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Abstract: This study proposes a mathematical model that accounts for the interaction of bacteria,
phages, and the innate immune response with a discrete time delay. First, for the non-delayed model
we determine the local and global stability of various equilibria and the existence of Hopf bifurcation
at the positive equilibrium. Second, for the delayed model we provide sufficient conditions for
the local stability of the positive equilibrium by selecting the discrete time delay as a bifurcation
parameter; Hopf bifurcation happens when the time delay crosses a critical threshold. Third, based on
the normal form method and center manifold theory, we derive precise expressions for determining
the direction of Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical
simulations are performed to verify our theoretical analysis.
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1. Introduction

Phages are viruses that infect prokaryotic organisms, and are important components
of ecological systems [1]. Phages infect bacteria by injecting their genetic material into
cells. When the virus enters the cell, it prevents other phages from attacking it and begins
to reproduce within the host until the number of new viral particles reaches the bacterial
threshold [2,3]. The use of bacteriophages to treat bacterial infections, commonly referred to
as phage therapy, dates back to the early 20th century. Phage treatment can be more effective
than antibiotics in treating various medical conditions [4]. Moreover, phage therapy has
multiple potential applications, and can even be employed in place of antibiotics in certain
circumstances [5]. Clinical research on phage therapy has not shown any of the severe side
effects such as anaphylaxis that are sometimes associated with antibiotics [6].

Mathematical models are widely used in various fields, including biology, epidemi-
ology, engineering, physics, sciences, business, and computer science. They help us to
understand ecosystem dynamics, quantify disease control strategies, and gain new theoret-
ical insights into nature [7]. Nonlinear dynamical systems are commonly used to describe
biological systems and relationships between individuals. Researchers have developed non-
linear dynamical systems for various biological phenomena, including stability, persistence,
and bifurcation. Mathematical modeling of phage therapy is crucial for understanding
bacteria–bacteriophage interactions and their long-term behavior. Various models have
been constructed, resulting in numerous beneficial outcomes [2,8–16].

Considering that the evolution of a system is dependent on its present and previous
states, time delays must be included in the model. Accordingly, authors have focused on
dynamic behaviors such as stability and the existence of Hopf bifurcations in delayed popu-
lation models [17–20]. The above-mentioned references have investigated the existence and
direction of Hopf bifurcations and the stability of positive equilibria. The application of
delay differential equations to the modeling of biological phenomena has gained popularity
in recent years. In particular, several studies have presented bacteria–bacteriophage models
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by introducing a time delay to generate more realistic models; see for example [21–26] and
references therein. Meanwhile, due to the complexity of the impacts of delay on a system’s
dynamic behavior, researchers have increasingly focused on the dynamic behavior of de-
layed phage therapy models, such as their stability and the occurrence of Hopf bifurcations.
In a model of a delayed marine bacteriophage infection, Beretta et al. [21] analysed the
global and local stability of the equilibrium. Beretta and Solimano [22] expanded upon their
previous research [21] to investigate how delay impacts equilibrium stability. In [23], the au-
thor addressed models of marine phage infection with delay and stage structure achieving
the persistence and extinction of the system under specific conditions. Gakkhar and Sa-
hani [24] proposed a model of bacteria–bacteriophage interaction with a constant delay.
They examined a simple Hopf bifurcation for the non-zero equilibrium point and outlined
the conditions for a susceptible bacteria-free equilibrium and its stability. Casino et al. [27]
identified the optimal lysis time for bacteria–phage interactions in a structured cell popula-
tion model. Additional delayed bacteria–phage models can be found in [28–31] and the
references cited therein. Several significant studies have been published on diffusion-based
bacteriophage models [32–34]. Mathematically rigorous studies of stochastic models for
bacteriophage infection with and without time delay have been published as well [35–39].

Understanding the interactions between bacteria, phages, and the immune system is
essential to developing successful bacteriophage therapeutics. Meanwhile, bacteriophage-
based bacterial elimination has therapeutic potential and is currently utilized to treat
bacterial infections [40,41]. Mathematical models of bacteria–phage interactions that include
immune responses are of growing interest to the authors. Leung and Weitz [42] proposed
a nonlinear ODE phage therapy model involving bacterial, phage, and immune system
interactions: 

Ḃ = rB
(

1− B
KC

)
− φBP− εIB

1 + B/KD
,

Ṗ = βφBP− wP,

İ = αI
(

1− I
KI

)
B

B + KN
,

(1)

where B(t), P(t), and I(t) represent the concentrations of bacteria, phages, and the immune
system at time t, respectively, and r and KC represent the maximum growth rate and
carrying capacity of the bacteria, respectively. The phages attach to and infect the bacteria
with an adsorption rate of φ and release new virus particles with a burst size of β. The phage
particles decay with the death rate w. The presence of bacteria with a maximum growth rate
α activates the immune system. Meanwhile, the immune carrying capacity is KI and the
killing parameter is ε. Finally, KD is the bacterial density when the host immune response is
half-saturated and KN is the bacterial concentration at which the innate immunity growth
rate is at half its maximum.

In [42], Leung and Weitz simplified the above System (1) by employing a quasistatic
approximation in which the innate immune response is represented as a constant. This
simplification is reasonable considering that the concentrations of bacteria and phages are
expected to change more rapidly than the immune response. They applied this approx-
imation when the innate immune response reached its maximum KI . This resembles a
circumstance in which the innate immune response does not control bacterial infection.
Phages are then included as an additional treatment. In this case, the model equation in (1)
reduces to Ḃ = rB

(
1− B

KC

)
− φBP− εKI B

1 + B/KD
,

Ṗ = βφBP− wP,
(2)

with the initial conditions
B(0) ≥ 0, P(0) ≥ 0.

In [42], Leung and Weitz discovered a synergistic regime in which the phage and
immune system cooperate to eradicate bacteria. They demonstrated that the interaction
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between phages and the immune system is essential in order for phage therapy to effectively
eliminate bacterial infections. However, they did not discuss the dynamic behaviors of (1)
and (2), such as positivity, boundedness, persistence, stability, Hopf bifurcation analysis, etc.
In [43], we examined the mathematical dynamics analysis of the model in (1) formulated
by Leung and Weitz [42], studied the persistence, non-persistence, and local stability of
possible equilibrium solutions, and provided the criteria for the global stability of the
planar and positive equilibria. However, the analysis of such dynamics for the model in (2)
was not completed in our previous paper [43].

Determining how delays influence the system’s stability, dynamics, and bifurcation
is a challenging mathematical problem, and nonlinear dynamical bacteria–bacteriophage
systems with time delays are extremely challenging because of the application of nonlinear
biological phenomena and their dynamic behavior. There are a number of papers in the
literature on modeling bacteria–bacteriophage systems using delay differential equations.
Inspired by this previous literature, it appears that the model can be made more realistic by
incorporating additional terms such as the time delay obtained from the past states of the
system. For example, as noted in [21], the introduction of time delay can induce the system
to exhibit complex dynamic behaviors, a development that is vital for advancing phage
therapy. As far as we know, this model (2) has yet to be studied with the incorporation of a
time delay and analysis of its dynamic behavior, making the present study an important one.

Motivated by the above discussion and based on [33], in this paper we assume that
the recruitment of phages and the infection of bacteria both require discrete time lags and
introduce a discrete time delay into System (2). Such a model is more biologically realistic
than existing models. Based on the work of [42], the delay-induced modified model is
represented by Ḃ = rB

(
1− B

KC

)
− φBP− εKI B

1 + B/KD
,

Ṗ = βφB(t− τ)P(t− τ)− wP.
(3)

subject to the initial conditions B0(ν) = χ1(ν) > 0, P0(ν) = χ2(ν) > 0 and ν ∈ [−τ, 0],
where χγ ∈ C([−τ, 0] −→ R+) and (γ = 1, 2) are given functions and τ is a positive con-
stant.

According to other related studies, for example, [21,26,28,33], etc., the delay can
destabilize the coexistence equilibrium and lead to the Hopf bifurcation of the system.
Therefore, in this paper there is a real need to pose the important question of whether
the delay causes System (3) to display these characteristics. Motivated by this fact, we
introduce System (3) by adding a time delay term to System (2), then study the effects of
delay on the dynamics of the system.

The remaining sections of this paper are organized as follows: in Section 2, we examine
results relating to the non-delayed model, including the local and global stability of the
positive equilibrium and the occurrence of Hopf bifurcation; Section 3 discusses similar
results along with the stability and the direction of Hopf bifurcation for the delayed model;
in Section 4, we conduct numerical simulations to verify our analytical results; finally,
Section 5 presents the conclusions of this study.

