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Abstract: In the present paper, we give a new simple proof on the sharp bounds of coefficient
functionals related to the Carathéodory functions and make a correction on the extremal functions.
The result is further used to investigate some initial coefficient bounds on a subclass of bounded
turning functionsR℘ associated with a cardioid domain. For functions in this class, we calculate the
bounds of the Fekete–Szegö-type inequality and the second- and third-order Hankel determinants.
All the results are proved to be sharp.
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1. Introduction and Definitions

Let H(D) represent the family of functions which are analytic in the unit disc D =
{z ∈ C : |z| < 1}. Let A denote the subfamily ofH(D) consisting of functions in the form
of

f (z) = z +
∞

∑
k=2

akzk, z ∈ D. (1)

Suppose that P indicates the class of the class of all functions p that are analytic in D with
<(p(z)) > 0 and

p(z) = 1 +
∞

∑
n=1

cnzn, z ∈ D. (2)

If p ∈ P , it is a Carathéodory function. Assume that the set S ⊂ A contains all univalent
functions in D. Using the Koebe theorem, it is known that for each univalent function
f ∈ S , there exist an inverse function f−1 defined at least on a disc of radius 1/4 with the
Taylor’s series of the form

f−1(w) := w +
∞

∑
n=2

Bnwn, |w| < 1
4

. (3)

For two functions F1, F2 ∈ H(D), we say F1 is subordinate to F2, written by F1 ≺ F2,
if there exists a function u which is analytic in D with u(0) = 0 and |u(z)| < 1, such that
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F1(z) = F2(u(z)), z ∈ D. The function u is called a Schwarz function. In the case of F2 being
univalent in D, then we have the relation

F1(z) ≺ F2(z) (z ∈ D) ⇐⇒ F1(0) = F2(0) and F1(D) ⊂ F2(D).

In geometric function theory, the most basic and important subfamilies of the set S are
the family S∗ of starlike functions, the family C of convex functions and the family R of
bounded turning functions. The interested readers are referred to [1], (Chapter II) . In 1994,
Ma and Minda [2] introduced a class of analytic univalent functions ϕ(z), which maps D
onto the starlike domain with respect to ϕ(0) = 1 in the right half plane and is symmetric
about the real axis. The Ma and Minda classes of C(ϕ), S∗(ϕ) andR(ϕ) are characterized,
respectively, as

C(ϕ) :=

{
f ∈ A :

(z f ′(z))′

f ′(z)
≺ ϕ(z)

}
,

S∗(ϕ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ ϕ(z)

}
,

R(ϕ) :=
{

f ∈ A : f ′(z) ≺ ϕ(z)
}

,

see [3,4]. By considering different image domains ϕ(D), various classes C(ϕ), S∗(ϕ)
and R(ϕ) of univalent functions were considered in recent years. For example, setting
ϕ(z) =

√
1 + z, we obtain the class S∗L = S∗

(√
1 + z

)
, which represents the collection of

functions in the classA that z f ′(z)
f (z) lies in the domain bounded by the lemniscate of Bernoulli∣∣w2 − 1

∣∣ = 1, see [5]. Choosing ϕ̃ = 1 + 2
π2

(
log
(

1+
√

z
1−
√

z

))2
, S∗p = S∗(ϕ̃) is the class of

parabolic starlike functions. For functions f ∈ S∗p , its image of z f ′(z)
f (z) under D is the parabolic

domain given by {w ∈ C : <(w) > |w− 1|}, see [6]. The class S∗c = S∗
(

1 + 4
3 z + 2

3 z2
)

is a

collection of starlike functions f ∈ Awhere z f ′(z)
f (z) lies in the domain bounded by the cardiod

Ωc =
{

u + iv :
(
9u2 + 9v2 − 18u + 5

)2 − 16
(
9u2 + 9v2 − 6u + 1

)
= 0

}
; for further reading

we refer to [7]. In [8], Wani and Swaminathan investigated the class S∗Ne = S∗
(

1 + z− 1
3 z3
)

,
consisting of functions associated with a nephroid domain. For other related works, see, for
instance, [9–11]. Recently, S. Sivaprasad Kumar et al. [12] introduced and studied a class of
starlike functions defined by

S∗C :=
{

f ∈ A :
z f ′(z)

f (z)
≺ 1 + zez =: ℘(z), z ∈ D

}
, (4)

where ℘(z) maps the unit disk onto a cardioid domain.
Motivated by the above works, we now consider a subfamilyR℘ of bounded turning

functions defined by

R℘ :=
{

f ∈ A : f ′(z) ≺ 1 + zez, z ∈ D
}

. (5)

