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Abstract: From the perspective of the importance of the fractional-order linear time-invariant (FoLTI)
system in plenty of applied science fields, such as control theory, signal processing, and communica-
tions, this work aims to provide certain generic solutions for commensurate and incommensurate
cases of these systems in light of the Adomian decomposition method. Accordingly, we also generate
another general solution of the singular FoLTI system with the use of the same methodology. Several
more numerical examples are given to illustrate the core points of the perturbations of the considered
singular FoLTI systems that can ultimately generate a variety of corresponding solutions.
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1. Introduction

A fractional-order system is a dynamical system characterized by differential equations
with noninteger-order derivatives. The integer-order representation is regarded as a specific
instance of such systems, with fractional-order dynamics serving as the most generic
description of the majority of realistic systems. Several kinds of fractional-order dynamical
system challenges have recently been discussed in the literature [1–5].

In the late 1990s, the work on time-domain system identification using fractional-
order models began. There are several techniques to discretize fractional-order differential
equations by utilizing the phase assignment approach or the Grunwald–Letnikov approxi-
mation, which can be found in [6]. Moreover, the stability, observability, and controllability
of fractional-order systems have been thoroughly examined using state-space representa-
tions (see [7–9]). In the same regard, there are several fields, including electric networks,
economics, optimization issues, control system analysis, restricted mechanics, aircraft and
robot dynamics, biology and large-scale systems, that depend heavily on the so-called
singular fractional-order system of differential equations for their construction [10].

The Caputo fractional-order derivative operator has many applications in the field of
applied science and engineering. For example, one application in applied mathematics for
this operator is the study of natural convection flows of Prabhakar-like fractional Maxwell
fluids with generalized thermal transport in the fractional case [11]. In general, this
derivative can be defined as a combination of an integral of the function and a derivative of
a lower order. The study of nonlocal transport phenomena, such as the generalized heat
transport seen in some materials, makes use of this kind of derivative especially well. In
particular, the Caputo fractional-order derivative operator and other equivalent fractional-
order operators can offer precise and effective solutions to many intricate phenomena and
systems (see [12,13]).
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Using the ADM, nonlinear ordinary, partial, and fractional differential equations
used in physics, mathematics, chemistry, and biology may be solved semianalytically.
George Adomian, director of the University of Georgia’s Center for Applied Mathematics,
created the technique between the 1970s and 1990s. The ADM decomposes a solution
into an infinite series, which converges rapidly to the exact solution [14,15]. Basically, this
technique was introduced to formulate approximate solutions for nonlinear systems. It
is based on the decomposition of the nonlinear part of a differential system into a series
of Adomian polynomials. The recursive formulation generated by the ADM corresponds
to the technique proposed by Picard and Lindelöf to generate a solution to the initial
value problem for a general expression of the differential system. Picard’s method is a
basic technique that has been improved by ADM decomposition for the case of strongly
nonlinear systems [16,17]. However, we think that these methods are equivalent in the
case of dealing with linear systems. In this paper, with the use of the ADM, commensurate
and incommensurate Fractional-order Linear Time-Invariant (FoLTI) systems are solved
semianalytically. Accordingly, the singular FoLTI system is then solved by using the
same methodology.

The remainder of this manuscript is constructed in the following manner. Section 2
aims to recollect some essential information and definitions regarding the Adomain decom-
position method. Section 3 intends to illustrate the primary results of this work, including
the results connected with the commensurate, incommensurate, and singular FoLTI sys-
tems. Section 4 aims to demonstrate several examples, followed by the last section, which
outlines the concluding remarks of this work.

2. Adomain Decomposition Method

In this section, we recall the basic principles of the ADM concerning a nonlinear
problem of the form

Lw + Rw + Nw = g, (1)

where g is the system input, w is the system output, L is the linear operator that needs to
be inverted, R is the linear remainder operator, and N is the nonlinear operator, which is
assumed to be analytic. Herein, we emphasize that the choice for L and its inverse L−1 are
decided by the particular equation to be solved. Generally, we choose L = dm

dxm (·) for the
mth-order differential equations, and thus, its inverse L−1 follows as the m-fold definite
integration operator from x0 to x. Consequently, we obtain L−1Lw = w − ψ, where ψ

incorporates the initial values as ψ = ∑m−1
v=0 βv

(x−x0)
v

v! . Now, applying the inverse linear
operator L−1 to both sides of (1) gives

w = γ(x)− L−1[Rw + Nw], (2)

where γ(x) = ψ + L−1g. The ADM decomposes the solution into a series

w =
∞

∑
n=0

wn, (3)

and then decomposes the nonlinear term Nw into a series

Nw =
∞

∑
n=0

An, (4)

where An are called the Adomian polynomials, which can be generated for the nonlinearity
Nw = f (w) by the following formula [18]:

An =
1
n!

∂n

∂λn

[
f

(
∞

∑
k=0

wkλk

)]
λ=0

, n = 0, 1, 2, · · · , (5)

where λ is a grouping parameter of convenience.
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For convenience, below, we list the formulas of the first Adomian polynomials for the
one-variable nonlinearity Nw = f (w(x)) from A0 up to A5:

A0 = f (w0),

A1 = f ′(w0)w1,

A2 = f ′(w0)w2 + f ′′(w0)
w2

1
2!

,

A3 = f ′(w0)w3 + f ′′(w0)w1w2 + f (3)(w0)
w3

1
3!

,

A4 = f ′(w0)w4 + f ′′(w0)

(
w2

2
2!

+ w1w3

)
+ f (3)(w0)

w2
1w2

2!
+ f (4)(w0)

w4
1

4!
,

A5 = f ′(w0)w5 + f ′′(w0)(w2w3 + w1w4) + f (3)(w0)

(
w1w2

2
2!