2. Dynamics of the Non-Delayed Model
2.1. Positivity and Boundedness

In this context, positivity indicates that the population survives and boundedness
represents a natural growth restriction due to limited resources. This subsection analyses
the positivity and boundedness of the model in (2). In theoretical ecology, the biologically
well-behaved nature of a system is established through its positivity and boundedness.
Thus, System (2) has the following outcome.

Lemma 1. System (2) has solutions (B(t), P(t)) in the interval [0, ∞) that satisfy B(t) ≥ 0,
P(t) ≥ 0, and ∀t ≥ 0.
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Proof. The model in (2) can be written in matrix form:

Ẋ = G(X),

X = (x1, x2)
T = (B, P)T ∈ R2

where G(X) is provided by

G(X) =

(
G1(X)
G2(X)

)
=

(
rB
(

1− B
KC

)
− φBP− εKI B

1+B/KD

βφBP− w P

)
.

Because G(X) and ∂G
∂X are continuous in R2

+, it is the case that G : R2
+ → R2 is locally

Lipschitz. By the standard theory of the ODE system, it follows that model (2) has a unique
solution for any initial condition X(0) = X0 = (B(0), P(0)) ∈ R2

+.
Further, the model in (2) can be rewritten as

dB
dt

= Bφ1(B, P),
dP
dt

= Pφ2(B, P),

where
φ1(B, P) = r− r

KC
B− φP− εKI

1 + B/KD
,

φ2(B, P) = βφB− w.

∴
dB
dt

= Bφ1(B, P)⇒ 1
B

dB = φ1(B, P)

By integrating, we obtain

lnB =
∫

φ1(B, P)dt + lnC

⇒ B = exp[
∫

φ1(B, P)dt + lnC] = Cexp[
∫

φ1(B, P)dt].

It follows that

B(t) = B(0) exp
[∫ t

0
φ1(B(s), P(s))ds

]
,

where C = B(0). Thus, B(t) is always positive, as B(0) > 0. Similarly, from second equation
of System (2) we can find the positivity of P(t), as P(0) > 0. Hence,

B(t) = B(0) exp
[∫ t

0
φ1(B(s), P(s))ds

]
≥ 0,

P(t) = P(0) exp
[∫ t

0
φ2(B(s), P(s))ds

]
≥ 0.

Thus, the solution X(t) = (B(t), P(t)) with initial condition X(0) = X0 = (B(0), P(0)) ∈
R2
+ remains positive throughout the region R2

+.

We next investigate whether the model in (2) is bounded within a particular region of
the dynamical space.

To demonstrate the uniform boundedness of the model in (2), the following compari-
son lemma [44,45] is needed.

Lemma 2 (Comparison lemma). If K(t) is an absolutely continuous function which satisfies the
differential inequality

d(K(t))
dt

+ σ1K(t) ≤ σ2, such that t ≥ 0,
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where (σ1, σ2) ∈ R2 and σ1 6= 0, then for all t ≥ T̂ ≥ 0 we have

K(t) ≤ σ2

σ1
−
(

σ2

σ1
− K(T̂)

)
e−σ1(t−T̂).

Remark 1. All solutions of System (2) initiating in R2
+ are subject to the region G = {(B, P) ∈

R2
+ : v(t) ≤ υ

w} with υ := β KC
4r (r + w)2, as t→ ∞ for all positive initial values (B(0), P(0)) ∈

R2
+, where v(t) = βB(t) + P(t). Using Comparison Lemma 2, we establish the outcome for a

delay system. The proof follows in a similar fashion; see Theorem 6 as well.

2.2. Existence of Equilibrium Points

This subsection demonstrates that the model in (2) has different equilibrium solutions.
The following are the probable equilibria of System (2) according to [43] and simple
calculation:

1. Trivial equilibrium: E0 = (0, 0)
2. Boundary equilibrium (phage-free equilibrium): E1 = (B̄, 0), where

B̄ = KC−KD
2 +

√
(KC+KD)2

4 − εKI KCKD
r with KC > KD and r > εKI

3. Interior equilibrium: E2 = (B∗, P∗), where

B∗ =
w
βφ

, P∗ =
1
φ

(
r(1− w

βφKC
)− εKI

1 + w/βφKD

)
(4)

with

r >
εβ2φ2KIKCKD

(βφKC − w)(w + βφKD)
and w < βφKC (5)

2.3. Stability Analysis

Stability refers to a system’s ability to resist small perturbations. Stability analysis is an
acceptable tool for studying the long-term behavior of dynamic systems. In this subsection,
we discuss the local and global stability and bifurcation analysis of System (2).

2.3.1. Stability Analysis of E0 = (0, 0)

Theorem 1.
(i) The equilibrium E0 = (0, 0) is locally asymptotically stable if r < εKI .
(ii) If the parameter r reaches the transcritical threshold r = rtc = εKI , a transcritical bifurcation
arises around E0 for System (2).

Proof. To acquire the local stability outcomes, we employ the Jacobian matrix related to
System (2):

J(B, P) =

(
r− 2r

KC
B− φP− εKI

(1+B/KD)2 −φ B
βφP βφB− w

)
.

(i) The Jacobian matrix of System (2) at E0 is

J(E0) =

(
r− εKI 0

0 −w

)
.

Thus, the trace and determinant of the matrix J(E0) are tr(J(E0)) = r− εKI − w and
det(J(E0)) = −w(r− εKI), respectively. If r < εKI , then tr(J∗(E0)) < 0 and det(J(E0)) > 0,
and E0 is locally asymptotically stable. Hence, E0 is always unstable (saddle) when r > εKI .

(ii) To demonstrate Theorem 1 (ii), we can use the transversality criteria based on
Sotomayor’s theorem [46]. To use Sotomayor’s theorem, one of the eigenvalues of the
matrix J(E0) must be zero at the bifurcation point rtc. One eigenvalue of J(E0) disappears at
r = rtc = εKI , while the other is −w < 0. Let ∆ = (δ1, δ2)

T and Υ = (γ1, γ2)
T represent the

eigenvectors of J(E0) and JT(E0) with zero eigenvalue, respectively. Then, ∆ = Υ = [1, 0]T .
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We define S(B, P) =
[
V(B, P), W(B, P)

]T .
Therefore,

Sr(B, P) =
[

∂V(B, P)
∂r

,
∂W(B, P)

∂r

]T
=
[

B(1− B/KC), 0
]T

,

which provides

ΥT
[
Sr(B, P)

]
= [1, 0]

[
B(1− B/KC), 0

]T
= B(1− B/KC).

Hence, we have ΥT
[
Sr
(
E0; rtc

)]
= 0.

Now,

DSr :=

(
∂Vr
∂B

∂Vr
∂P

∂Wr
∂B

∂Wr
∂P

)
=

(
1− 2B

KC
0

0 0

)
.

Thus, we have ΥT
[

DSr
(
E0; rtc

)
∆
]
= [1, 0][1, 0]T = 1 6= 0, where

DSr
(
E0; rtc

)
=

(
1 0
0 0

)
.

Now, we can check the transversality condition.
Here,

D2S(∆, ∆) =
(

VBBδ1δ1 + VBPδ1δ2 + VPBδ2δ1 + VPPδ2δ2
WBBδ1δ1 + WBPδ1δ2 + WPBδ2δ1 + WPPδ2δ2

)
,

where VBB(0, 0) = − 2r
KC

+ 2εKI
KD

, VBP(0, 0) = VPB(0, 0) = −φ < 0, VPP(0, 0) = 0, WBB(0, 0) =
0, WBP(0, 0) = WPB(0, 0) = βφ > 0, and WPP(0, 0) = 0.

Thus, D2S
(
(0, 0); rtc

)
(∆, ∆) =

[
− 2r

KC
+ 2εKI

KD
, 0
]T

, meaning that we have

ΥT
[

D2S
(
(0, 0); rtc

)
(∆, ∆)

]
= [1, 0]

[
− 2r

KC
+

2εKI
KD

, 0
]T

=

[
− 2r

KC
+

2εKI
KD

]
6= 0.

Hence, the system undergoes a supercritical transcritical bifurcation at E0. The proof
is now complete.

Remark 2. When r < εKI , it is easy to observe that the trivial equilibrium E0 is locally asymptoti-
cally stable and that the phage-free equilibrium E1 does not exist. In contrast, the existence of E1
implies the instability of E0. Furthermore, the above discussion provides information regarding the
experience of transcritical bifurcation around E0.