For given parameters q, n ∈ N = {1, 2, · · · }, the Hankel determinant Hq,n( f ) was
defined by Pommerenke [13,14] for a function f ∈ S of the form (1) as

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣, a1 = 1. (6)
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The upper bounds of
∣∣Hq,n( f )

∣∣ have been investigated for different subclasses of univalent
functions. By applying Schwarz Lemma [15,16], Selin Aydinoğlua and Bülent Nafi Örnek
[17] determined the sharp bounds of Hankel determinant H2,1( f ) = a3 − a2

2 for the class

Mα, defined by the condition f ∈ A and
∣∣∣∣( z

f (z)

)2
f ′(z)− α

∣∣∣∣ < 1, where α ∈ C. Of note, the

Hankel determinantH2,1( f ) is also known as Fekete–Szegö inequality. The absolute sharp
bounds of the functional H2,2( f ) = a2a4 − a2

3 were found in [18,19] for each of the sets C,
S∗ andR. The Hankel determinant of order three is given as

H3,1( f ) =

∣∣∣∣∣∣
1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ = −a5a2
2 + 2a2a3a4 − a3

3 + a5a3 − a2
4. (7)

The estimation of the determinant |H3,1( f )| seems a little harder compared to the
bound of |H2,2( f )|, see [20–22]. In 2010, Babalola [23] obtained the upper bound of |H3,1( f )|
for the families of S∗, C and R. Later on, many authors obtained non-sharp bounds on
|H3,1( f )| for different subfamilies of univalent functions, see, for example, [24–26]. The
sharp bound of the third Hankel determinant for convex functions C was obtained in [27].
For f ∈ S∗, the upper bound of |H3,1( f )| was finally proved to be 4

9 by Kowalczyk et
al. [28]. For the bounded turning functions R, the sharp upper bound of third Hankel
determinant was calculated to be 1

4 in [29]. For some subclasses of convex functions, starlike
functions and bounded turning functions, some sharp bounds of third Hankel determinant
were also obtained in [30–33].

In the current article, our main goal is to calculate the sharp bounds on some initial
coefficients for the classR℘ of bounded turning functions linked with a cardioid domain.
We also obtain the Fekete–Szegö inequality, and the sharp bounds of the second- and
third-order Hankel determinants for this class. In proof of our results, we give a new simple
proof of an estimation for the Carathéodory function and correct an error on the extremal
function in Lemma 2.1 of [34].

2. A Set of Lemmas

The key to the proof of our results is the following lemmas.

Lemma 1 ([35]). Let p ∈ P be given by (2). Then, we have

2c2 = c2
1 + x

(
4− c2

1

)
, (8)

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

)(
1− |x|2

)
δ, (9)

8c4 = c4
1 +

(
4− c2

1

)
x
[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
− 4
(

4− c2
1

)(
1− |x|2

)
·
[
c1(x− 1)δ + xδ2 −

(
1− |δ|2

)
ρ
]

(10)

for some complex numbers x, δ and ρ, such that |x| ≤ 1, |δ| ≤ 1 and |ρ| ≤ 1.

Lemma 2 ([36]). If p ∈ P has the form (2), then

|cn| ≤ 2 for n ≥ 1. (11)

Lemma 3 ([37]). For any complex number µ and p ∈ P ,

|cn+k − µcnck| ≤ 2 max{1, |2µ− 1|}. (12)
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Lemma 4 ([38]). Let ω(z) = ∑∞
n=1 wkzk be a Schwarz function. Then, for real numbers µ and ν,

we have the following sharp estimate given by

Ψ(ω) =
∣∣∣w3 + µw1w2 + νw3

1

∣∣∣ ≤ Φ(µ, ν), (13)

where Φ(µ, ν) is defined by

Φ(µ, ν) =



1, (µ, ν) ∈ D1
⋃
D2
⋃
{(2, 1)},

|ν|, (µ, ν) ∈
7⋃

k=3
Dk,

2
3 (|µ|+ 1)

√
|µ|+1

3(|µ|+1+ν)
, (µ, ν) ∈ D8

⋃
D9,

1
3 ν
(

µ2−4
µ2−4ν

)√
µ2−4

3(ν−1) , (µ, ν) ∈ D10
⋃
D11 \ {(2, 1)},

2
3 (|ν| − 1)

√
|µ|−1

3(|µ|−1−ν)
, (µ, ν) ∈ D12,

(14)

and

D1 =

{
(µ, ν) : |µ| ≤ 1

2
, −1 ≤ ν ≤ 1

}
,

D2 =

{
(µ, ν) :