+
w2

1w3

2!

)
+ f (4)(w0)

w3
1w2

3!
+ f (5)(w0)

w5
1

5!
,

...

Accordingly, by substituting the Adomian decomposition series (3) for the solution
w(x) and the series of Adomian polynomials (4) suited to the nonlinearity Nw into (2),
we obtain

∞

∑
n=0

wn = γ(x)− L−1

[
R

∞

∑
n=0

wn +
∞

∑
n=0

An

]
. (6)

This consequently yields the following recursion states:

w0(x) = γ(x),

wn+1(x) = −L−1[Rwn + An], n ≥ 0,
(7)

The n-term approximation of the solution is then of the form

ϕn(x) =
n−1

∑
k=0

wk(x). (8)

It should be noted here that there are several alternative recursion approaches that
can be used instead of (7), see, e.g., the Adomian–Rach [19], Wazwaz [20], Wazwaz-El-
Sayed [21], Duan [22], and Duan–Rach [23].

3. FoLTI System

The state-space representation for the linear time-invariant system has the general form

x′(t) = Ax(t) + Bw(t), x(t0) = x0,

y(t) = Cx(t) + Dw(t),
(9)

with the pseudo-state x(t) ∈ Rn, the input w(t) ∈ Rp, the output y(t) ∈ Rq, the order
of differentiation α ∈ (0, 1], and matrices of appropriate dimensions, namely the system
matrix A ∈ Rn×n, the input matrix B ∈ Rn×p, the output matrix C ∈ Rq×n, and the feed
through matrix D ∈ Rq×p [24]. In particular, x(t) is the n-dimensional state vector, which
can be expressed as

x(t) =


x1(t)
x2(t)

...
xn(t)

,
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whose n scalar components are called state variables. Similarly, the m-dimensional input
vector and p-dimensional output vector of w(t) and y(t) are given as

w(t) =


w1(t)
w2(t)

...
wm(t)

, y(t) =


y1(t)
y2(t)

...
yp(t)

.

In this connection, it should be mentioned that number three is a very critical issue
concerning the use of the Caputo derivative and the concept of the state variable. In
particular, the so-called initial condition of the Caputo derivative x(0) is only related to
instant t0, whereas the dynamics of a fractional system refer to all the past behaviors of
the system. Consequently, there is a need to correctly construct an approximate solution
to the fractional system according to the initial conditions x(0) by correctly considering
the long memory feature of this system. In fact, this weak construction for such a solution
may remain at any instant of t > t0, and thus, x(t) will not take into account the past
behaviors of the system. This contradicts the definition of a state variable. In 2000, Lorenzo
and Hartley addressed this matter by establishing a basic definition for initializing the
fractional systems formulated by using the Riemann–Liouville and Grunwald fractional
operators [25,26]. The Caputo fractional operator, which is used in this work, has not been
considered regarding this issue until now. Actually, we believe that such an issue, which
was inspired by the Lorenzo/Hartley approach and the infinite state representation, is
regarded an important point and should be taken into account in the near future. However,
in this work, we formulate and initialize the FoLTI system in light of the Caputo fractional
derivative operator in its conventional form.

3.1. Commensurate FoLTI System

By replacing with the Caputo operator instead of using the classical one in the sys-
tem (9), we can then generate the commensurate FoLTI system, which will be in the form{

Dα
∗x(t) = Ax(t) + Bw(t)

y(t) = Cx(t) + Dw(t).
(10)

subject to the initial condition
x(t0) = x0. (11)

Herein, α is the fractional-order value of the Caputo operator Dα
∗ . This operator and

its inverse (Riemann–Liouville fractional integrator) are recalled below for completeness.

Definition 1 ([27]). The Caputo fractional-order differential operator Dα
∗ of a function f is de-

fined by

Dα
∗ f (t) =

1
Γ(m− α)

∫ t

a

f (m)(u)
(t− u)α−m+1 .du, (12)

whenever the standard differential operator is Dm f ∈ L1[a, b], where α ≥ 0 and m = dρe.

Definition 2 ([27]). The Riemann–Liouville fractional-order integral operator Jα
0 of a function

f ∈ L1[a, b] is defined by

Jα
0 f (t) =

1
Γ(α)

∫ t

0
(t− u)α−1 f (u).du, (13)

where α ∈ R+ is the order of the operator, and a ≤ t ≤ b.
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In this regard, we need to consider the following two important properties, that is, if
n− 1 < α ≤ n, where n ∈ N, then [28]:

Dα
∗ Jα

0 f (x) = f (x),

and

Jα
0 Dα
∗ f (x) = f (x)−

n

∑
i=1

f i(0+)
xi

i!
, x > 0.

Now, in order to solve the first equations given in system (10) with the initial condi-
tions (11) by using the ADM, we first add Jα

0 to both sides of such equations to obtain

x(t) = x(0) + AJα
0 x(t) + BJα

0 w(t).

By considering the ADM, the general solution of the above equation can be assumed
to be x(t)=∑∞

n=0 xn(t). This consequently gives

∞

∑
n=0

xn(t) = x0 + AJα
0

(
∞

∑
n=0

xn(t)

)
+ BJα

0 w(t),

which immediately implies

x0(t) = x0 + BJα
0 w(t)

xn(t) = AJα
0 xn−1(t), n ≥ 1.

(14)

Thus, based on (14), we can obtain, for instance, x1(t) as follows:

x1(t) =
Ax0tα

Γ(α + 1)
+ ABJ2α

0 w(t).