2.3.2. Stability Analysis of E1 = (B̄, 0)

Theorem 2.
(i) The phage-free equilibrium E1 = (B̄, 0) is locally asymptotically stable if

r <
εKIKCK2

D
(KC − 2B̄)(B̄ + KD)2 and w > βφB̄.

(ii) The equilibrium E1 = (B̄, 0) is globally asymptotically stable in the interior of the first quadrant
of the plane.
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Proof. (i) The variational matrix of the equilibrium E1 = (B̄, 0) is

J(E1) =

(
r− 2r

KC
B̄− εKI K2

D
(B̄+KD)2 −φB̄

0 βφB̄− w

)
.

The roots of J(E1) are r− 2r
KC

B̄− εKI K2
D

(B̄+KD)2 , βφB̄−w. Hence, E1 is locally asymptotically

stable if r < εKI KCK2
D

(KC−2B̄)(B̄+KD)2 and w > βφB̄.

(ii) Let (B, P) ∈ R2
+ : {(B, P) ∈ R2 : B > 0, P > 0} and consider the function

L∗ : R2
B −→ R,

L∗(B, P) = b1(B− B̄− B̄ln(B/B̄)). (6)

The derivative of (6) along the solutions of System (2) is

dL∗

dt
= b1

1
B
(B− B̄)

dB
dt

= b1(B− B̄)
[

r
(

1− B
KC

)
− εKI

1 + B/KD

]
. (7)

Because E2(B∗, P∗) satisfies (2), after a simple calculation we obtain

r
(

1− B̄
KC

)
=

εKI

1 + B̄/KD
. (8)

Replacing (7) with (8), we obtain

dL∗

dt
= b1(B− B̄)

[
r
(

1− B
KC

)
− r
(

1− B̄
KC

)]
= b1(B− B̄)

[
− r

KC
(B− B̄)

]
=
−rb1

KC
(B− B̄)2 < 0.

According to the negative coefficients of the square terms, dL∗
dt is less than zero along all

trajectories in the plane except E2(B∗, P∗). Therefore, E2(B∗, P∗) is globally asymptotically
stable.

2.3.3. Stability and Hopf Bifurcation of E2 = (B∗, P∗)

Theorem 3. Assume that r∗ = εβ2φ2KI KCKD
(w+βφKD)2 and that (5) holds. The following assertions are ob-

tained:
(i) The equilibrium E2 of System (2) is locally asymptotically stable if r > r∗ and unstable if

r < r∗.
(ii) If r = r∗, System (2) experiences Hopf bifurcation at E2, and r∗ is the system’s critical

value.

Proof. The Jacobian matrix of System (2) at the interior equilibrium E2 = (B∗, P∗) is

J(E2) =

(
r− 2r

KC
B∗ − φP∗ − εKI

(1+B∗/KD)2 −φB∗

βφP∗ βφB∗ − w

)
.

Substituting the values of B∗ and P∗ described in (4) into J(E2), we obtain

J∗(E2) =

 εwβφKI KD
(w+βφKD)2 − rw

βφKC
−w

β

r(βφKC−w)
φKC

− εβ2φKI KD
w+βφKD

0

.
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The characteristic equation of J∗(E2) is

λ2 − tr(J∗(E2))λ + det(J∗(E2)) = 0, (9)

tr(J∗(E2)) = − rw
βφKC

+ εwβφKI KD
(w+βφKD)2 ,

det(J∗(E2)) = w
β

[
r(βφKC−w)

φKC
− εβ2φKI KD

w+βφKD

]
.

(i) If r > r∗ = εβ2φ2KI KCKD
(w+βφKD)2 , then tr(J∗(E2)) < 0, and the existence condition (5) of E2

implies det(J∗(E2)) > 0. Thus, the characteristic Equation (9) has negative real parts, as
tr(J∗(E2)) < 0 and det(J∗(E2)) > 0. Hence, E2 = (B∗, P∗) is locally asymptotically stable
in B-P space for r > r∗. Moreover, E2 is unstable in that space for r < r∗.

(ii) It is obvious that if tr(J∗(E2)) = 0 and det(J∗(E2)) > 0, then both of the roots
must be purely imaginary. Thus, from the implicit function theorem a Hopf bifurcation
emerges in which a periodic orbit is generated as the stability of the equilibrium point E2

varies. The critical value of Hopf bifurcation parameter is defined by r = r∗ = εβ2φ2KI KCKD
(w+βφKD)2 .

From the above analysis, it is easy to see that under the given conditions we have the
following: (a) tr(J∗(E2)) = 0, (b) det(J∗(E2)) > 0, and (c) d

dr tr(J∗(E2)) = − w
βφKC

6= 0
at r = r∗. This result guarantees the presence of Hopf bifurcation around the positive
equilibrium E2. The proof is complete.

2.3.4. Non-Existence of Non-Trivial Periodic Solution of System (2)

It is essential to determine whether an ecological system has a periodic solution,
as the existence of such a solution can lead to complex ecological phenomena. On the
one hand, the nonexistence of a periodic solution can convert a locally stable equilibrium
into a globally stable one. In this subsection, using the Dulac–Bendixon criterion [46], we
demonstrate the non-existence of periodic solutions to System (2).

Theorem 4. If there exists a continuously differentiable function Θ(B, P) in the interior of Rn
+

such that
−→∇ · (ΘS) has constant sign and is not identically zero in any subregion, then system (2)

does not possess any limit cycle, and in fact has a closed trajectory which lies entirely within Rn
+.

Proof. Construct the Dulac function as Θ(B, P) = 1
BP and a C1 vector field defined in R20

+

as S(B, P) = (V, W) =
(

rB− r
KC

B2 − φBP− εKI B
1+B/KD

, βφBP− wP
)

. Clearly, Θ ∈ C1(R20
+ ),

where R20
+ is the interior of Rn

+. Moreover, it is clear that Θ(B, P) > 0 in Rn0
+ . We obtain

−→∇ · (ΘS) =
∂

∂B
(ΘV) +

∂

∂P
(ΘW)

=
1
P

∂

∂B

(
r− r

KC
B− φP− εKI

1 + B/KD

)
+

1
B

∂

∂P
(βφB− w)

=
1
P

(
− r

KC
+

εKIKD

(B + KD)2

)
< 0, provided r >

εβ2φ2KIKCKD

(w + βφKD)2 .

Obviously,
−→∇ · (ΘS) is neither zero nor changes its sign in the interior R2

+. Thus,
according to the Dulac–Bendixon criterion, System (2) does not have a closed orbit that lies

entirely in the interior R2
+ if r > εβ2φ2KI KCKD

(w+βφKD)2 .

2.3.5. Global Stability of E2 = (B∗, P∗)

In this subsection, we provide the global asymptotic stability of the positive equilib-
rium E2 by creating a proper Lyapunov function.
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Theorem 5. The positive equilibrium E2 = (B∗, P∗) is globally asymptotically stable if β < 1
holds.

Proof. Define the functional L(B, P) : R2
+ → R such that

L(B, P) = L1(B) + L2(P),

where L1(B) = (B− B∗ − B∗ ln(B/B∗)), L2(P) = (P− P∗ − P∗ ln(P/P∗)). Clearly, L(B, P)
is continuous and well-defined on Int(R2

+), while L is positive in the interior of R2
+ except

at E2 = (B∗, P∗) and L(B, P) disappears at E2 = (B∗, P∗). As a result of differentiating the
function L with respect to the time t along the trajectories of (2), we obtain

dL
dt

=
dL1

dt
+

dL2

dt
. (10)

Furthermore, the time derivatives of L1 and L2 along the solutions of (2) are

dL1

dt
= (B− B∗)

[
r
(

1− B
KC

)
− φP− εKI

1 + B/KD

]
, (11)

dL2

dt
= (P− P∗)(βφB− w), (12)

Because E2 = (B∗, P∗) satisfies (2), by using a straightforward calculation we can
obtain

εKI
1 + B∗/KD

= r
(

1− B∗

KC

)
− φP∗, w = βφB∗. (13)

The result of replacing the two values of (13) with (11) and (12) is

dL1

dt
=
−r
KC

(B− B∗)2 − φ(B− B∗)(P− P∗), (14)

dL2

dt
= βφ(B− B∗)(P− P∗). (15)

Using algebraic computation, substituting (14) and (15) into (10) yields

dL
dt

=
−r
KC

(B− B∗)2 − φ(B− B∗)(P− P∗) + βφ(B− B∗)(P− P∗)

≤ 1
2

(
− 2r

KC
− φ + βφ

)
(B− B∗)2 +

1
2
(−φ + βφ)(P− P∗)2.