1
2
≤ |µ| ≤ 2,

4
27

(|µ|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1
}

,

D3 =

{
(µ, ν) : |µ| ≤ 1

2
, ν ≤ −1

}
,

D4 =

{
(µ, ν) : |µ| ≥ 1

2
, ν ≤ −2

3
(|µ|+ 1)

}
,

D5 = {(µ, ν) : |µ| ≤ 2, ν ≥ 1},

D6 =

{
(µ, ν) : 2 ≤ |µ| ≤ 4, ν ≥ 1

12

(
µ2 + 8

)}
,

D7 =

{
(µ, ν) : |µ| ≥ 4, ν ≥ 2

3
(|µ| − 1)

}
,

D8 =

{
(µ, ν) :

1
2
≤ |µ| ≤ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 4

27
(|µ|+ 1)3 − (|µ|+ 1)

}
,

D9 =

{
(µ, ν) : |µ| ≥ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4

}
,

D10 =

{
(µ, ν) : 2 ≤ |µ| ≤ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 1
12

(
µ2 + 8

)}
,

D11 =

{
(µ, ν) : |µ| ≥ 4,

2|µ|(|µ|+ 1)
µ2 + 2|µ|+ 4

≤ ν ≤ 2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

}
,

D12 =

{
(µ, ν) : |µ| ≥ 4,

2|µ|(|µ| − 1)
µ2 − 2|µ|+ 4

≤ ν ≤ 2
3
(|µ| − 1)

}
.

The following Lemma was obtained by Virendra Kumar et al. [34] in 2019. As the
authors point out, it is of independent interest as well. Unfortunately, there are some minor
mistakes on the extremal function. Next, we will give a new more simple proof of this
result using Lemma 4.
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Lemma 5. Let p(z) = 1 + p1z + p2z2 + p3z3 + · · · ∈ P . Then, for any real number σ,

∣∣∣σp3 − p3
1

∣∣∣ ≤ { 2|σ− 4|, σ < 4
3 ,

2σ
√

σ
σ−1 , σ ≥ 4

3 .

The above estimate is sharp.

Proof. Let p ∈ P and

p(z) = 1 + p1z + p2z2 + p3z3 + · · · , z ∈ D.

Suppose that ω(z) = p(z)−1
p(z)+1 . Clearly, ω(0) = 0. Since p(z) lies in the right half plane and

z−1
z+1 maps the right half plane to the unit disk, we know |ω(z)| < 1. Thus, ω is a Schwarz
function. Assume that

ω(z) = w1z + w2z2 + w3z3 + w4z4 + · · · , z ∈ D.

From the fact that

p(z) =
1 + ω(z)
1−ω(z)

= 1 + 2w1z +
(

2w2
1 + 2w2

)
z2 +

(
2w3

1 + 4w2w1 + 2w3

)
z3 + · · · ,

we have p1 = 2w1, p2 = 2
(
w2 + w2

1
)

and p3 = 2
(
w3 + 2w2w1 + w3

1
)
. It follows that

σp3 − p3
1 = 2σw3 + 4σw1w2 + (2σ− 8)w3

1.

As σ = 0 the proof is trivial, we assume that σ 6= 0 in the following. Then, we obtain∣∣∣σp3 − p3
1

∣∣∣ = 2|σ|
∣∣∣∣w3 + 2w1w2 +

σ− 4
σ

w3
1

∣∣∣∣. (15)

Let µ = 2, ν = σ−4
σ . Clearly, (µ, ν) is only possible to lie in the disk D4, D5, D6, D8 and D9,

which can be further specified as

D4 =

{
(µ, ν) : |µ| ≥ 1

2
, ν ≤ −2

}
,

D5 = {(µ, ν) : |µ| ≤ 2, ν ≥ 1},
D6 = {(µ, ν) : 2 ≤ |µ| ≤ 4, ν ≥ 1},

D8 =

{
(µ, ν) :

1
2
≤ |µ| ≤ 2, −2 ≤ ν ≤ 1

}
,

D9 = {(µ, ν) : |µ| ≥ 2, −2 ≤ ν ≤ 1}.