In the same way, we can obtain

x2(t) =
A2x0t2α

Γ(2α + 1)
+ A2BJ3α

0 w(t).

If we continue in this manner, we can obtain

xn(t) =
Anx0tnα

Γ(nα + 1)
+ AnBJ(n+1)α

0 w(t), n ≥ 1.

Now, due to the solution having the form x(t) = ∑∞
n=0 xn(t), then with the help of the

Mittag–Leffler function, we can gain

x(t) = Eα,1(Atα)x0 +
∫ t

0
(t− τ)α−1Eα,α

(
A(t− τ)α)Bw(τ) · dτ, (15)

where E·,·(t) is the Mittag–Leffler function of two parameters, which is outlined by the next
definition.

Definition 3 ([10]). The Mittag–Leffler function of two parameters α and β is outlined by the
following series:

Eα,β(t) =
∞

∑
k=0

tk

Γ(αk + β)
,

where α, β > 0 and t ∈ C.

In fact, solution (15) represents the solution of the first equations in system (10)
according to the initial conditions (11). Hence, in order to find the solution of the output
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state y(t) reported in the second equation of system (10), we substitute (15) into this
equation to obtain

y(t) = C
(

Eα,1(Atα)x0 +
∫ t

0
(t− τ)α−1Eα,α

(
A(t− τ)α)Bw(τ) · dτ

)
+ Dw(t). (16)

Hence, the two expressions reported in (15) and (16) represent the general solution to
the FoLTI system.

3.2. Incommensurate FoLTI System

In this subsection, we deal with one of the most important systems, the incommensu-
rate FoLTI system, which has the following form:[

Dαx1(t)
Dβx2(t)

]
=

[
A11 A12
A21 A22

][
x1
x2

]
+

[
B1
B2

]
w(t), (17)

subject to the initial condition

x0 =

[
x1(0)
x2(0)

]
,

where 0 < α, β ≤ 1, x1 ∈ Rn1 , x2 ∈ Rn2 , w ∈ Rm, Aij ∈ Rni×j and Bi ∈ Rni , for i, j = 1, 2. In
order to obtain the general solution to this system, we introduce the next result.

Lemma 1. System (17) has a solution of the form

x(t) =
∞

∑
k=0

∞

∑
l=0

Φkl
tkα+βx0

Γ(kα + lβ + 1)
+
∫ t

0

∞

∑
k=0

∞

∑
l=0

Φkl
(t− τ)(k+1)α+lβ−1

Γ((k + 1)α + lβ)
B10w(τ) · dτ

+
∫ t

0

∞

∑
k=0

∞

∑
l=0

Φkl
(t− τ)kα+(l+1)β−1

Γ(kα + (l + 1)β)
B01w(τ) · dτ,

where

B10 =

[
B1
0

]
, B01 =

[
0
B2

]
,

Φkl =



In , k = l = 0[
A11 A12
0 0

]
, k = 1, l = 0

[
0 0

A21 A22

]
, k = 0, l = 1

Φ10Φk−1,l + Φ01Φk,l−1 , k + l > 0.

Proof. To prove this result, we rewrite system (17) again in the form:

Dαx1(t) = A11x1(t) + A12x2(t) + B1w(t),

Dβx2(t) = A21x1(t) + A22x2(t) + B2w(t).

By adding Jα
0 and Jβ

0 to both sides of the above equations, we obtain

x1(t) = x1(0) + A11 Jα
0 x1(t) + A12 Jα

0 x2(t) + B1 Jα
0 w(t),

x2(t) = x2(0) + A21 Jβ
0 x1(t) + A22 Jβ

0 x2(t) + B2 Jβ
0 w(t).
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By considering the ADM, the general solution of the above equations can be assumed
to be x1(t) = ∑∞

n=0 x1(n)(t) and x2(t) = ∑∞
n=0 x2(n)(t). This consequently gives

∞

∑
n=0

x1(n)(t) = x1(0) + A11 Jα
0

(
∞

∑
n=0

x1(n)(t)

)
+ A12 Jα

0

(
∞

∑
n=0

x2(n)(t)

)
+ B1 Jα

0 w(t),

∞

∑
n=0

x2(n)(t) = x2(0) + A21 Jβ
0

(
∞

∑
n=0

x1(n)(t)

)
+ A22 Jβ

0

(
∞

∑
n=0

x2(n)(t)

)
+ B2 Jβ

0 w(t),

which implies

x1(0) = x1(0) + B1 Jα
0 w(t), (18)

x1(n)(t) = A11 Jα
0 x1(n−1)(t) + A12 Jα

0 x2(n−1)(t), n ≥ 1, (19)

and

x2(0) = x2(0) + B2 Jβ
0 w(t), (20)

x2(n)(t) = A21 Jβ
0 x1(n−1)(t) + A22 Jβ

0 x2(n−1)(t), n ≥ 1. (21)

Based on (18) and (19), we can obtain, for instance, x1(1)(t), as follows:

x1(1)(t) =
(

A11x1(0) + A12x2(0)
Γ(α + 1)

)
tα + A11B1 J2α

0 w(t) + A12B2 Jα+β
0 w(t).

In the same way, we can obtain

x2(1)(t) =
(

A21x1(0) + A22x2(0)
Γ(β + 1)

)
tβ + A21B1 Jα+β

0 w(t) + A22B2 J2β
0 w(t).

In addition, we can obtain

x1(2)(t) =

(
A2

11x1(0) + A11 A12x2(0)
Γ(2α + 1)

)
t2α + A2

11B1 J3α
0 w(t) + (A11 A12B2 + A12 A21B1)J2α+β

0 w(t)

+

(
A12 A21x1(0) + A12 A22x2(0)

Γ(α + β + 1)

)
tα+β + A12 A22B2 Jα+2β

0 w(t).

