence of real numbers satisfying ∑i∈Z |βi| < ∞. Then,

logE exp

{
∑
k∈Z
|βk||ηk|

}
≤ logE exp

{
|η1| ∑

k∈Z
|βk|

}
.

Lemma 4 ([19]). Suppose that {Xn, n ≥ 1} is a sequence of strictly stationary m-dependent
random variable in the sense of sub-linear expectation satisfying

E[X1] = E[−X1] = 0, lim
n→∞

1
n
E[

n

∑
i=1

Xi]
2 = σ2 < ∞, (4)

and

E[eδ|X1|] < ∞, (5)
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for some δ > 0. Then, {V( Sn
bn
∈ ·), n ≥ 1} satisfies the MDP with rate function I1(x):

(1) For every closed set F ⊂ B(R) such that

lim sup
n→∞

n
b2

n
logV

(
Sn

bn
∈ F

)
6 − inf

x∈F
I1(x);

(2) For every open set G ⊂ B(R) such that

lim inf
n→∞

n
b2

n
logV

(
Sn

bn
∈ G

)
> − inf

x∈G
I1(x),

where I1(x) := sup
y∈R

{
xy− y2σ2

2

}
= x2

2σ2 , Sn = ∑n
k=1 Xk and {bn, n ≥ 1} is defined as in (3).

Lemma 5 ([2]). Let N be a fixed integer. Then, for every ai
ε ≥ 0,

lim sup
ε→0

ε log

(
N

∑
i=1

ai
ε

)
= max

1≤i≤N
lim sup

ε→0
ε log ai

ε.

The following lemma ensures that E is not linear; Cramér’s method can also be used
for the ULD. Let C(·) be a family of upper probabilities, obviously it is also a Choquet
capacity (ref. [13], Lemma A.2 in Appendix).

Lemma 6 ([13]). Let (S, ρ) be a Polish space. Let (Vε, ε > 0) : Ω → (S, ρ) be a family of
measurable mappings and let {λ(ε), ε > 0} be a positive function with λ(ε) → 0 as ε → 0.
Assume S = Rd. For any y ∈ Rd, if there exists δ > 0 such that

Λ(δy) := lim sup
ε→0

λ(ε) logE exp
{
〈Vε, δy〉

λ(ε)

}
∈ R,

then (C(Vε ∈ ·), ε > 0) satisfies the ULD with speed λ(ε) and good rate function Λ∗ defined by

Λ∗(x) = sup
y∈Rd
{〈x, y〉 −Λ(y)}, x ∈ Rd.

Lemma 7 ([15]). Let X and Y be two random variables defined on (Ω,H,E) with capacity V. If
for every ε > 0,

lim sup
n→∞

n
b2

n
logV(X−Y > ε) = −∞,

and, for every closed set F ∈ B(R),

lim sup
n→∞

n
b2

n
logV(X ∈ F) ≤ − inf

x∈F
J(x),

where J(x) is a good rate function, then

lim sup
n→∞

n
b2

n
logV(Y ∈ F) ≤ − inf

x∈F
J(x).

4. The MDP for Linear Processes Generated by an m-Dependent Sequence

In this section, we will give the following MDP for linear processes generated by an
m-dependent sequence.
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Theorem 1. Consider the following linear processes,

Yk =
∞

∑
j=−∞

ajXk−j, k ≥ 1, (6)

where {Xk, k ∈ Z} is a sequence of strictly stationary m-dependent random variables defined on
(Ω,H,E) satisfying Equations (4) and (5), {aj, j ∈ Z} is a sequence of real numbers satisfying

∑+∞
j=−∞ |aj| < ∞ and a = ∑+∞

j=−∞ aj 6= 0. Then,
{
V( 1

bn
Tn ∈ ·), n ≥ 1

}
satisfies the MDP with

rate function I(x) and speed n/b2
n, that is, for any closed set F ∈ B(R),

lim sup
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ F
)
≤ − inf

x∈F
I(x),

for any open set G ∈ B(R),

lim inf
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ G
)
≥ − inf

x∈G
I(x),

where

I(x) = sup
y∈R

{
xy− σ2a2y2

2

}
=

x2

2σ2a2 , ∀x ∈ R,

and {bn, n ≥ 1} is defined as in Equation (3) and Tn = ∑n
k=1 Yk, n ≥ 1.