For σ < 0, it is observed that ν > 1 and (µ, ν) ∈ D5
⋃
D6. Thus, we have∣∣∣∣w3 + 2w1w2 +

σ− 4
σ

w3
1

∣∣∣∣ ≤ |ν| = σ− 4
σ

. (16)

For 0 < σ < 4
3 , we see ν < −2 and (µ, ν) ∈ D4. Thus,∣∣∣∣w3 + 2w1w2 +

σ− 4
σ

w3
1

∣∣∣∣ ≤ |ν| = −σ− 4
σ

. (17)
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For σ ≥ 4
3 , we know −2 ≤ ν < 1 and (µ, ν) ∈ D8

⋃
D9. Then we deduce that

∣∣∣∣w3 + 2w1w2 +
σ− 4

σ
w3

1

∣∣∣∣ ≤ 2
3
(|µ|+ 1)

√
|µ|+ 1

3(|µ|+ 1 + ν)
=

√
σ

σ− 1
. (18)

Combining (15)–(18), the result of Lemma 5 follows.

Remark 1. In [34], the authors gave an extremal function f given by

f (z) =
1− z2

1− 2
√

σ
σ−1 z + z2

, σ >
4
3

.

Let q =
√

σ
σ−1 . It is seen that

f (z) = 1 + 2qz + 2
(

2q2 − 1
)

z2 + 2q
(

4q2 − 3
)

z3 + 2
(

8q4 − 8q2 + 1
)

z4 + · · · , z ∈ D.

We know f /∈ P because c1 = 2q > 2. Hence, the extremal function is not correct, since it is not a
Carathéodory function. Indeed, the extremal function f̂ for σ > 4

3 can be defined by taking

f̂ (z) = 1 + p̂1z + p̂2z2 + p̂3z3 + · · · , z ∈ D, (19)

where p̂1 =
√

σ
σ−1 , p̂2 = − σ−2

σ−1 and p̂3 = − 2σ−3
σ

√(
σ

σ−1
)3.

3. Coefficient Bounds for the FamilyR℘

We begin this section by finding the bounds on some initial coefficients for functions
in the classR℘.

Theorem 1. If f ∈ R℘ has the series representation of the form (1), then

|a2| ≤
1
2

,

|a3| ≤
1
3

,

|a4| ≤
√

14
14
≈ 0.2673.

These bounds are best possible.

Proof. Let f ∈ R℘. Then (5) can be written by Schwarz function as

f ′(z) = 1 + ω(z)eω(z), z ∈ D. (20)

Assuming that
ω(z) = w1z + w2z2 + w3z3 + · · · , z ∈ D, (21)

and

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + c3z3 + c4z4 + · · · , z ∈ D. (22)

It is seen that p ∈ P and

ω(z) =
p(z)− 1
p(z) + 1

=
c1z + c2z2 + c3z3 + c4z4 + · · ·

2 + c1z + c2z2 + c3z3 + c4z4 + · · · , z ∈ D. (23)
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From (1), we obtain

f ′(z) = 1 + 2a2z + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (24)

By simplifications and using the series expansion of (23), we obtain

1 + ω(z)eω(z) = 1 +
1
2

c1z +
1
2

c2z2 +

(
− 1

16
c3

1 +
1
2

c3

)
z3

+

(
1
24

c4
1 −

3
16

c2
1c2 +

1
2

c4

)
z4 + · · · . (25)

Comparing (24) and (25), we have

a2 =
1
4

c1, (26)

a3 =
1
6

c2, (27)

a4 =
1
8

(
−1

8
c3

1 + c3

)
, (28)

a5 =
1
10

(
1
12

c4
1 −

3
8

c2
1c2 + c4

)
. (29)

For a2 and a3, implementing Lemma 2, we obtain |a2| ≤ 1
2 and |a3| ≤ 1

3 . For a4, an

application of Lemma 5 leads us to |a4| ≤ 1
4

√
8
7 =

√
14

14 . The equality of |a2| and |a3| are
achieved by the functions f1 and f2 given, respectively, by

f1(z) =
∫ z

0

(
1 + tet)dt = z +

1
2

z2 +
1
3

z3 +
1
8

z4 +
1

30
z5 + · · · , z ∈ D, (30)

f2(z) =
∫ z

0

(
1 + t2et2

)
dt = z +

1
3

z3 +
1
5

z5 +
1

14
z7 +

1
54

z9 + · · · , z ∈ D. (31)

The equality on the bounds of |a4| is obtained by f3 defined by

f3(z) =
∫ z

0

(
1 + ω(t)eω(t)

)
dt, z ∈ D, (32)

where ω(z) = p(z)−1
p(z)+1 and

p(z) = 1 +

√
56
7

z− 6
7

z2 − 26
√

14
49

z3 + · · · , z ∈ D. (33)

It is verified that

f3(z) = z +
√

14
14

z2 − 1
7

z3 −
√

14
14

z4 + · · · , z ∈ D. (34)

The proof of Theorem 1 is thus completed.