On the other hand, we can similarly obtain

x2(2)(t) = A21 Jβ
0 x1(1)(t) + A22 Jβ

0 x2(1)(t).

In other words, we have

x2(2)(t) =
(

A21 A11x1(0) + A21 A12x2(0)
Γ(α + β + 1)

)
tα+β + A21 A11B1 J2α+β

0 w(t)

+ (A21 A12B2 + A22 A21B1)Jα+2β
0 w(t) +

(
A22 A21x1(0) + A2

22x2(0)
Γ(2β + 1)

)
t2β + A2

22B2 J3β
0 w(t).

In the same regard, we can obtain

x1(3)(t) = A11 Jα
0 x1(2)(t) + A12 Jα

0 x2(2)(t),

which implies
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x1(3)(t) =

(
A3

11x1(0) + A2
11 A12x2(0)

Γ(3α + 1)

)
t3α + A3

11B1 J4α
0 w(t)

+ (A2
11 A12B2 + A11 A12 A21B1 + A12 A21 A11B1)J3α+β

0 w(t)

+

(
A11 A12 A21x1(0) + A11 A12 A22x2(0) + A12 A21 A11x1(0) + A12 A21 A12x2(0)

Γ(2α + β + 1)

)
t2α+β

+ (A11 A12 A22B2 + A12 A21 A12B2 + A12 A22 A21B1)J2α+2β
0 w(t)

+

(
A12 A22 A21x1(0) + A12 A2

22x2(0)
Γ(α + 2β + 1)

)
tα+2β + A12 A2

22B2 Jα+3β
0 w(t).

In the same regard, we can obtain

x2(3)(t) = A21 Jβ
0 x1(2)(t) + A22 Jβ

0 x2(2)(t),

which gives

x2(3) =

(
A21 A2

11x1(0) + A21 A11 A12x2(0)
Γ(2α + β + 1)

)
t2α+β + A2

11 A21B1 J3α+β
0 w(t)

+
(

A21 A11 A12B2 + A2
21 A12B1 + A22 A21 A11B1

)
J2α+2β
0 w(t)

+

(
A2

21 A12x1(0) + A21 A12 A22x2(0) + A22 A21 A11x1(0) + A22 A21 A12x2(0)
Γ(α + 2β + 1)

)
tα+2β

+
(

A21 A12 A22B2 + A22 A21 A12B2 + A2
22 A21B1

)
Jα+3β
0 w(t)

+

(
A2

22 A21x1(0) + A3
22x2(0)

Γ(3β + 1)

)
t3β + A3

22B2 J4β
0 w(t).

Now, if we continue in this manner, we can have

x1(t) =
∞

∑
n=0

x1(n)(t) = x1(0)(t) + x1(1)(t) + x1(2)(t) + x1(3)(t) + · · · ,

i.e.,

x1(t) =
∞

∑
n=0

An
11x1(0)

Γ(nα + 1)
tnα +

∞

∑
n=0

An
11 A12x2(0)

Γ((n + 1)α + 1)
t(n+1)α +

∞

∑
n=0

An
11B1 J(n+1)α

0 w(t)

+
∞

∑
n=0

(
A12

(
An

11B2 + nAn−1
11 A21B1

))
J(n+1)α+β
0 w(t)

+
∞

∑
n=0

A12 An
22

(
A21x1(0) + A22x2(0)
Γ(α + (n + 1)β + 1)

)
tα+(n+1)β

+
∞

∑
n=1

 (n + 1)An
11 A12 A21x1(0) +

(
A12 A22 An

11 + nAn+1
12 A21

)
x2(0)

Γ((n + 1)α + β + 1)

t(n+1)α+β

+
∞

∑
n=1

((
A11 A12 An

22 + nAn+1
12 An

21

)
B2 + A12 A21 An

22B1

)
J2α+(n+1)β
0 w(t)

+
∞

∑
n=0

A12 An+1
22 B2 Jα+(n+2)β

0 w(t) + · · · .

In a similar manner, we have

x2(t) =
∞

∑
n=0

x2(n)(t) = x2(0)(t) + x2(1)(t) + x2(2)(t) + x2(3)(t) + · · · .
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This means

x2(t) =
∞

∑
n=0

An
22x2(0)

Γ(nβ + 1)
tnβ +

∞

∑
n=0

An
22 A21x1(0)β

Γ((n + 1)β + 1)
t(n+1) +

∞

∑
n=0

An
22B2 J(n+1)β

0 w(t)

+
∞

∑
n=0

An
11 A21B1 J(n+1)α+β

0 w(t) +
∞

∑
n=0

(
A21 An+1

11 x1(0) + A21 An
11 A12x2(0)

Γ((n + 1)α + β + 1)

)
t(n+1)α+β

+
∞

∑
n=0

(
A21 A12 An

11B2 + nAn+1
21 A12B1 + A22 A21 An

11B1

)
J(n+1)α+2β
0 w(t)

+
∞

∑
n=1

(
(nAn+1

21 A12 + A21 A11 An
22)x1(0) + (n + 1)A21 A12 An

22x2(0)
Γ(α + (n + 1)β + 1)

)
tα+(n+1)β

+
∞

∑
n=2

(
An

22 A21B1 + nA21 A12 An−1
22 B2

)
Jα+(n+1)β
0 w(t) + · · · .

Now, by repeating this manner several times and by using the assumptions

Φkl =



In , k = l = 0[
A11 A12
0 0

]
, k = 1, l = 0

[
0 0

A21 A22

]
, k = 0, l = 1

Φ10Φk−1,l + Φ01Φk,l−1 , k + l > 0,

with

B10 =

[
B1
0

]
, B01 =

[
0
B2

]
,

we reach the desired result, which completely coincides with the result found in [29].