Proof. For m, k ≥ 1, denote

dm =
m

∑
j=−m

aj, Yk,m =
m

∑
j=−m

ajXk−j,

ãm = 0, ãj =
m

∑
i=j+1

ai, j = 0, 1, 2, · · ·, m− 1,

˜̃a−m = 0, ˜̃aj =
j−1

∑
i=−m

ai, j = −m + 1,−m + 2, · · ·, 0,

X̃k =
m

∑
j=0

ãjXk−j,
˜̃Xk =

0

∑
j=−m

˜̃ajXk−j.

By the above notation, it is obvious that

Yk,m =

(
m

∑
j=−m

aj

)
Xk −

(
m

∑
j=1

aj

)
Xk +

m

∑
j=1

ajXk−j −
(
−1

∑
j=−m

aj

)
Xk +

−1

∑
j=−m

ajXk−j

=

(
m

∑
j=−m

aj

)
Xk − ã0Xk +

m

∑
j=1

(ãj−1 − ãj)Xk−j − ˜̃a0Xk +
−1

∑
j=−m

(˜̃aj+1 − ˜̃aj)Xk−j

= dmXk + X̃k−1 − X̃k +
˜̃Xk+1 − ˜̃Xk. (7)
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Then, by Equation (7), we have the following Beveridge–Nelson decomposition of
linear processes

Tn =
n

∑
k=1

Yk =
n

∑
k=1

Yk,m +

 n

∑
k=1

∑
|j|>m

ajXk−j


= dm

(
n

∑
k=1

Xk

)
+ (X̃0 − X̃n) + ( ˜̃Xn+1 − ˜̃X1) +

n

∑
k=1

∑
|j|>m

ajXk−j. (8)

Theorem 1 will be proved by the following two steps.
Step 1 The upper bound of the MDP.
In this step, we want to show

lim sup
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ F
)
≤ − inf

x∈F
I(x), (9)

for any closed set F ∈ B(R).
By Equation (8) and Lemma 2, for every y ∈ R, m ≥ 1, ε > 0, we obtain

Λ̃(y) := lim sup
n→∞

n
b2

n
logE exp

(
y

bn

n
Tn

)
≤ lim sup

n→∞

n
b2

n
logE exp

{
ydm

bn

n

(
n

∑
k=1

Xk

)
+ |y| bn

n
|X̃0|+ |y|

bn

n
|X̃n|

+ |y| bn

n
| ˜̃Xn+1|+ |y|

bn

n
| ˜̃X1|+ |y|

bn

n

∣∣∣∣ n

∑
k=1

∑
|j|>m

ajXk−j

∣∣∣∣}

≤ lim sup
n→∞

1
1 + ε

n
b2

n
logE exp

{
(1 + ε)ydm

bn

n

(
n

∑
k=1

Xk

)}

+ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
|X̃0|

}
+ lim sup

n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
|X̃n|

}
+ lim sup

n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
| ˜̃Xn+1|

}
+ lim sup

n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
| ˜̃X1|

}

+ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

5(1 + ε)

ε
|y| bn

n

∣∣∣∣ n

∑
k=1

∑
|j|>m

ajXk−j

∣∣∣∣


:= E1 + E2 + E3 + E4 + E5 + E6. (10)

By Lemma 3.2 from [19], we can obtain

lim sup
n→∞

n
b2

n
logE exp

(
y

bn

n

n

∑
k=1

Xk

)
=

σ2y2

2
. (11)