Theorem 2. If f is of the form (1) belonging toR℘, then∣∣∣a3 − γa2
2

∣∣∣ ≤ max
{

1
3

,
∣∣∣∣3γ− 4

12

∣∣∣∣}, γ ∈ C.

This inequality is sharp.



Axioms 2023, 12, 775 8 of 15

Proof. Employing (26) and (27), we may write∣∣∣a3 − γa2
2

∣∣∣ = 1
6

∣∣∣∣c2 −
3
8

γc2
1

∣∣∣∣.
An application of (12) leads us to∣∣∣a3 − γa2

2

∣∣∣ ≤ max
{

1
3

,
∣∣∣∣3γ− 4

12

∣∣∣∣}.

This result is sharp for the functions f1 and f2 given by (30) and (31).

Theorem 3. Let f ∈ R℘. Then

|a2a3 − a4| ≤
1
4

.

This inequality is sharp with the extremal function f4 given by

f4(z) =
∫ z

0

(
1 + t3et3

)
dt = z +

1
4

z4 +
1
7

z7 +
1

20
z10 +

1
78

z13 + · · · , z ∈ D. (35)

Proof. Using (26)–(28), we have

|a2a3 − a4| =
1
8

∣∣∣∣c3 −
1
3

c1c2 −
1
8

c3
1

∣∣∣∣. (36)

From (21) and (22), it is noted that

c1 = 2w1, (37)

c2 = 2
(

w2 + w2
1

)
, (38)

c3 = 2
(

w3 + 2w1w2 + w3
1

)
. (39)

Hence, we obtain

|a2a3 − a4| =
1
4

∣∣∣∣w3 +
4
3

w1w2 −
1
6

w3
1

∣∣∣∣. (40)

Taking µ = 4
3 and ν = − 1

6 , we know (µ, ν) ∈ D2. Using Lemma 4, we easily obtain

|a2a3 − a4| ≤
1
4

.

Clearly, the bound is sharp with the extremal function given by (35).

Theorem 4. If f ∈ R℘, then

|H2,2( f )| =
∣∣∣a2a4 − a2

3

∣∣∣ ≤ 1
9

.

The inequality is sharp with the extremal function given by (31).

Proof. From (26)–(28), we have

H2,2( f ) = − 1
256

c4
1 +

1
32

c1c3 −
1

36
c2

2.

Let f ∈ R℘ and fθ(z) = e−iθ f (eiθz), θ ∈ R. We have |H2,2( fθ)| = |H2,2( f )| for all θ ∈ R.
Hence, when estimating the upper bounds of |H2,2( f )|, we may assume a2 of f to be real,
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and thus c1 := c ∈ [0, 2]. Using (8) and (9) to express c2 and c3 in terms of c1 = c, we
obtain

|H2,2( f )| =
∣∣∣∣− 7

2304
c4 +

1
576

c2
(

4− c2
)

x− 1
1152

(
4− c2

)(
c2 + 32

)
x2

+
1

64
c
(

4− c2
)(

1− |x|2
)

δ

∣∣∣∣.
With the aid of the triangle inequality, replacing |δ| ≤ 1, |x| = t ≤ 1 and taking c ∈ [0, 2],
we obtain

|H2,2( f )| ≤ 7
2304

c4 +
1

576
c2
(

4− c2
)

t +
1

1152

(
4− c2

)(
c2 + 32

)
t2

+
1

64
c
(

4− c2
)(

1− t2
)
=: K(c, t).

It is noted that

∂K
∂t

=
1

576
c2(4− c2) +

1
576

(
4− c2

)(
c2 − 18c + 32

)
t ≥ 0

for t ∈ [0, 1] , thus K(c, t) ≤ K(c, 1). Putting t = 1 gives

|H2,2( f )| ≤ 7
2304

c4 +
1

576
c2
(

4− c2
)
+

1
1152

(
4− c2

)(
c2 + 32

)
=: χ(c).

Since χ(c) = 1
2304

(
c4 − 40c2 + 256

)
and χ′(c) ≤ 0 on [0, 2], we know χ is decreasing for

c ∈ [0, 2] and

|H2,2( f )| ≤ χ(0) =
1
9

.

The equality is obtained by the extremal function defined by (31). This completes the proof
of Theorem 4.

Theorem 5. If f ∈ R℘ has the form (1), then

|H3,1( f )| ≤ 1
16

.