3.3. Singular FoLTI System

Singular systems, which are also called descriptor systems, generalized systems, or
differential/algebraic systems, are found in engineering systems, such as electrical and
chemical processing circuits or power systems. In this section, we aim to consider the
following singular FoLTI system:

EDα
∗x(t) = Ax(t) + Bw(t), x(0) = x0,

y(t) = Cx(t) + Dw(t),
(22)

where x(t) ∈ Rn, w(t) ∈ Rm, y(t) ∈ Rp, while E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m. It should be mentioned here that E is a singular matrix. Thus, in order to deal
with the first equation in system (22), we assume

En =

(
E− 1

n
I
)

, n = 1, 2, 3, · · · . (23)

This converts the singular matrix E into an approximate nonsingular matrix En,
such that

lim
n→∞

En = lim
n→∞

(
E− 1

n
I
)
= E.

Based on the above discussion, one may take the first equation of system (22) as follows(
E− 1

n
I
)

Dα
∗x(t) = Ax(t) + Bw(t), x(0) = x0. (24)
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If one finds the solution to (24), then its limit as n → ∞ is the solution to the first
equation of system (22), provided that this solution must converge. However, to address
this point clearly, we introduce the next result.

Lemma 2. The solution to system (24) has the form

xn(t) =Eα,1

((
E− 1

n
I
)−1

Atα

)
x(0)

+
∫ t

0
(t− τ)α−1Eα,α

((
E− 1

n
I
)−1

A(t− τ)α

)(
E− 1

n
I
)−1

Bw(τ) · dτ,

(25)

for n = 1, 2, 3, · · · .

Proof. In order to prove this result, we first multiply (24) by
(

E− 1
n I
)−1

. This gives

Dα
∗x(t) =

(
E− 1

n
I
)−1

Ax(t) +
(

E− 1
n

I
)−1

Bw(t). (26)

By adding Jα
0 to both sides of (26), we obtain

x(t) = x(0) +
(

E− 1
n

I
)−1

AJα
0 x(t) +

(
E− 1

n
I
)−1

BJα
0 w(t).

Using ADM yields

∞

∑
n=0

xn(t) = x(0) +
(

E− 1
n

I
)−1

AJα
0

∞

∑
n=0

xn(t) +
(

E− 1
n

I
)−1

BJα
0 w(t).

This consequently implies

x0(t) = x(0) +
(

E− 1
n

I
)−1

BJα
0 w(t),

xn(t) =
(

E− 1
n

I
)−1

AJα
0 xn−1(t), n ≥ 1.

In view of the above relations, we can obtain

x1(t) =


(

E− 1
n I
)−1

Ax(0)

Γ(α + 1)

tα +

(
E− 1

n
I
)−1

A
(

E− 1
n

I
)−1

BJ2α
0 w(t).

Similarly, we can obtain x2(t), as follows:

x2(t) =
(

E− 1
n

I
)−1

AJα
0 x1(t),

which implies

x2(t) =


((

E− 1
n I
)−1

A
)2

x(0)

Γ(2α + 1)

t2α +

((
E− 1

n
I
)−1

A

)2(
E− 1

n
I
)−1

BJ3α
0 w(t).
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In the same way, we can obtain x3(t), as follows:

x3(t) =


((

E− 1
n I
)−1

A
)3

x(0)

Γ(3α + 1)

t3α +

((
E− 1

n
I
)−1

A

)3(
E− 1

n
I
)−1

BJ4α
0 w(t).

If we continue in this manner, we obtain

x(t) =
∞

∑
n=0

xn(t) = x0(t) + x1(t) + x2(t) + x3(t) + · · · .

This means

x(t) = x(0) +
(

E− 1
n

I
)−1

BJα
0 w(t) +


(

E− 1
n I
)−1

Ax(0)

Γ(α + 1)

tα

+

(
E− 1

n
I
)−1

A
(

E− 1
n

I
)−1

BJ2α
0 w(t) +


((

E− 1
n I
)−1

A
)2

x(0)

Γ(2α + 1)

t2α

+

((
E− 1

n
I
)−1

A

)2(
E− 1

n
I
)−1

BJ3α
0 w(t) +


((

E− 1
n I
)−1

A
)3

x(0)

Γ(3α + 1)

t3α

+

((
E− 1

n
I
)−1

A

)3(
E− 1

n
I
)−1

BJ4α
0 w(t) + · · · .

Thus, we can obtain the general solution to (24), which is in the form

xn(t) =Eα,1

((
E− 1

n
I
)−1

Atα

)
x(0)

+
∞

∑
n=0

((
E− 1

n I
)−1

A
)n(

E− 1
n I
)−1

B

Γ((n + 1)α)

∫ t

0
(t− τ)(n+1)α−1w(τ) · dτ.

This leads to the following assertion:

xn(t) =Eα,1

((
E− 1

n
I
)−1

Atα

)
x(0)

+
∫ t

0
(t− τ)α−1

∞

∑
n=0

((
E− 1

n I
)−1

A(t− τ)α
)n

Γ(nα + α)

(
E− 1

n
I
)−1

Bw(τ) · dτ,

which gives the desired result that represents the general form of system (24).

Remark 1. One can observe that the solution to the system (22) is given by

x(t) = lim
n→∞

xn(t),

and then we can find y(t) by using the second equation of the same system, where xn(t) was
previously outlined in (25).
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4. Illustrative Examples

The target of this section is to illustrate several numerical examples of the generated
findings obtained in the previous section.