Then, following Equation (11), one can get

E1 =
1

1 + ε

σ2

2
[(1 + ε)ydm]

2 =
(1 + ε)σ2y2d2

m
2

. (12)
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Next, we will consider the second term E2. It follows from the definition of X̃0,
Lemma 3 and Equation (3) with Equation (5) that

E2 ≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n

m−1

∑
j=0

m

∑
i=j+1

|ai||X−j|
}

≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
|X1|

m−1

∑
j=0

m

∑
i=j+1

|ai|
}

≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y|m

+∞

∑
i=−∞

|ai|
bn

n
|X1|

}
= 0.

Therefore, by the same arguments as in E2, we have

Ei ≤ 0, 2 ≤ i ≤ 5. (13)

Next, we will estimate the last term E6. Combining Lemmas 3 and 5, the stationarity
of {Xk}, e|x| ≤ ex + e−x, x ∈ R and Equation (11), one can obtain

E6 ≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n
cm

∣∣∣∣ n

∑
k=1

Xk−j

∣∣∣∣
}

≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
5(1 + ε)

ε
|y| bn

n

∣∣∣∣ n

∑
k=1

Xk

∣∣∣∣cm

}

≤ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
log
[
E exp

{
y

5(1 + ε)

ε

bn

n

n

∑
k=1

Xkcm

}

+E exp

{
−y

5(1 + ε)

ε

bn

n

n

∑
k=1

Xkcm

}]

= lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
y

5(1 + ε)

ε

bn

n

n

∑
k=1

Xkcm

}

∨ lim sup
n→∞

ε

5(1 + ε)

n
b2

n
logE exp

{
−y

5(1 + ε)

ε

bn

n

n

∑
k=1

Xkcm

}

=
ε

5(1 + ε)

σ2

2

{
y

5(1 + ε)

ε
cm

}2

∨ ε

5(1 + ε)

σ2

2

{
−y

5(1 + ε)

ε
cm

}2

=
5(1 + ε)

ε

σ2

2
c2

m. (14)

∑+∞
j=−∞ |aj| < ∞ implies

lim
m→∞

dm = a, lim
m→∞

cm = ∑
|j|>m

|aj| = 0. (15)

Moreover, it follows from Equations (10), (12) and (13) with Equation (15) that

Λ̃(y) ≤ lim
ε→0

lim
m→∞

[E1 + E2 + E3 + E4 + E5 + E6]

≤ lim
ε→0

lim
m→∞

[
(1 + ε)σ2y2d2

m
2

+
5(1 + ε)

ε

σ2

2
c2

m

]
= lim

ε→0

(1 + ε)σ2y2a2

2
=

σ2y2a2

2
< ∞. (16)
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Then, by Equation (16), one can calculate that

Λ̃∗(x) = sup
y∈R

{
xy− Λ̃(y)

}
≥ sup

y∈R

{
xy− σ2y2a2

2

}
=

x2

2σ2a2 = I(x). (17)

Therefore, the proof of Equation (9) is complete by combining Equation (17) with
Lemma 6.

Step 2 The lower bound of the MDP.
In order to prove the lower bound of the MDP, it suffices to show that

lim inf
n→∞

n
b2

n
logV

(
1

Bn
Tn ∈ B(x, δ)

)
≥ − x2

2σ2a2 = −I(x), (18)

where B(x, δ) = {y; |x− y| < δ} ∈ G, δ > 0 and G ∈ B(R) is an open set.
In fact, Equation (18) implies

lim inf
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ G
)
≥ lim inf

n→∞

n
b2

n
logV

(
1
bn

Tn ∈ B(x, δ)

)
≥ − x2

2σ2a2 = −I(x).

Thus, by the arbitrariness of x, one can get

lim inf
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ G
)
≥ − inf

x∈G

x2

2σ2a2 = − inf
x∈G

I(x).