If the requirement in Theorem 5 is satisfied, then dL
dt < 0 along all trajectories in R2

+

except for E2 = (B∗, P∗). Hence, E2 = (B∗, P∗) is globally asymptotically stable.

3. Dynamics of the Delayed Model
3.1. Positivity and Boundedness

Next, we establish the positivity of the system (3). We can express the first equation of
(3) as

dB
B

=

(
r− rB

KC
− φP− εKI

1 + B/KD

)
dt.

Integrating across the interval [0, t] yields the following result:

B(t) = B(0) exp
[∫ t

0

{
r− r

KC
B(s)− φP(s)− εKI

1 + B(s)/KD

}
ds
]

,

which indicates that B(t) > 0, ∀ t whenever B(0) > 0.
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Using the second equation from (3), we can derive

P(t) = P(0) exp
[∫ t

0

{
βφB(s− τ)P(s− τ)

P(s)
−ω

}
ds
]

,

which means that P(t) > 0 ∀ t whenever P(0) > 0. Thus, the interior of the first quadrant
is an invariant set for System (3).

Theorem 6. All solutions of System (3) initiating in R2
+ are subject to the region G∗ = {(B, P) ∈

R2
+ : $(t) ≤ υ

w} with υ := β KC
4r (r + w)2, as t→ ∞ for all positive initial values (B0(θ), P0(θ)) ∈

R2
+, where $(t) = βB(t− τ) + P(t).

Proof. We define $(t) = βB(t− τ) + P(t); when we differentiate $ with respect to t along
the trajectories of the model in (3), we obtain

d$

dt
= β

dB(t− τ)

dt
+

dP(t)
dt

= rβB(t− τ)

(
1− B(t− τ)

KC

)
− βεKI B(t− τ)

1 + B(t− τ)/KD
− wP(t).

Hence,

d$

dt
+ w$ = βB(t− τ)

[
(r + w)− r

KC
B(t− τ)

]
− βεKI B(t− τ)

1 + B(t− τ)/KD

≤ βB(t− τ)

[
(r + w)− r

KC
B(t− τ)

]
≤ β

KC
4r

(r + w)2.

Now, taking υ = β KC
4r (r + w)2, we obtain

d$

dt
+ w$ ≤ υ.

Using Comparison Lemma 2, we obtain

0 ≤ $(t) ≤ υ

w
−
( υ

w
− $(t0)

)
ew(t0−t),

and for t→ ∞ we obtain
0 ≤ $(t) ≤ υ

w
.

Hence, all solutions of System (3) are bounded.

3.2. Stability Analysis

To establish the stability of the delayed model, we linearize (3) by replacing B(t) =
B∗ + v1 and P(t) = P∗ + v2 while retaining the first-order terms [20]. The linearized system
is provided by

dv1

dt
=

[
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

]
v1 − φB∗v2,

dv2

dt
= βφP∗v1(t− τ) + βφB∗v2(t− τ)− wv2.

(16)

The variational matrix is

J∗(E2) =

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

βφP∗e−λτ βφB∗e−λτ − w

)
.
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For τ = 0, the characteristic equation of J∗(E2) is as follows:

λ2 − (c11 + c22)λ + c11c22 − c12c21 = 0, (17)

where

c11 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 , c12 = −φB∗, c21 = βφP∗, c22 = βφB∗ − w.

Then, Equation (17) is the same as Equation (9) of the non-delayed System (2) exam-
ined previously. Hence, when the first condition of Theorem 3(i) is satisfied the interior
equilibrium E2 = (B∗, P∗) is locally asymptotically stable.

Alternatively, according to the Routh–Hurwitz criteria, the roots of Equation (17) have
a negative real part, meaning that E2 = (B∗, P∗) is locally asymptotically stable if

c11 + c22 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 + βφB∗ − w < 0,

c11c22 − c12c21 =

(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

)
(βφB∗ − w) + βφ2B∗P∗ > 0.

(18)

In the case of positive delay, the characteristic equation is

D(λ) + F(λ)e−λτ = 0, (19)

where
D(λ) = λ2 + c1λ + c2; F(λ) = c3λ + c4, (20)

c1 = w +
r

KC
B∗ − εKIKDB∗

(B∗ + KD)2 ,

c2 = −w
(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2

)
,

c3 = −βφB∗,

c4 = βφB∗
(
− r

KC
B∗ +

εKIKDB∗

(B∗ + KD)2 + φP∗
)

.

The characteristic Equation (19) is a transcendental equation with infinite solutions
near the positive equilibrium E2 = (B∗, P∗). As periodic solutions of the system are of
interest, the eigenvalues of (19) must be purely imaginary. Substituting λ = iω(ω > 0) in
(19) yields

−ω2 + ic1ω + c2 + e−iωτ(c3iω) = 0. (21)

Separating the real and imaginary parts, we obtain

c4 cos(ωτ) + c3ω sin(ωτ) = ω2 − c2, c3ω cos(ωτ) + c4 sin(ωτ) = −c1ω, (22)

implying that

cos(ωτ) =
c4ω2 − c2c4 − c1c3ω2

c2
4 + c2

3ω2
, sin(ωτ) =

c3ω3 − c2c3ω + c1c4ω

c2
4 + c2

3ω2
. (23)

Eliminating τ from (22), we obtain

ω4 + ω2(c2
1 − 2c2 − c2

3) + c2
2 − c2

4 = 0. (24)
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Equation (24) is a quadratic equation in ω2. If we assume that c2
2 − c2

4 < 0, then (24)
can have a positive root. Hence, we obtain a unique non-negative root ω0 of Equation (24)
as follows:

ω0 =

√√√√−(c2
1 − 2c2 − c2

3) +
√
(c2

1 − 2c2 − c2
3)

2 + 4(c2
4 − c2

2)

2
. (25)

Substituting the value of ω0 in (23) and solving for τ yields

tan(ω0τ) =
c3ω3

0 + (c1c4 − c2c3)ω0

(c4 − c1c3)ω
2
0 − c2c4

. (26)

Thus, the critical magnitude τs of the delay parameter corresponding to ω0 is derived
as follows:

τs =
1

ω0
arctan

[
c3ω3

0 + (c1c4 − c2c3)ω0

(c4 − c1c3)ω
2
0 − c2c4

]
+

2sπ

ω0
(27)

for s = 0, 1, 2, 3, . . .. For τ = 0, E2 is stable provided that c2
2 − c2

4 < 0. Hence, according to
Butler’s Lemma [47], E2 remains stable for τ < τs, where τs = τ0 at s = 0.

3.3. Hopf Bifurcation Analysis

Biologically, all species that coexist exhibit oscillatory balanced behaviour. Meanwhile,
a periodic solution arises in a system when the analyzed equilibrium point changes in
stability as a function of its parameters. To capture the oscillating coexistence of populations,
we establish the Hopf bifurcation analysis around the coexistence equilibrium point with
the discrete delay as a bifurcation parameter. In this subsection, we explore the Hopf
bifurcation of the model, which requires the transversality condition d(Reλ)

dτ

∣∣
τ=τs

> 0 to be
affirmed [48]. Setting λ = iω0 into (19), we obtain |D(iω0)| = |F(iω0)|, which specifies a
probable set of values for ω0. We focus on the direction of motion of λ as τ varies, which
we decide as follows:

Φ = sign
[

d(Reλ)

dτ

]
λ=iω0

= sign

[
Re
(

dλ

dτ

)−1
]

λ=iω0

.