Example 1. Consider the commensurate FoLTI system (10) with

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, D = 0,

w(t) = 1(t) =
{

1 , t ≥ 0
0 , t < 0

, x0 =

[
1
1

]
.

Then, by using the solution to the system reported in (15), we can obtain

x(t) = Eα,1(Atα)x0 +
∫ t

0
(t− τ)α−1Eα,α

(
A(t− τ)α)Bw(τ) · dτ. (27)

In order to obtain the solution in its final form, we take the first term of solution (27), as follows:

Eα,1(Atα)x0 =
∞

∑
k=0

Aktαk

Γ(αk + 1)
x0 =

(
I +

Atα

Γ(α + 1)
+

A2t2α

Γ(2α + 1)
+

A3t3α

Γ(3α + 1)
+ · · ·

)[
1
1

]
.

However, Ak = 0 for k = 2, 3, 4, · · · . Then, we have

Eα,1(Atα)x0 =

[
1 + tα

Γ(α+1)
1

]
. (28)

Now, we need to deal with the second term of solution (27). For this purpose, we take

Eα,α(Atα) =
∞

∑
k=0

Aktαk

Γ(αk + α)
=

I
Γ(α)

+
Atα

Γ(2α)
+

A2t2α

Γ(3α)
+ · · · .

Again, due to Ak = 0 for k = 2, 3, 4, · · · , we have

∫ t

0
(t− τ)α−1Eα,α

(
A(t− τ)α)Bw(τ) · dτ =

[
t2α

Γ(2α+1)
tα

Γ(α+1)

]
. (29)

By substituting (28) and (29) into (27), we obtain

x(t) =

[
1 + tα

Γ(α+1) +
t2α

Γ(2α+1)
1 + tα

Γ(α+1)

]
, (30)

which represents the final form of the solution to the first equation related to the commensurate
FoLTI system under consideration. To obtain the solution to the second equation, one may easily
substitute (30) into the equation, as follows:

y(t) = 1 +
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
. (31)

Thus, the solution to the commensurate FoLTI system is expressed by (30) and (31).

Example 2. Consider the first equation of system (22) with

E =

[
0 1
0 0

]
, A = I2, B =

[
1
0

]
, w(t) = 1(t) and x0 =

[
1
1

]
,
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i.e., we have [
0 1
0 0

][
Dα
∗x1(t)

Dα
∗x2(t)

]
=

[
x1(t)
x2(t)

]
+

[
1
0

]
. (32)

Herein, we take

En =

(
E− 1

n
I
)

, n = 1, 2, 3, · · · , (33)

and hence system (32) is [
− 1

n 1
0 − 1

n

][
Dα
∗x1(t)

Dα
∗x2(t)

]
=

[
x1(t)
x2(t)

]
+

[
1
0

]
.

With the help of the general solution (25), we can obtain

xn(t) =Eα,1

([
− 1

n 1
0 − 1

n

]−1

tα

)[
1
1

]

+
∫ t

0
(t− τ)α−1Eα,α

([
− 1

n 1
0 − 1

n

]−1

(t− τ)α

)[
− 1

n 1
0 − 1

n

]−1[
1
0

]
1(τ) · dτ,

for n = 1, 2, 3, · · · . Consequently, we have

xn(t) =
∞

∑
k=0

([
−n −n2

0 −n

]
tα

)k

Γ(αk + 1)

[
1
1

]

+
∫ t

0
(t− τ)α−1

∞

∑
k=0

([
−n −n2

0 −n

]
(t− τ)α

)k

Γ(αk + α)

[
−n −n2

0 −n

][
1
0

]
· dτ.

This means

xn(t) =

∑∞
k=0

(−ntα)k

Γ(αk+1) + n ∑∞
k=0 k (−ntα)k

Γ(αk+1)

∑∞
k=0

(−ntα)k

Γ(αk+1)

+
∫ t

0

∞

∑
k=0

(−n)k(t− τ)αk+α−1

Γ(αk + α)

[
−n
0

]
· dτ.

This implies

xn(t) =
[

Eα,1(−ntα) + nkEα,1(−ntα)− ntαEα,α+1(−ntα)
Eα,1(−ntα)

]
, n = 1, 2, 3, · · · .

In order to see how x1(t) and x2(t) appear, we plot Figures 1–4 for n = 1, 2, 3, 4, 5. In
particular, Figures 1 and 2 illustrate, respectively, the solution x1(t) according to α = 0.75
and α = 1 for n = 1, 2, 3, 4, 5. On the other hand, Figures 3 and 4 show, respectively, the
solution x2(t) according to α = 0.75 and α = 1 for n = 1, 2, 3, 4, 5.
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Figure 1. The solution x1(t) when α = 0.75 for n = 1, 2, 3, 4, 5.
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Figure 2. The solution x1(t) when α = 1 for n = 1, 2, 3, 4, 5.
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Figure 3. The solution x2(t) when α = 0.75 for n = 1, 2, 3, 4, 5.
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Figure 4. The solution x2(t) when α = 1 for n = 1, 2, 3, 4, 5.

Example 3. Consider a singular FoLTI system (22) with

E =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

, A =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1

, B = 0,

C =
[
1 0 1 0

]
, D = 0, x(0) =


0
1
0
0

.

Observe that det(E) = 0, and so, E is singular. This allows us to deal with the following system:(
E− 1

n
I
)

Dα
∗x(t) = Ax(t),

with the initial condition
x(0) =

[
0 1 0 0

]T .