By Lemma 4, we know that { 1
bn

∑n
k=1 Xk, n ≥ 1} satisfies the MDP with rate function

I1(x) = x2

2σ2 ; hence,

lim inf
n→∞

n
b2

n
logV

(
dm

1
bn

n

∑
k=1

Xk ∈ B
(

x,
δ

6

))
≥ − inf

dmy∈B(x, δ
6 )

{
y2

2σ2

}

= − inf
dmy

a ∈B(x, δ
6 )

{
y2

2σ2a2

}

= − inf
y∈B

(
ax
dm

, |a|δ
6|dm |

)
{

y2

2σ2a2

}
.

Following Equation (15), we can obtain x ∈ B(ax/dm, |a|δ/(6|dm|)) for sufficiently
large m. Therefore,

lim inf
n→∞

n
b2

n
logV

(
dm

1
bn

n

∑
k=1

Xk ∈ B
(

x,
δ

6

))
≥ − x2

2σ2a2 = −I(x). (19)

We can show, by triangle inequality and Equation (8), that

lim inf
n→∞

n
b2

n
logV

(
dm

1
bn

n

∑
k=1

Xk ∈ B
(

x,
δ

6

))

= lim inf
n→∞

n
b2

n
logV


Tn

bn
− (X̃0 − X̃n)

bn
− ( ˜̃Xn+1 − ˜̃X1)

bn
−

n
∑

k=1
∑
|j|>m

αjXk−j

bn

 ∈ B
(

x,
δ

6

)
≤ lim inf

n→∞

n
b2

n
log
{
V
(

Tn

bn
∈ B(x, δ)

)
+V

(
|X̃0|
bn
≥ δ

6

)
+V

(
|X̃n|
bn
≥ δ

6

)
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+V
(
| ˜̃Xn+1|

bn
≥ δ

6

)
+V

(
| ˜̃X1|
bn
≥ δ

6

)
+V


|

n
∑

k=1
∑
|j|>m

αjXk−j|

bn
≥ δ

6


}

≤ lim inf
n→∞

n
b2

n
logV

(
Tn

bn
∈ B(x, δ)

)
∨ lim sup

n→∞

n
b2

n
logV

(
|X̃0|
bn
≥ δ

6

)
∨ lim sup

n→∞

n
b2

n
logV

(
|X̃n|
bn
≥ δ

6

)

∨ lim sup
n→∞

n
b2

n
logV

(
| ˜̃Xn+1|

bn
≥ δ

6

)
∨ lim sup

n→∞

n
b2

n
logV

(
| ˜̃X1|
bn
≥ δ

6

)

∨ lim sup
n→∞

n
b2

n
logV

 1
bn
|

n

∑
k=1

∑
|j|>m

ajXk−j| ≥
δ

6


=: F1 ∨ F2 ∨ F3 ∨ F4 ∨ F5 ∨ F6. (20)

Thus, by Equation (20), in order to show Equation (18), it suffices to calculate

Fi ≤ −
x2

2σ2a2 − 1, 2 ≤ i ≤ 6. (21)

Taking y0 ≥ 6( x2

2σ2a2 + 1)/δ, by Lemma 1 and the same discussion as in E2, it is easily
seen that

F2 = lim sup
n→∞

n
b2

n
logV

(
1
bn
|X̃0| ≥

δ

6

)
= lim sup

n→∞

n
b2

n
logV

(
y0bn

n
|X̃0| ≥

y0δb2
n

6n

)
≤ lim sup

n→∞

n
b2

n
log
(

exp{−y0δb2
n

6n
}E
[

exp{y0bn

n
|X̃0|}

])
≤ −y0δ

6
+ lim sup

n→∞

n
b2

n
logE

[
e

y0bn
n |X̃0|

]
= −y0δ

6
≤ − x2

2σ2a2 − 1.