When differentiating (19) with respect to τ, we obtain

[(2λ + c1) + c3e−λτ − τ(c3λ + c4)e−λτ ]
dλ

dτ
= (c3λ + c4)λe−λτ , (28)

(
dλ

dτ

)−1
=

2λ + c1

λe−λτ(c3λ + c4)
+

c3e−λτ

(c3λ + c4)λe−λτ
− τ

λ

=
2λ + c1

−λ(λ2 + c1λ + c2)
+

c3

λ(c3λ + c4)
− τ

λ

=
λ2 − c2

−λ2(λ2 + c1λ + c2)
+

−c4

λ2(c3λ + c4)
− τ

λ
.
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Thus,

Φ = sign
{

Re
[

λ2 − c2

−λ2(λ2 + c1λ + c2)
+

−c4

λ2(c3λ + c4)
− τλ

λ2

]}
λ=iω0

=
1

ω2
0

sign

{
Re

[
c2 + ω2

0
ω2

0 − ic1ω0 − c2
+

a4

ic3ω0 + c4

]}

=
1

ω2
0

sign

{[
(c2 + ω2

0)(ω
2
0 − c2)

(ω2
0 − c2)2 + c2

1ω2
0
+

c2
4

c2
4 + c2

3ω2
0

]}

=
1

ω2
0

sign

{
ω4

0 + (c2
4 − c2

2)

c2
4 + c2

3ω2
0

}
> 0 (since c2

2 − c2
4 < 0).

Hence, the transversality criterion is satisfied and the Hopf bifurcation happens at
ω = ω0, τ = τs. The biquadratic Equation (24) has a unique non-negative root; therefore,
the question of stability switching is irrelevant to our model [49]. The delay-induced phage
therapy model provides a periodic solution with a small amplitude that bifurcates from
the positive equilibrium point when the bifurcation parameter τ crosses its critical value
τ = τ0, where τ0 is the smallest positive value provided by Equation (27). The following
theorem summarizes the above results.

Theorem 7. Suppose that the existence condition (5) of E2 and the conditions in (18) hold for the
model in (3). Then,
(i) If τ < τs, then the interior equilibrium E2 is locally asymptotically stable.
(ii) If τ > τs, then the interior equilibrium E2 is unstable.
(iii) At τ = τs, System (3) undergoes a Hopf bifurcation around E2(B∗, P∗).

3.4. Direction and Stability of Hopf-Bifurcating Periodic Solution

In the previous section, we determined the conditions for Hopf bifurcation around
the positive equilibrium point E2(B∗, P∗) at the critical value τ = τs. This section aims to
determine the direction of Hopf bifurcation and the stability of the bifurcating periodic
solutions from the interior equilibrium E2(B∗, P∗) with the help of the center manifold
theorem and the normal form theory created by Hassard et al. [50]. In this section, we
assume that System (3) undergoes Hopf bifurcation around the interior equilibrium E2 at
τ = τs, with ±iω0 denoting the corresponding purely imaginary roots of the characteristic
equation at E2.

First, we employ transformation v1(t) = B(t)− B∗(t), v2(t) = P(t)− P∗(t), τ = τs + ε
of System (3) by Taylor series expansion for the positive equilibrium (B∗, P∗); thus, the
system becomes

dv1

dt
= d10v1(t) + d01v1(t) + ∑

i+j>2
dijBiPj,

dv2

dt
= m01v2(t) + m12v1(t− τ) + m21v2(t− τ) + ∑

i+j+k>2
mijkPiBj(t− τ)Pk(t− τ),

where

H(1) = rB
(

1− B
KC

)
− φBP− εKI B

1 + B/KD
, H(2) = βφB(t− τ)P(t− τ)− wP,

dij =
1

i!j!
∂i+j H(1)

∂Bi∂Pj

∣∣∣
(B∗ ,P∗)

, mijk =
1

i!j!k!
∂i+j+k H(2)

∂Pi∂Bj(t− τ)∂Pk(t− τ)

∣∣∣
(B∗ ,P∗)

,

d10 = − r
KC

B∗ +
εKIKDB∗

(B∗ + KD)2 , d01 = −φB∗, m12 = βφP∗, m21 = βφB∗, m01 = −w,
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substituted by the functional differential (FDE) in C = C([−1, 0], R2) as

v̇(t) = Aε(vt) + f (ε, vt), (29)

where v(t) = (v1(t), v2(t))T ∈ R2, vt(ν) = v(t + ν) for ν ∈ [−1, 0), and Aε : C → R,
f : R× C → R are respectively provided by

Aε(ρ) = (τs+ε)

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

0 −w

)
(

ρ1(0)
ρ2(0)

)
+ (τs + ε)

(
0 0

βφP∗ βφB∗

)(
ρ1(−1)
ρ2(−1)

)
,

(30)

f (ε, ρ) = (τs + ε)

( (
− r

KC
+ εKI KD

(B∗+KD)2 − 2εKI KD B∗
(B∗+KD)3

)
ρ2

1(0)− φρ1(0)ρ2(0)
βφρ1(−1)ρ2(−1)

)
. (31)

According to Riesz representation theorem, for ν ∈ [−1, 0) there exists a bounded
variation function η(ν, ε) such that

Aερ =
∫ 0

−τ
dη(ν, 0)ρ(0) for ρ ∈ C1[−1, 0). (32)

In fact, we have a choice:

η(ν, ε) = (τs + ε)

(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 −φB∗

0 −w

)
δ(ν)− (τs + ε)

(
0 0

βφP∗ βφB∗

)
δ(ν + 1),

(33)

where δ(ν) is the Dirac delta function. For ρ ∈ C1([−1, 0), R2), we define

M(ε)ρ(ν) =


dρ(ν)

dν
, for ν ∈ [−1, 0);∫ 0

−1
dη(ν, ε)ρ(ν), for ν = 0,

(34)

and

Y(ε)ρ(ν) =

{
0, for ν ∈ [−1, 0);

f (ε, ρ), for ν = 0.
(35)

Thus, (29) can be recast as

v̇t = M(ε)vt + Y(ε)vt, (36)

where vt(ν) = v(t + ν) for ν ∈ [−1, 0).
For ζ ∈ C1([−1, 0), (R2)∗), the adjoint M∗ of M can be described as

M∗(ε)ζ(κ) =


− dζ

dκ
, for κ ∈ (0, 1];∫ 0

−1
dηT(t, 0)ζ(−t), for κ = 0.

(37)

For ρ ∈ [−1, 0) and ζ ∈ [0, 1], a bilinear linear form provides

〈ζ(κ), ρ(ν)〉 = ζ̄(0)ρ(0)−
∫ 0

ν=−1

∫ ν

ϕ=0
ζ̄(ϕ− ν)dη(ν)ρ(ϕ)dϕ, (38)

where η(ν) = η(ν, 0). Thus, M(0) and M∗ are adjoint operators. Because ±iω0τs are the
eigenvalues of M(0), ±iω0τs are the the eigenvalues of M∗.
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Proposition 1. Assume that q(ν) = (1, s)Teiω0τsν is the eigenvector of M(0) corresponding
to iω0τs and that q∗(ν) = (1, s∗)TQeiω0τsν is the eigenvector of M∗ corresponding to −iω0τs.

Then, 〈q∗, q̄〉 = 0, 〈q∗, q〉 = 1, with s = βφP∗e−iω0τs

w+iω0−βφB∗e−iω0τs , s∗ = φB∗

βφB∗e−iω0τs−w+iω0
, Q̄ =

[1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs ]−1.

Proof. Here, we suppose that q(ν) is the eigenvector of M(0) corresponding to iω0τs,
M(0)q(ν) = iω0τsq(ν). Using the definition of M(0) with (30), (32), and (33), we obtain(

− r
KC

B∗ + εKI KD B∗
(B∗+KD)2 − iω0 −φB∗

βφP∗e−iω0τs βφB∗e−iω0τs − w− iω0

)
q(0) =

(
0
0

)
.

It is easy to compute that q(0) = (1, s)T , where

q(0) =
(

1
s

)
=

(
1

βφP∗e−iω0τs

w+iω0−βφB∗e−iω0τs

)
.

As q∗(κ) = (1, s∗)Qeiω0τsκ is the eigenvector of M∗ associated with −iω0τs, we obtain

M∗(0)q∗(κ) = −iω0τsq∗(κ).

Through (32), (33), and (37), we have(
− r

KC
B∗ + εKI KD B∗

(B∗+KD)2 + iω0 βφP∗e−iω0τs

−φB∗ βφB∗e−iω0τs − w + iω0

)
(q∗(0))T =

(
0
0

)
.

Now,

q∗(κ) = (1, s∗)Qeiω0τsκ =

(
1,

φB∗

βφB∗e−iω0τs − w + iω0

)
Qeiω0τsκ .

To verify 〈q∗(κ), q(ν)〉 = 1, it is necessary to find the expression for Q. From (38), we
obtain

〈q∗(κ), q(ν)〉 = Q̄(1, s̄∗)(1, s)T −
∫ 0

ν=−1

∫ ν

ϕ=0
Q̄(1, s̄∗)e−iω0τs(ϕ−ν)dη(ν)(1, s)Teiω0τs ϕdϕ

= Q̄
{
(1 + s̄∗s)−

∫ 0

ν=−1
(1, s̄∗)νeiω0τsνdη(ν)(1, s)T

}
= Q̄

{
1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs

}
.