This inequality is sharp with the extremal function f4 given by (35).

Proof. From the definition, H3,1( f ) can be written as

H3,1( f ) = 2a2a3a4 − a3
3 − a2

4 + a3a5 − a2
2a5. (41)

Let c1 = c. By putting (26)–(29) into (41), we obtain

H3,1( f ) =
1

552,960

(
−423c6 + 1344c4c2 + 2160c3c3 − 3456c2c2

2 − 3456c2c4

+5760cc2c3 − 2560c3
2 + 9216c2c4 − 8640c2

3

)
. (42)

Let f ∈ R℘ and fθ = e−iθ f
(
eiθz
)
, θ ∈ R. Note that |H3,1( fθ)| = |H3,1( f )| for all θ ∈ R , we

may also assume that c ∈ [0, 2]. Suppose that b = 4− c2. Using (8)–(10), we obtain
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H3,1( f ) =
1

552,960

{
−71c6 + 2304b2x3 − 320b3x3 + 576c2bx2 + 144c4bx3 − 612c4bx2

+72c4bx + 36c2b2x4 − 288c2b2x3 − 816c2b2x2 − 2160b2
(

1− |x|2
)2

δ2

+576c2b
(

1− |x|2
)(

1− |δ|2
)

ρ− 576c3bx
(

1− |x|2
)

δ− 576c2bx
(

1− |x|2
)

δ2

+936c3b
(

1− |x|2
)

δ− 144cb2x2
(

1− |x|2
)

δ− 2304b2|x|2
(

1− |x|2
)

δ2

−576cb2x
(

1− |x|2
)

δ + 2304b2x
(

1− |x|2
)(

1− |δ|2
)

ρ
}

,

where ρ, x, δ ∈ D := {z : |z| ≤ 1}. Observing that H3,1( f ) can be written as

H3,1( f ) =
1

552,960

[
d1(c, x) + d2(c, x)δ + d3(c, x)δ2 + Φ(c, x, δ)ρ

]
,

with

d1(c, x) = −71c6 +
(

4− c2
)[(

4− c2
)(

1024x3 + 32c2x3 + 36c2x4 − 816c2x2
)

+576c2x2 − 612c4x2 + 144c4x3 + 72c4x
]
,

d2(c, x) = 72
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−2cx2

)
− 32cx + 13c3

]
,

d3(c, x) = 144
(

4− c2
)(

1− |x|2
)[(

4− c2
)(
−|x|2 − 15

)
− 4c2x

]
,

Φ(c, x, δ) = 576
(

4− c2
)(

1− |x|2
)(

1− |δ|2
)[

c2 + 4x
(

4− c2
)]

.

Taking |x| = t, |δ| = y and utilizing the fact |ρ| ≤ 1, we obtain

|H3,1( f )| ≤ 1
552,960

[
|d1(c, x)|+ |d2(c, x)|y + |d3(c, x)|y2 + |Φ(c, x, δ)|

]
.

≤ 1
552,960

[Γ(c, t, y)], (43)

where
Γ(c, t, y) = h1(c, t) + h2(c, t)y + h3(c, t)y2 + h4(c, t)

(
1− y2

)
,

with

h1(c, t) = 71c6 +
(

4− c2
)[(

4− c2
)(

1024t3 + 32c2t3 + 36c2t4 + 816c2t2
)

+576c2t2 + 144c4t3 + 612c4t2 + 72c4t
]
,

h2(c, t) = 72
(

4− c2
)(

1− t2
)[(

4− c2
)(

2ct2
)
+ 13c3 + 32ct

]
,

h3(c, t) = 144
(

4− c2
)(

1− t2
)[(

4− c2
)(

t2 + 15
)
+ 4c2t

]
,

h4(c, t) = 576
(

4− c2
)(

1− t2
)[

c2 + 4t
(

4− c2
)]

.

Now, we have to maximize Γ in the closed cuboid Θ := [0, 2]× [0, 1]× [0, 1]. It is not hard
to see that Γ(0, 0, 1) = 34,560. Thus, we have max(c,t,y)∈Θ{Γ(c, t, y)} ≥ 34,560. We aim to
prove that the maximum values of Γ with (c, t, y) ∈ Θ is simply equal to 34,560. For this,
we first show that the maximum value of Γ is obtained on the face y = 1 of Θ.