Therefore, by the same arguments as in F2, we have

Fi ≤ −
x2

2σ2a2 − 1, 2 ≤ i ≤ 5. (22)

Finally, we want to show that F6 ≤ − x2

2σ2a2 − 1. Taking y0 ≥ 6( x2

2σ2a2 + 2)/δ and
following Lemma 1 and the same argument as in Equation (14), then

J6 = lim sup
n→∞

n
b2

n
logV

 1
bn
|

n

∑
k=1

∑
|j|>m

ajXk−j| ≥
δ

6


= lim sup

n→∞

n
b2

n
logV

y0bn

n
|

n

∑
k=1

∑
|j|>m

ajXk−j| ≥
y0δb2

n
6n





Axioms 2023, 12, 781 11 of 16

≤ lim sup
n→∞

n
b2

n
log

exp{−y0δb2
n

6n
}E

exp{y0bn

n
|

n

∑
k=1

∑
|j|>m

ajXk−j|}


≤ −y0δ

6
+ lim sup

n→∞

n
b2

n
logE

exp{y0bn

n
|

n

∑
k=1

∑
|j|>m

ajXk−j|}


≤ − x2

2σ2a2 − 2 +
σ2

2

 ∑
|j|>m

|aj|


2

. (23)

Noting that ∑|j|>m |aj| → 0, m → ∞, then, by Equation (23), for sufficiently large m,
one can get

F6 ≤ −
x2

2σ2a2 − 1. (24)

Thus, the above arguments yield Equation (21). Therefore, the proof is complete.

Remark 1. If taking a0 = 1, aj = 0, j 6= 0 in Theorem 1, then {Yk, k ≥ 1} is a special linear
process. Thus, we need to emphasize that

V
(

1
bn

n

∑
k=1

Xk ∈ ·
)

, n ≥ 1,

satisfies the MDP for an m-dependent sequence, that is Theorem 3.1 from [19]. Thus, our theorem
extends the known result.

5. The Upper Bound of the MDP for Linear Processes Generated by an ND Sequence

In this section, we will discuss the upper bound of the MDP for linear processes
generated by an ND sequence. The method of proof is different from that used in the above
section depending on the existence of a logarithmic moment generating function; however,
the limit of the logarithmic moment generating function of an ND sequence may not exist.
Therefore, we adopt another method to prove the upper bound of the MDP.

Theorem 2. Assume that {Xk, k ∈ Z} is a strictly stationary ND random variable sequence on
(Ω,H,E) satisfying

E[X1] = E[−X1] = 0, E[|X1|2+η ] < ∞, (25)

and

E[et|X1|] < ∞, (26)

for some η > 0 and all t ∈ R. Suppose that

lim sup
n→∞

n
b2

n
log

(
n

∑
i=1

V(|Xi| > bn)

)
= −∞, (27)

and moreover, for all t ∈ R and n ≥ 1,

E
[

exp

(
t

n

∑
i=1

Xi I{|Xi |< n
bn
}

)]
=

(
E
[

exp

(
t

n

∑
i=1

X1 I{|X1|< n
bn
}

)])n

. (28)

Furthermore, let {aj, j ∈ Z} be sequence of real numbers satisfying ∑+∞
j=−∞ |aj| < ∞ and

a = ∑+∞
j=−∞ aj 6= 0 and {Yk, k ≥ 1} be a linear process defined by Equation (6) and partial sum
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Tn = ∑n
k=1 Yk, n ≥ 1. Then,

{
V( 1

bn
Tn ∈ ·), n ≥ 1

}
satisfies the upper bound of the MDP with

speed n/b2
n and rate function J(x/a), that is, for any closed set F ∈ B(R),

lim sup
n→∞

n
b2

n
logV

(
1
bn

Tn ∈ F
)
≤ − inf

x∈F
J(x/a), (29)

where {bn, n ≥ 1} is defined as in Equation (3) and

J(x) = sup
y∈R

{
xy− y2

2
E[X2

1 ]

}
=

x2

2E[X2
1 ]

.