Hence, we may decide Q̄ as

Q̄ = [1 + s̄∗s + s̄∗τs(βφP∗ + sβφB∗)e−iω0τs ]−1.

Moreover, using the adjoint property we have 〈ξ, Mρ〉 = 〈M∗ξ, ρ〉.
Thus, −iω0τs〈q∗, q̄〉 = 〈q∗, Mq̄〉 = 〈M∗q∗, q̄〉 = 〈−iω0τsq∗, q̄〉 = iω0τs〈q∗, q̄〉.
Therefore, 〈q∗, q̄〉 = 0 is easy to prove.

Next, we apply the procedures in [50]; we first calculate the coordinates explaining
the center manifold C0 at ε = 0. Suppose that vt represents the solution to (36) if ε = 0. We
denote

g(t) = 〈q∗, vt〉,

N(t, ν) = vt − g(t)q(ν)− ḡ(t)q̄(ν) = vt(ν)− 2Re{g(t)q(ν)}. (39)
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On the center manifold C0, we have N(t, ν) = N(g(t), ḡ(t), ν), where

N(g, ḡ, ν) = N20(ν)
g2

2
+ N11(ν)gḡ + N02(ν)

ḡ2

2
+ N30(ν)

g3

6
+ . . . , (40)

where ḡ and g are local coordinates for the central manifold C0 in the directions of q̄∗ and
q∗. Note that if vt is real, then N is real. We only examine real solutions. Using (39) yields

〈q∗, N〉 = 〈q∗, vt − gq− ḡq̄〉 = 〈q∗, vt〉 − g〈q∗, q〉 − ḡ〈q∗, q̄〉 = g− ḡ = 0.

For vt ∈ C0 in (36), as ε = 0, we acquire

ġ(t) = 〈q∗, v̇t〉 = 〈q∗, M(0)vt + Y(0)vt〉 = 〈M∗(0)q∗, vt〉+ q̄∗(0) f (0, vt)

= 〈−iω0τsq∗, vt〉+ q̄∗(0) f0(g, ḡ) = iω0τsg + q̄∗(0) f0(g, ḡ)

= iω0τsg(t) + n(g, ḡ),

where

n(g, ḡ) = q̄∗(0) f0(g, ḡ) = n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ . . . . (41)

According to (39) and (40),

vt(ν) = (v1t(ν), v2t(ν)) = N(t, ν) + 2Re{g(t), q(t)}
= N(g(t), ḡ(t), ν) + gq + ḡq̄

= N20(ν)
g2

2
+ N11(ν)gḡ + N02(ν)

ḡ2

2
+ g(1, s)Teiω0τsν

+ ḡ(1, s̄)Te−iω0τsν + . . . . (42)

Explicitly, we can state this as(
v1t(ν)
v2t(ν)

)
=

(
N(1)(ν)

N(2)(ν)

)
+ g
(

1
s

)
eiω0τsν + ḡ

(
1
s̄

)
e−iω0τsν ≡

(
Γ1
Γ2

)
,

where

Γ1 = geiω0τsν + ḡe−iω0τsν + N(1)
20 (ν)

g2

2
+ N(1)

11 (ν)gḡ + N(1)
02 (ν)

ḡ2

2
+ o(|(g, ḡ)|3),

Γ2 = sgeiω0τsν + s̄ḡe−iω0τsν + N(2)
20 (ν)

g2

2
+ N(2)

11 (ν)gḡ + N(2)
02 (ν)

ḡ2

2
+ o(|(g, ḡ)|3).

Hence, it follows that

vt(0) =
(

v1t(ν)
v2t(ν)

)
and N(g, ḡ, ν) =

(
N(1)(ν)

N(2)(ν)

)
.
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Then,

v1t(0) = g + ḡ + N(1)
20 (0)

g2

2
+ N(1)

11 (0)gḡ + N(1)
02 (0)

ḡ2

2
+ o(|(g, ḡ)|3),

v2t(0) = sg + s̄ḡ + N(2)
20 (0)

g2

2
+ N(2)

11 (0)gḡ + N(2)
02 (0)

ḡ2

2
+ o(|(g, ḡ)|3),

v1t(−1) = ge−iω0τs + ḡeiω0τs + N(1)
20 (−1)

g2

2
+ N(1)

11 (−1)gḡ + N(1)
02 (−1)

ḡ2

2
+ o(|(g, ḡ)|3),

v2t(−1) = sge−iω0τs + s̄ḡeiω0τs + N(2)
20 (−1)

g2

2
+ N(2)

11 (−1)gḡ + N(2)
02 (−1)

ḡ2

2
+ o(|(g, ḡ)|3),

v2
1t(0) = g2 + 2gḡ + ḡ2 +

(
N(1)

20 (0) + 2N(1)
11 (0)

)
g2 ḡ + h.o.t.,

v1t(0)v2t(0) = sg2 + (s + s̄)gḡ + s̄ḡ2 +
(

N(2)
11 (0) + (1/2)N(2)

20 (0) + sN(1)
11 (0)

+ (s̄/2)N(1)
20 (0)

)
g2 ḡ + h.o.t.,

v1t(−1)v2t(−1) = sg2e−2iω0τs + (s + s̄)gḡ + s̄ḡ2e2iω0τs +
(

N(2)
11 (−1)e−iω0τs

+ (1/2)N(2)
20 (−1)eiω0τs + sN(1)

11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)
g2 ḡ + h.o.t.

From the definition of n and (31), we obtain

n(g, ḡ) = q̄∗(0) f0(g, ḡ) = q̄∗(0) f (0, vt)

= τsQ̄(1, s̄∗)

( (
− r

KC
+ εKI KD

(B∗+KD)2 − 2εKI KD B∗
(B∗+KD)3

)
v2

1t(0)− φv1t(0)v2t(0)
βφv1t(−1)v2t(−1)

)

= τsQ̄

{
g2
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs + ss̄∗βφe−2iω0τs

]
+ gḡ

[
− 2r

KC
+

2εKIKD

(B∗ + KD)2 −
4εKIKDB∗

(B∗ + KD)3 − φ(s + s̄) + s̄∗βφ(s + s̄)
]

+ ḡ2
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs̄ + s̄∗βφs̄e2iω0τs

]
+ g2 ḡ

[(
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3

)(
N(1)

20 (0) + 2N(1)
11 (0)

)
− φ

(
N(2)

11 (0) + (1/2)N(2)
20 (0) + sN(1)

11 (0) + (s̄/2)N(1)
20 (0)

)
+ s̄∗βφ

(
N(2)

11 (−1)e−iω0τs + (1/2)N(2)
20 (−1)eiω0τs + sN(1)

11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)]}
.

Comparing the coefficients of g2, gḡ, ḡ2, and g2 ḡ with (41) yields
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n20 = 2τsQ̄
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs + ss̄∗βφe−2iω0τs

]
n11 = 2τsQ̄

[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φRe{s}+ s̄∗βφRe{s}
]

n02 = 2τsQ̄
[
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs̄ + s̄∗βφs̄e2iω0τs

]
n21 = 2τsQ̄

[(
− r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3

)(
N(1)

20 (0) + 2N(1)
11 (0)

)
− φ

(
N(2)

11 (0) + (1/2)N(2)
20 (0) + sN(1)

11 (0) + (s̄/2)N(1)
20 (0)

)
+ s̄∗βφ

(
N(2)

11 (−1)e−iω0τs + (1/2)N(2)
20 (−1)eiω0τs + sN(1)

11 (−1)e−iω0τs

+ (s̄/2)N(1)
20 (−1)eiω0τs

)]
.