On the face t = 1, it reduces to Γ(c, 1, y) = r1(c) = 127c6 − 3312c4 + 8256c2 + 16,384.
Then,

∂r1

∂c
= 6c

(
127c4 − 2208c2 + 2752c

)
.
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Putting ∂r1
∂c = 0, we obtain the only critical point ĉ0 =

√
1104−136

√
47

127 ≈ 1.1625 for c ∈ (0, 2).
Therefore, max r1(c) ≈ 21,805.95 with the maximum value attained on c = ĉ0. Thus, we
assume that t < 1. Furthermore, for the points on the face c = 2, Γ(2, t, y) ≡ 4544 for all
(t, y) ∈ [0, 1]× [0, 1]. Hence, we further assume that c < 2.

Let (c, t, y) ∈ [0, 2)× [0, 1)× [0, 1]. By differentiating Γ partially with respect to y, we
obtain

∂Γ
∂y

= h2(c, t) + 2[h3(c, t)− h4(c, t)]y.

Obviously, we have
∂H
∂y

∣∣∣∣
y=0

= h2(c, t) ≥ 0.

Let
∂H
∂y

∣∣∣∣
y=1

= h2(c, t) + 2[h3(c, t)− h4(c, t)] =: ζ1(c, t). (44)

It is noted that
ζ1(c, t) = 72(4− c2)(1− t2)ζ2(c, t),

where

ζ2(c, t) = (4− c2)(2ct2 + 4t2 + 60− 64t) + 13c3 + 32ct + 16c2t− 16c2.

Clearly, we have

ζ2(c, t) ≥ (4− c2)(4t2 + 60− 64t) + 13c3 + 16c2t− 16c2 =: η(c, t).

Suppose that η(c, t) = η0 + η1t + η2t2, where η0 = 240− 76c2 + 13c3, η1 = 80c2 − 256 and
η2 = 16− 4c2. Taking η as a polynomial of degree 2 with respect to t, we know η2 > 0 and
the symmetric axis t0 is defined as

t0 = − η1

2η2
=

2(16− 5c2)

4− c2 .

Let c̃0 = 4√
5
. For c ∈ [c̃0, 2), it is observed that t0 ≤ 0. Then, the minimum value of η is

achieved on t = 0. We thus have

η(c, t) ≥ η(c, 0) = η0 ≥ 40 > 0, c ∈ [c̃0, 2). (45)

Let c̄0 = 2
√

7
3 . It is seen that t0 ≥ 1 for c ∈ [0, c̄0]. It follows that

η(c, t) ≥ η(c, 1) = η0 + η1 + η2 = 13c3 ≥ 0, c ∈ [0, c̄0]. (46)

Assume that c ∈ (c̄0, c̃0). Then t0 ∈ (0, 1). Hence, the minimum value of η is obtained on
t = t0. This leads to

η(c, t) ≥ η(c, t0) = η0 −
η2

1
4η2

=
ι(c)

4− c2 ,

where
ι(c) = −13c5 − 324c4 + 52c3 + 2016c2 − 3136, c ∈ (c̄0, c̃0).

It is calculated that ι achieves its minimum value of about 56.9731 on c = c̃0, thus we know

η(c, t) > 0, c ∈ (c̄0, c̃0). (47)
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Combining (45)–(47), we have η(c, t) ≥ 0 on [0, 2) × [0, 1), which leads to ζ1(c, t) ≥ 0
for all (c, t) ∈ [0, 2)× [0, 1). Therefore, we have ∂Γ

∂y

∣∣∣
y=1
≥ 0. As ∂Γ

∂y is a linear continuous

function with respect to y, we have

∂Γ
∂y
≥ min

{
∂Γ
∂y

∣∣∣∣
y=0

,
∂Γ
∂y

∣∣∣∣
y=1

}
≥ 0, y ∈ [0, 1].

Hence, Γ(c, t, y) ≤ Γ(c, t, 1) for all (c, t, y) ∈ [0, 2) × [0, 1) × [0, 1]. Based on the above
discussions, it reduces to find the global maximum value of Γ on the face y = 1 of Θ. On
the face y = 1, we have

Γ(c, t, 1) = 71c6 +
(

4− c2
)2[

36(c2 − 4c− 4)t4 + 32(c2 + 32)t3 + 48(17c2 + 3c− 42)t2 + 2160
]

+ (4− c2)
[
144c(c3 − 4c− 16)t3 + 36c2(17c2 − 26c + 16)t2 + 72c(c3 + 8c + 32)t + 936c3

]
=: Λ(c, t).