By using the general solution (25), we can obtain

xn(t) =



0 0 0 0

1
n ∑∞

k=0
(−n2tα)

k

Γ(αk+1) ∑∞
k=0

(−n2tα)
k

Γ(αk+1) 0 0

∑∞
k=2

(−1)kn2k−2tαk

Γ(αk+1)
1
n ∑∞

k=0
(−n2tα)

k

Γ(αk+1) 0 0

0 0 0 ∑∞
k=0

(−ntα)k

Γ(αk+1)




0
1
0
0

, n = 1, 2, 3, · · · .

This consequently implies

xn(t) =


0 0 0 0

1
n Eα,1

(
−n2tα

)
Eα,1

(
−n2tα

)
0 0

Eα,1
(
−n2tα

)
− 1 1

n Eα,1
(
−n2tα

)
0 0

0 0 0 Eα,1(−ntα)




0
1
0
0

, n = 1, 2, 3, · · · ,

or

xn(t) =


0

Eα,1
(
−n2tα

)
1
n Eα,1

(
−n2tα

)
0

, n = 1, 2, 3, · · · . (34)
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Thus, we have

yn(t) = Cxn(t) =
[
1 0 1 0

]
0

Eα,1
(
−n2tα

)
1
n Eα,1

(
−n2tα

)
0

, n = 1, 2, 3, · · · . (35)

This means
yn(t) =

1
n

Eα,1

(
−n2tα

)
, n = 1, 2, 3, · · · .

For further illustration and for n = 1, 2, 3, 4, 5, we plot x2(t) reported in (34) in
Figures 5 and 6 according to α = 0.75 and α = 1, respectively. Similarly, we plot x3(t)
reported in (34) in Figures 7 and 8 according to α = 0.75 and α = 1. In addition to these
plots and for the same values of n, we plot y(t) given in Equation (35) in Figures 9 and 10
according to the same values of α (i.e., α = 0.75 and α = 1).
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Figure 5. The general solution of x2(t) when α = 0.75 for n = 1, 2, 3, 4, 5.
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Figure 6. The general solution of x2(t) when α = 1 for n = 1, 2, 3, 4, 5.
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Figure 7. The general solution of x3(t) when α = 1 for n = 1, 2, 3, 4, 5.
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Figure 8. The general solution of x3(t) when α = 1 for n = 3, 4, 5, 6, 7.

−0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−5

0

5

10

t

y
(t

)

The general solution of y(t) when a=0.75, for n=1,2,3,4,5
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Figure 9. The general solution of y(t) when α = 0.75 for n = 1, 2, 3, 4, 5.
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The general solution of y(t) when α=1, for n=3,4,5,6,7
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Figure 10. The general solution of y(t) when α = 1 for n = 3, 4, 5, 6, 7.

In fact, each figure of the previously performed simulations includes a single-phase
trajectory of the phase variables x1, x2, x3 and even y for n = 1, 2, 3, 4, 5, once the value is α
equal to 0.75, and again, when it is equal to 1. These (singular) perturbations of all singular
FoLTI systems yield varying corresponding solutions. From a physical viewpoint, this is
reasonable, since the physical system described by (22) is, in reality, probably described
more precisely by (24). That is, (22) can be considered an idealized model of a higher-order
system. We claim that the convergence of the solutions of (24) to zero on some subinterval
of (0, ∞) is, in fact, sufficient to guarantee that they also converge on a neighborhood of the
origin. This claim is left for future consideration.

5. Conclusions

In this work, certain generic solutions for commensurate and incommensurate fractional-
order linear time-invariant systems were successfully generated with the use of the Adomian
decomposition method (ADM). As a result, a general solution of the singular fractional-order
linear time-invariant system was obtained by using the same procedure. It was shown that the
perturbations of all considered singular FoLTI systems yield varying corresponding solutions.
For future consideration, we left the issue of proving that the singular FoLTI systems’ solutions
converge to zero on some subinterval of (0, ∞).

Author Contributions: Conceptualization, I.M.B. and S.A.; Data curation, S.A.; Formal analysis, O.T.
and O.Y.A.; Funding acquisition, I.M.B. and S.A.; Investigation, S.A.; Methodology, I.M.B. and S.M.;
Project administration, S.A. and S.M.; Resources, S.A., O.Y.A. and S.M.; Software, S.A.; Supervision,
S.A. and S.M.; Validation, O.Y.A.; Visualization, S.M.; Writing—original draft, S.A.; Writing—review
& editing, S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declared that they have no conflict of interest.

References
1. Batiha, I.; Alshorm, S.; Jebril, I.; Hammad, M. A Brief Review about Fractional Calculus. Int. J. Open Probl. Comput. Sci. Math.

2022, 15, 39–56.
2. Batiha, I.M.; Obeidat, A.; Alshorm, S.; Alotaibi, A.; Alsubaie, H.; Momani, S.; Albdareen, M.; Zouidi, F.; Eldin, S.M.; Jahanshah, H.

A Numerical Confirmation of a Fractional-Order COVID-19 Model’s Efficiency. Symmetry 2022, 14, 2583. [CrossRef]
3. Batiha, I.M.; Ababneh, O.Y.; Al-Nana, A.A.; Alshanti, W.G.; Alshorm, S.; Momani, S. A Numerical Implementation of Fractional-

Order PID Controllers for Autonomous Vehicles. Axioms 2023, 12, 306. [CrossRef]

http://doi.org/10.3390/sym14122583
http://dx.doi.org/10.3390/axioms12030306


Axioms 2023, 12, 771 19 of 19

4. Rania, S.; Qazza, A.; Burqan, A.; Al-Omari, S. On Time Fractional Partial Differential Equations and Their Solution by Certain
Formable Transform Decomposition Method. Comput. Model. Eng. Sci. 2023, 136, 3121–3139.