(43)

Because n21 includes N11 and N20, we need to calculate their values. From (36) and
(39), we obtain

Ṅ = v̇t − ġq− ˙̄gq̄ =

{
M(0)N − 2Re{q̄∗(0) f0q(ν)}, ν ∈ [−1, 0),

M(0)N − 2Re{q̄∗(0) f0q(ν)}+ f0(g, ḡ), ν = 0,

which can be expressed as
Ṅ = M(0)N + H(g, ḡ, ν) (44)

with

H(g, ḡ, ν) = H20(ν)
g2

2
+ H11(ν)gḡ + H02(ν)

ḡ2

2
+ . . . . (45)

On the other hand, on C0,
Ṅ = Ng ġ + Nḡ ˙̄g. (46)

Substituting the series of H(g, ḡ, ν) into (44) and comparing the coefficients yields

(M(0)− 2iω0τ0)N20(ν) = −H20(ν), M(0)N11(ν) = −H11(ν), . . . . (47)

For ν ∈ [−1, 0), the result from (41) and (44) is

H(g, ḡ, ν) =− 2Re{q̄∗(0) f0(g, ḡ)q(ν)} = −2Re{n(g, ḡ)q(ν)}
=− n(g, ḡ)q(ν)− n̄(g, ḡ)q̄(ν)

=−
(

n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ · · ·
)
× q(ν)

−
(

n̄20
ḡ2

2
+ n̄11 ḡg + n̄02

g2

2
+ n̄21

ḡ2g
2

+ · · ·
)
× q̄(ν).

(48)

Comparing the coefficients of (48) with (45) reveals

H20(ν) = −n20q(ν)− n̄02q̄(ν) (49)

and
H11(ν) = −n11q(ν)− n̄11q̄(ν). (50)

From (47) and (49) and the definition of M (i.e., from (34)), we obtain
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Ṅ20(ν) = M(0)N20(ν) = 2iω0τsN20(ν)− H20(ν)

= 2iω0τsN20(ν) + n20q(ν) + n̄02q̄(ν).

Now, taking into account that q(ν) = (1, a)Teiω0τsν, we have

Ṅ20(ν) = 2iω0τsN20(ν) + n20q(0)eiω0τsν + n̄02q̄(0)e−iω0τsν.

Solving the above equation, we obtain

N20(ν) =
in20

ω0τs
q(0)eiω0τsν +

in̄02

3ω0τs
q̄(0)e−iω0τsν + U1e2iω0τsν, (51)

where U1 =
(

U(1)
1 , U(2)

1

)
∈ R2 is a constant vector. Similarly, based on (47) and (50)

together with the definition of M (34), we obtain

N11(ν) = −
in11

ω0τs
q(0)eiω0τsν +

in̄11

ω0τs
q̄(0)e−iω0τsν + U2, (52)

where U2 =
(

U(1)
2 , U(2)

2

)
∈ R2 is a two dimensional constant vector.

In the following, we explore relevant U1 and U2. Utilizing the definition of M with
(34) and (47), we obtain∫ 0

−1
dη(ν)N20(ν) = 2iω0τsN20(ν)− H20(ν), (53)

and ∫ 0

−1
dη(ν)N11(ν) = −H11(ν) (54)

for ν = 0 i.e., η(0, ν) = η(ν).
Now, we can find the formula for H(g, ḡ, ν) by setting ν = 0, which results in

H(g, ḡ, 0) =− n(g, ḡ)q(ν)− n̄(g, ḡ)q̄(ν) + f0(g, ḡ)

=−
(

n20
g2

2
+ n11gḡ + n02

ḡ2

2
+ n21

g2 ḡ
2

+ · · ·
)
× q(0)

−
(

n̄20
ḡ2

2
+ n̄11 ḡg + n̄02

g2

2
+ n̄21

ḡ2g
2

+ · · ·
)
× q̄(0)

+

(
Ω11g2 + Ω12gḡ + Ω13 ḡ2 + Ω14g2 ḡ + · · ·
Ω21g2 + Ω22gḡ + Ω23 ḡ2 + Ω24g2 ḡ + · · ·

)
,

where
Ω11 = − r

KC
+

εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φs,

Ω12 = − r
KC

+
εKIKD

(B∗ + KD)2 −
2εKIKDB∗

(B∗ + KD)3 − φRe{s},

Ω21 = sβφe−2iω0τs ,

Ω22 = βφRe{s}.

For ν = 0, when we compare the coefficients of the above equation with (45) we obtain

H20(0) = −n20q(0)− n̄20q̄(0) + 2τs

(
Ω11
Ω21

)
(55)

and

H11(0) = −n11q(0)− n̄11q̄(0) + 2τs

(
Ω12
Ω22

)
. (56)
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According to the definition of M together with (34) and (47), we have(
iω0τs I −

∫ 0

−1
eiω0τsνdη(ν)

)
q(0) = 0,

(
−iω0τs I −

∫ 0

−1
e−iω0τsνdη(ν)

)
q̄(0) = 0.

When (51) and (53) are substituted into (55), we obtain(
2iω0τs I −

∫ 0

−1
e2iω0τsνdη(ν)

)
U1 = 2τs

(
Ω11
Ω21

)
,

which induces(
iω0 +

r
KC

B∗ − εKI KD B∗
(B∗+KD)2 φB∗

βφP∗e−iω0τs iω0 + βφB∗e−iω0τs + w

)(
U(1)

1

U(2)
1

)
= 2

(
Ω11
Ω21

)
.

Solving for U1, we find

U(1)
1 =

2
Ψ1

∣∣∣∣ Ω11 φB∗

Ω21 iω0 + βφB∗e−iω0τs + w

∣∣∣∣,
U(2)

1 =
2

Ψ1

∣∣∣∣∣ iω0 +
r

KC
B∗ − εKI KD B∗

(B∗+KD)2 Ω11

βφP∗e−iω0τs Ω21

∣∣∣∣∣,
with

Ψ1 =

∣∣∣∣∣ iω0 +
r

KC
B∗ − εKI KD B∗

(B∗+KD)2 φB∗

βφP∗e−iω0τs iω0 + βφB∗e−iω0τs + w

∣∣∣∣∣.
Similarly, substituting (52) and (54) into (56) yields(

− r
KC

B∗ + εKI KD B∗
(B∗+KD)2 −φB∗

βφP∗ βφB∗ − w

)(
U(1)

2

U(2)
2

)
= 2

(
Ω12
Ω22

)
.

Solving for U2, we obtain

U(1)
2 =

2
Ψ2

∣∣∣∣ Ω12 −φB∗

Ω22 βφB∗ − w

∣∣∣∣,
U(2)

2 =
2

Ψ2

∣∣∣∣∣ − r
KC

B∗ + εKI KD B∗
(B∗+KD)2 Ω12

βφP∗ Ω22

∣∣∣∣∣,
with

Ψ2 =

∣∣∣∣∣ − r
KC

B∗ + εKI KD B∗
(B∗+KD)2 −φB∗

βφP∗ βφB∗ − w

∣∣∣∣∣.
Then, we can assess N20(ν) and N11(ν) from (51) and (52). Further, the parameters

and delay can be used to state n21 in (43). Accordingly, we can determine the values below:

Λ(0) =
i

2ω0τs

(
n20n11 − 2|n11|2 −

|n02|2
3

)
+

n21

2
,

ψ = − Re(Λ(0))
Re(λ′(τs))

,

ϑ = 2Re(Λ(0)),

T = − Im(Λ(0)) + ψIm(λ′(τs))

ω0τs
.

(57)
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Here, ψ determines the direction of Hopf bifurcation, ϑ determines the stability of the
Hopf-bifurcating periodic solutions, and T determines the period of bifurcating periodic
solutions at the critical value of τ = τs. Thus, based on the findings of Hassard et al. [50],
the properties of the Hopf bifurcation at the crucial value of τ = τ0 can be stated as
a theorem.

Theorem 8. In Expression (57), the following outcomes hold:

(a) The Hopf bifurcation is supercritical (subcritical) if ψ > 0 (ψ < 0).

(b) The bifurcating periodic solutions are stable (unstable) if ϑ < 0 (ϑ > 0).

(c) The period of the bifurcated periodic solution increases (decreases) if T > 0 (T < 0).

4. Numerical Simulation

In this section, we validate the theoretical outcomes through numerical simulations.
We consider biologically feasible data in order to demonstrate the analytical outcomes,
and the parameters are chosen as mentioned in Table 1.

Table 1. Parameter interpretations and their values used in numerical simulations.