By observing that c2 − 4c− 4 ≤ 0 and c3 − 4c− 16 ≤ 0 for c ∈ [0, 2), we have

Λ(c, t) ≤ 71c6 +
(

4− c2
)2[

32(c2 + 32)t3 + 48(17c2 + 3c− 42)t2 + 2160
]

+ (4− c2)
[
36c2(17c2 − 26c + 16)t2 + 72c(c3 + 8c + 32)t + 936c3

]
=: Q(c, t).

Furthermore, using 17c2 − 26c + 16 ≥ 0, t3 ≤ t2 ≤ t leads to

Q(c, t) ≤ 71c6 +
(

4− c2
)2[

32(c2 + 32)t2 + 48(17c2 + 3c− 42)t2 + 2160
]

+ (4− c2)
[
36c2(17c2 − 26c + 16)t + 72c(c3 + 8c + 32)t + 936c3

]
= 4(4− c2)R(c, t) + 71c6 + 2160(4− c2)2 + 936(4− c2)c3

=: W(c, t),

where
R(c, t) = 4(4− c2)(53c2 + 9c− 62)t2 + 9c(19c3 − 26c2 + 32c + 64)t.

Clearly, if c ≥ 1, we have 53c2 + 9c− 62 ≥ 0 and 19c3− 26c2 + 32c + 64 ≥ 0, which leads to

R(c, t) ≤ R(c, 1), c ∈ [1, 2).

Then, we obtain

W(c, t) ≤ 4(4− c2)R(c, 1) + 71c6 + 2160(4− c2)2 + 936(4− c2)c3 =: $1(c), c ∈ [1, 2).

In virtue of $1(c) = 235c6 + 144c5 − 4032c4 − 3456c3 + 8832c2 + 11,520c + 18,688 obtaining
its maximum value of about 32,192.46 on c ≈ 1.1053 for c ∈ [1, 2), we have Λ(c, t) < 34,560
on [1, 2)× [0, 1). Suppose that c ∈ [0, 1) and m(c) = 19c3 − 26c2 + 32c + 64. It is noted
that m′(c) = 54c2 − 52c + 32 ≥ 0 for c ∈ [0, 1). Thus, we have m(c) ∈ [64, 89). Since
0 < 4− c2 ≤ 4 and c2 ≤ c, it is not hard to see that

R(c, t) ≤ 992(c− 1)t2 + 801ct =: V(c, t).
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Let V(c, t) = v1t + v2t2, where v1 = 801c and v2 = 992(c− 1). Obviously, we have v2 < 0.
Considering V as a polynomial of degree 2 with respect to t, we obtain the symmetric axis
t̄0 defined by

t̄0 = − v1

2v2
=

801c
1984(1− c)

. (48)

For c > ċ0 = 1984
2785 ≈ 0.7124, we have t̄0 > 1. Then, the maximum value of V is attained on

t = 1, which implies that V(c, t) ≤ V(c, 1) = 1793c− 992. Then,

W(c, t) ≤ 4(4− c2)V(c, 1) + 71c6 + 2160(4− c2)2 + 936(4− c2)c3 =: $2(c), c ∈ [ċ0, 1).

It is calculated that

$2(c) = 71c6 − 936c5 + 2160c4 − 3428c3 − 13,312c2 + 28,688c + 18,688, c ∈ [ċ0, 1),

which obtains its maximum value of about 32,127.89 on c ≈ 0.8966. Hence, we obtain

Γ(c, t) < 34560, (c, t) ∈ [ċ0, 1)× [0, 1).

For c ∈ [0, ċ0), we have t0 ∈ [0, 1). Then, we obtain

V(c, t) ≤ −
v2

1
4v2

=
8012

3968
· c2

1− c
≤ 162c2

1− c
≤ 162c2,

which yields to

W(c, t) ≤ 648(4− c2)c2 + 71c6 + 2160(4− c2)2 + 936(4− c2)c3 =: $3(c), c ∈ [0, ċ0).

In light of

$3(c) = 71c6 − 936c5 + 1512c4 + 3744c3 − 14,688c2 + 34,560, c ∈ [0, ċ0),

it is not hard to see that $3 achieves its maximum value 34,560 on c = 0. Therefore, we
conclude that

Λ(c, t) ≤ 34,560, (c, t) ∈ [0, 2)× [0, 1).

From the above cases, we obtain

Γ(c, t, y) ≤ 34,560 on [0, 2]× [0, 1]× [0, 1].

Using (43), it follows that

|H3,1( f )| ≤ 1
552,960

[Γ(c, t, y)] ≤ 1
16

= 0.0625.

The proof of Theorem 5 is thus completed.
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15. Mateljević, M. Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl. 2018, 464,

78–100. [CrossRef]
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