Proof. We will adopt the same notation defined in the proof of Theorem 1. By Lemma 7, in
order to prove Equation (29), we only need to show that for all ε > 0

lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
Tn

bn
− dm

bn

(
n

∑
k=1

Xk I{|Xi |< n
bn
}

)
> ε

)
= −∞ (30)

and

lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
dm

bn

(
n

∑
k=1

Xk I{|Xi |< n
bn
}

)
∈ F

)
≤ − inf

x∈F
J(x/a). (31)

Next, we will prove Equation (30). By Equation (8), it suffices to show that

G1 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
dm

bn

(
n

∑
k=1

Xk I{|Xi |≥ n
bn
}

)
> ε/6

)
= −∞, (32)

G2 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
1
bn

X̃0 > ε/6
)
= −∞, (33)

G3 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
1
bn

X̃n > ε/6
)
= −∞, (34)

G4 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
1
bn

˜̃X1 > ε/6
)
= −∞, (35)

G5 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
1
bn

˜̃Xn+1 > ε/6
)
= −∞, (36)

G6 := lim
m→∞

lim sup
n→∞

n
b2

n
logV

 1
bn

n

∑
k=1

∑
|j|>m

ajXk−j > ε/6

 = −∞. (37)

By Equation (26) and by the same argument as in page 409–410 of [15], one can get

G1 = lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
dm

bn

(
n

∑
k=1

Xk I{|Xi |≥ n
bn
}

)
> ε/6

)
= −∞. (38)
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By the definition of X̃0, Lemma 3 and Equation (5), for every β > 1, we have

G2 = lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
1
bn

m−1

∑
j=0

m

∑
i=j+1

aiX−j > ε/6

)

≤ lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
β

bn

m−1

∑
j=0

m

∑
i=j+1

|ai||X−j| > εβ/6

)

≤ lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
β

bn
|X1|

m−1

∑
j=0

m

∑
i=j+1

|ai| > εβ/6

)

≤ lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
β

bn
m

+∞

∑
i=−∞

|ai||X1| > εβ/6

)

= lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
βbn

n
m

+∞

∑
i=−∞

|ai||X1| >
εβb2

n
6n

)

≤ lim
m→∞

lim sup
n→∞

n
b2

n
log

{
exp{− εβb2

n
6n
}E[exp{ βbn

n
m

+∞

∑
i=−∞

|ai||X1|}]
}

= − εβ

6
+ lim

m→∞
lim sup

n→∞

n
b2

n
logE[exp{ βbn

n
m

+∞

∑
i=−∞

|ai||X1|}]

= − εβ

6
.

By the arbitrariness of β, let β→ ∞, then we can obtain G2 = −∞. Since the arguments
of G2 − G5 are essentially similar, we obtain the following:

Gi = −∞, 2 ≤ i ≤ 5. (39)

By Lemmas 1, 3 and 5, noting that e|x| ≤ ex + e−x, x ∈ R and ex = 1 + x + x2 +
o(x2), x → 0 and log(1 + x) ≤ x, x ≥ 0 and cm = ∑|j|>m |aj| → 0, m → ∞, the definitions
of ND and stationary, then one can obtain

G6 ≤ lim
m→∞

lim sup
n→∞

n
b2

n
logV

(
βbncm

n
|

n

∑
k=1

Xk−j| >
εβb2

n
6n

)