Parameter Description Data 1 Data 2

φ adsorption rate of phage 0.34 0.34
β burst size of phage 0.38 0.38
ε killing rate of innate immune response 0.19 0.19
w decay rate of phage 0.125 0.125
r intrinsic growth rate of bacteria 0.25 0.5

KC carrying capacity of bacteria 7.29 5
KD bacterial concentration when innate immune

response is half saturated 3.5 3.5
KI carrying capacity of innate immune response 0.48 0.48

We take the set of parameter values in Data 1 of Table 1 to correspond to the non-
delayed System (2). For this dataset, the positive equilibrium is E2 = (0.9675, 0.4276). We
derive c11 + c22 = −0.0177 < 0 and c11c22 − c12c21 = 0.0182 > 0, which means that the
system is locally asymptotically stable (LAS) around E2. It can be seen that E2 is stable
using the first condition of Theorem 3(i). To analyze the existence of Hopf bifurcation in
the case of a non-delayed system, we consider the parameter r as a bifurcation parameter
and obtain the value of r as r∗ = 0.1166 with the same set of parameters stated in Data 1.
We can deduce from the second condition of Theorem 3(i) that the positive equilibrium
E2 is destabilized by a Hopf bifurcation when r = 0.109 < r∗ (Figure 1a). According to
Theorem 3(ii), System (2) undergoes a Hopf bifurcation at E2 when r passes r∗ (Figure 1b),
resulting in a stable limit cycle (Figure 1d). In Figure 1c, taking r = 0.25 > r∗, we conclude
from Theorem 3(i) that E2 is stable.

To verify the theoretical analysis outcomes in the delayed system (3), we consider
the set of parameter values in Data 2 of Table 1. Using these parameter values, we obtain
positive equilibrium E2(B∗, P∗) = (0.9675, 0.9759) and compute c1 = 0.2063, c2 = 0.0102,
c3 = −0.1250, and c4 = 0.0313. Furthermore, we compute ω0 = 0.1628 and τ0 = 3.3270 us-
ing (25) and (27). Thus, we can demonstrate the transversality condition of Hopf bifurcation

Φ = sign
[

Re
(

dλ
dτ

)−1
]

λ=iω0

= 42.7388 > 0 at the critical value of τ = τ0 = 3.3270. Accord-

ing to Theorem 7(i), the positive equilibrium E2(B∗, P∗) is stable when τ < τ0 = 3.3270
(Figure 2). Theorem 7(iii) leads us to deduce that System (3) exhibits a Hopf bifurcation
at E2 = (0.9675, 0.9759) when τ = τ0 = 3.3270, i.e., there is a periodic solution around
E2 = (0.9675, 0.9759) when τ is close to τ0 = 3.3270 (Figure 3). When we determine the
value of τ as τ = 3.5 > τ0 = 3.3270, then E2(B∗, P∗) is unstable through a Hopf bifurca-
tion and periodic orbits are encountered, as depicted in Figure 4. Figure 5 displays the
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phase portrait for various τ values, with τ = τ0 = 3.9 and τ = τ0 = 5.5 producing stable
limit cycles.
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Figure 1. Oscillatory behavior of System (2) with parameter values stated in Data 1 except for r:
(a) Unstable solution of system when r = 0.109 < r∗; (b) existence of Hopf bifurcation solution for
r = r∗ = 0.1166; (c) stable solution of system when r = 0.25 > r∗; (d) existence of a stable limit cycle
near E2 when r = r∗.
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Figure 2. Cont.
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Figure 2. E2 is asymptotically stable when τ = 2.3 < τ0: (a,b) time series evolution of bacteria and
phages; (c) phase portrait in B-P plane; (d) phase portrait in t-B-P space.
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Figure 3. Existence of Hopf bifurcation solution for τ = 3.3270 = τ0 around E2: (a,b) time series
evolution of bacteria and phages; (c) presence of a stable limit cycle; (d) phase portrait in t-B-P space.
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Figure 4. E2 is unstable when τ = 3.5 > τ0: (a,b) time series evolution of bacteria and phages;
(c) presence of periodic solution; (d) phase portrait in t-B-P space.
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Figure 5. Phase portraits for various values of time delays: (a) a stable limit cycle emerges at τ = 3.9
due to Hopf bifurcation; (b) a stable limit cycle emerges at τ = 5.5 due to Hopf bifurcation, resulting
in stable periodic solutions.

5. Conclusions

In this paper, we modify and analyze the phage therapy model in (2) by including
a discrete time delay to obtain its delayed version in (3). This modification is carried out
by adding a discrete time delay to the recruitment term of the phages and the infection
term of the bacteria. We investigate the dynamic behaviors of the models in (2) and (3), in
particular in terms of their stability and Hopf bifurcation. In addition, we examine the Hopf
bifurcation properties of System (3), including the bifurcation direction and the stability of
a bifurcating periodic solution. Finally, numerical simulations are provided to prove the
practical use of the theoretical results.
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We consider the positivity and boundedness of both non-delayed and delayed mod-
els. The results demonstrate that all of the system’s solutions are positive and bounded,
indicating that the system is biologically well-behaved.

For the non-delayed model, we explore the necessary conditions for the local stability
of all equilibrium solutions and the occurrence of Hopf bifurcation, taking the bacterial
intrinsic growth rate r as a bifurcation parameter. In Section 2, the Hopf bifurcation of
this model is investigated using Hopf bifurcation theory; it is proved that there exists a
critical value of r∗ for stability. When the value of r passes through the critical value of r∗,
the system loses its stability and Hopf bifurcation occurs. This suggests that the intrinsic
growth rate of bacteria has a stabilizing effect on the dynamics of the system.

In Section 4, we demonstrate numerically that the non-delayed System (2) encounters
Hopf bifurcation when the parameter r passes a critical value r∗ (Figure 1b,d). When
the value of r is gradually increased, the positive equilibrium E2 reaches stability from
instability. (Figure 1a,c). The results of our numerical simulations used to depict the
analytical results are based on biologically feasible data.

We use the Lyapunov functional method to derive the global stability criteria for
the boundary and coexistence equilibrium points in the non-delayed model. The results
indicate that the phage burst size β significantly affects the global stability behaviour of
the coexistence equilibrium in the phage therapy model. The necessary conditions for the
non-existence of periodic solutions to the system are established using the Dulac–Bendixon
criterion. This result can be biologically explained as follows: if the bacterial growth rate is
greater than the threshold value, then System (2) has no limit cycle.

In the second part of this study, we investigate the system’s dynamic behaviour in
the presence of a time delay. We use the discrete delay as a bifurcation parameter in the
Hopf bifurcation analysis to capture the oscillatory behaviour of the delayed model in (3).
In Section 3, using stability theory and Hopf bifurcation theory, the influence of delay on
the stability of the equilibrium point is studied along with the existence of Hopf bifurcation.
Theorems for the stability and existence of Hopf bifurcation are established. The results
show that the time delay destabilizes the system, leading to species coexistence.

It can be inferred from Theorem 7 that Hopf bifurcation arises in System (3) at the
critical value τ = τ0. When the value of τ is increased to τ0 = 3.3270, the system loses
stability and undergoes Hopf bifurcation (Figure 3). When τ > τ0, System (3) enters an
unstable equilibrium via Hopf bifurcation at the interior equilibrium E2, indicating that
the densities of bacteria and phages oscillate periodically (Figure 4). However, the system
achieves a stable equilibrium state when τ < τ0, indicating that the densities of bacteria
and phages tend towards a steady state (Figure 2). Our research indicates that oscillatory
behavior is feasible in certain circumstances and that a delay can cause a stable equilibrium
to evolve into an unstable one.

Furthermore, the direction and stability of the bifurcating periodic solutions are
derived by applying normal form theory and the center manifold theorem. Based on
Theorem 8, we obtain the formulas for determining the attributes of the Hopf bifurcation of
the system. In particular, the Hopf bifurcation is supercritical and the bifurcating periodic
solutions are stable under certain conditions.

In summary, this paper has shown that the addition of delay can destabilize the system
and induce Hopf bifurcation. These results are in agreement with the destabilization
effect that has been observed in previous models when introducing a time delay. From a
biomedical perspective, this means that bacteria and phages can coexist under certain
conditions if the delay required for phage reproduction and bacterial infection is small or
increases to a critical value. This result has a significant effect on determining the most
suitable time to introduce phage therapy.

Stochastic differential equations (SDEs) have become popular in modeling ecolog-
ical and epidemiological models such as the study of population growth and epidemic
transmission, as population dynamics vary concern with random perturbation. Population
individuals struggle with one another for a restricted amount of nourishment and dwelling
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space. Environmental noise frequently influences population systems; therefore, it is crucial
to determine whether this noise has an impact on the results. As far as we know, the phage
therapy population model in (1) has not been studied yet with regard to its stochastic
perturbation and asymptotic behavior. Therefore, in the future we intend to consider the
behavior of the phage therapy model with stochastic perturbation in order to investigate
the impact of random perturbations on model dynamics.
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