5. Bezziou, M.; Jebril, I.; Dahmani, Z. A new nonlinear duffing system with sequential fractional derivatives. Chaos Solitons Fractals
2021, 151, 111247. [CrossRef]

6. Mathieu, B.; Lay, L.L.; Oustaloup, A. Identification of non integer order systems in the time domain. In Proceedings of the
Symposium on Control, Optimization and Supervision, Lille, France, 9–12 July 1996; pp. 843–847.

7. Ahmad, W.M.; El-Khazali, R.; Al-Assaf, Y. Stabilization of generalized fractional order chaotic systems using state feedback
control. Chaos Solitons Fractals 2004, 22, 141–150. [CrossRef]

8. Batiha, I.M.; Alshorm, S.; Ouannas, A.; Momani, S.; Ababneh, O.Y.; Albdareen, M. Modified Three-Point Fractional Formulas
with Richardson Extrapolation. Mathematics 2022, 10, 3489. [CrossRef]

9. Guechi , S.; Guechi , M. Taylor approximation for solving linear and nonlinear Ill-Posed Volterra equations via an iteration
method. Gen. Lett. Math. 2022, 11, 18–25. [CrossRef]

10. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
11. Shah, N.A.; Ebaid, A.; Oreyeni, T.; Yook, S.-J. MHD and porous effects on free convection flow of viscous fluid between vertical

parallel plates: Advance thermal analysis. Waves Random Complex Media 2023, 1–13. [CrossRef]
12. Shah, N.A.; Khan, I. Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Ca-

puto–Fabrizio derivatives. Eur. Phys. J. C 2016, 75, 362. [CrossRef]
13. Imran, M.A.; Khan, I.; Ahmad, M.; Shah, N.A.; Nazar, M. Heat and mass transport of differential type fluid with non-integer

order time-fractional Caputo derivatives. J. Mol. Liq. 2017, 229, 67–75. [CrossRef]
14. George, A. Solving Frontier Problems of Physics: The Decomposition Method; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013; Volume 60.
15. George, A. Nonlinear Stochastic Operator Equations; Academic Press: Cambridge, MA, USA, 2014.
16. Rach, R. On the Adomian (decomposition) method and comparisons with Picard’s method. J. Math. Anal. Appl. 1987, 128, 480–483.

[CrossRef]
17. El-Sayed, A.M.A.; Hashem, H.H.G.; Ziada, E.A.A. Picard and Adomian decomposition methods for a quadratic integral equation

of fractional order. Comp. Appl. Math. 2014, 33, 95–109. [CrossRef]
18. Adomian, G.; Rach, R. Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 1983, 91, 39–46. [CrossRef]
19. Adomian, G.; Rach, R. Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. J. Math.

Anal. Appl. 1993, 174, 118–137. [CrossRef]
20. Abdul-Majid, W. A reliable modification of ADM. Appl. Math. Comput. 1999, 102, 77–86.
21. Abdul-Majid, W.; El-Sayed, S.M. A new modification of the ADM for linear and nonlinear operators. Appl. Math. Comput. 2001,

122, 393–405.
22. Duan, J.-S. Recurrence triangle for adomian polynomials. Appl. Math. Comput. 2010, 216, 1235–1241. [CrossRef]
23. Duan, J.-S.; Rach, R. A new modification of the ADM for solving boundary value problems for higher order nonlinear differential

equations. Appl. Math. Comput. 2011, 218, 4090–4118.
24. Sabatier, J.; Farges, C.; Trigeassou, J.-C. Fractional systems state space description: Some wrong ideas and proposed solutions.

J. Vib. Control 2014, 20, 1076–1084. [CrossRef]
25. Lorenzo, C.F.; Hartley, T.T. Initialized fractional calculus. Int. J. Appl. Math. 2000, 3, 249–266.
26. Maamri, N.; Trigeassou, J.-C. A Plea for the Integration of Fractional Differential Systems: The Initial Value Problem. Fractal Fract.

2022, 6, 550. [CrossRef]
27. Diethelm, K. The Analysis of Fractional Differential Equations; Springer:Berlin/Heidelberg, Germany, 2004.
28. Batiha, I.M.; Bataihah, A.; Al-Nana, A.A.; Alshorm, S.; Jebril, I.H.; Zraiqat, A. A numerical scheme for dealing with fractional

initial value problem. Int. J. Innov. Comput. Inf. Control 2023, 19, 763–774.
29. Kaczorek, T. Polynomial Approach to Fractional Descriptor Electrical Circuits; Computational Models for Business and Engineering

Domains-ITHEA: Rzeszow, Poland, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.chaos.2021.111247
http://dx.doi.org/10.1016/j.chaos.2004.01.018
http://dx.doi.org/10.3390/math10193489
http://dx.doi.org/10.31559/glm2021.11.2.1
http://dx.doi.org/10.1080/17455030.2023.2186717
http://dx.doi.org/10.1140/epjc/s10052-016-4209-3
http://dx.doi.org/10.1016/j.molliq.2016.11.095
http://dx.doi.org/10.1016/0022-247X(87)90199-5
http://dx.doi.org/10.1007/s40314-013-0045-3
http://dx.doi.org/10.1016/0022-247X(83)90090-2
http://dx.doi.org/10.1006/jmaa.1993.1105
http://dx.doi.org/10.1016/j.amc.2010.02.015
http://dx.doi.org/10.1177/1077546313481839
http://dx.doi.org/10.3390/fractalfract6100550

	Introduction
	Adomain Decomposition Method
	FoLTI System
	Commensurate FoLTI System
	Incommensurate FoLTI System
	Singular FoLTI System

	Illustrative Examples
	Conclusions
	References