≤ lim
m→∞

lim sup
n→∞

n
b2

n
log

{
exp{− εβb2

n
6n
}E[exp{ βbncm

n
|

n

∑
k=1

Xk−j|}]
}

≤ − εβ

6
+ lim

m→∞
lim sup

n→∞

n
b2

n
log

{
E[exp{ βbncm

n

n

∑
k=1

Xk|}]
}

≤ − εβ

6
+ lim

m→∞
lim sup

n→∞

n
b2

n
log

{
E[exp{ βbncm

n

n

∑
k=1

Xk}+ exp{− βbncm

n

n

∑
k=1

Xk}]
}

≤ − εβ

6
+ lim

m→∞
lim sup

n→∞

n
b2

n
log

{
E[exp{ βbncm

n

n

∑
k=1

Xk}]
}

∨ lim
m→∞

lim sup
n→∞

n
b2

n
log

{
E[exp{− βbncm

n

n

∑
k=1

Xk}]
}

≤ − εβ

6
+ lim

m→∞
lim sup

n→∞

n2

b2
n

log
{
E[exp{ βbncm

n
X1}]

}
∨ lim

m→∞
lim sup

n→∞

n2

b2
n

log
{
E[exp{− βbncm

n
X1}]

}
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= − εβ

6
+ lim

m→∞
lim sup

n→∞

n2

b2
n

log
{
E[1 + βbncm

n
X1 +

β2b2
nc2

m
2n2 X2

1 + o(
b2

nc2
m

n2 X2
1)]

}
∨ lim

m→∞
lim sup

n→∞

n2

b2
n

log
{
E[1− βbncm

n
X1 +

β2b2
nc2

m
2n2 X2

1 + o(
b2

nc2
m

n2 X2
1)]

}
≤ − εβ

6
+ lim

m→∞
lim sup

n→∞

n2

b2
n

log
{

1 +
β2b2

nc2
m

2n2 E[X2
1 ] + o(

b2
nc2

m
n2 )

}
≤ − εβ

6
+ lim

m→∞

{
β2

2
c2

mE[X2
1 ] + o(c2

m)

}
= − εβ

6
.

Moreover, by the arbitrariness of β, let β→ ∞. Then, we can obtain

G6 = −∞. (40)

Then, Equation (30) follows by putting Equations (32)–(41) together.
Finally, we want to prove Equation (31). Using the same arguments as in page 410–411

of [15], one can get

lim
n→∞

n
b2

n
log

{
E[exp{ tdmbn

n

n

∑
k=1

Xk I{|Xi |< n
bn
}}]
}

=
t2d2

m
2

E[X2
1 ] < ∞. (41)

Then, by Equation (41) and Lemma 6, one can get

lim sup
n→∞

n
b2

n
logV

(
dm

bn

(
n

∑
k=1

Xk I{|Xi |< n
bn
}

)
∈ F

)
≤ − inf

x∈F
sup
t∈R

{
xt− t2d2

m
2

E[X2
1 ]

}
= − inf

x∈F

x2

2d2
mE[X2

1 ]
. (42)

Noting dm → a as m→ ∞, Equation (31) follows by letting m→ ∞ in Equation (42).
The proof is complete.

Remark 2. If taking a0 = 1, aj = 0, j 6= 0 in Theorem 2, then {Yk, k ≥ 1} is a simple linear
process. Then,

V
(

1
bn

n

∑
k=1

Xk ∈ ·
)

, n ≥ 1,

satisfies the upper bound of the MDP, that is Theorem 4.1 in [15]. Thus, our theorem extends the
known result.

Remark 3. In this section, we obtain the upper bound of the MDP for linear processes generated
by an ND sequence; the lower bound of MDP leaves the problem open. One of the methods to prove
the lower bound is the central limit theorem. To our knowledge, the central limit theorem for ND
random variables under sub-linear expectation is not yet detailed; we will consider this problem in
future work.

6. Conclusions

In this paper, using the Beveridge–Nelson decomposition of linear processes and
the inequalities under sub-linear expectation, the authors establish the MDP for linear
processes produced by an m-dependent sequence and the upper bound of the MDP for
linear processes produced by an ND sequence. The results extend the MDP from the
traditional probability space to the sub-linear expectation space. Furthermore, they also
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extend the MDP to linear processes. In the future, we will try to establish the lower bound of
the MDP for ND sequences and other dependent sequences under sub-linear expectations.
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