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Abstract: The trade-off between numerical accuracy and computational cost is always an important
factor to consider when pricing options numerically, due to the inherent irregularity and existence
of non-linearity in many models. In this work, we first present fast and accurate (1,2) and (2,2)
predictor–corrector methods with a fourth-order compact finite difference scheme for pricing coupled
system of the non-linear free boundary option pricing problem consisting of the option value and
delta sensitivity. To predict the optimal exercise boundary, we set up a high-order boundary scheme,
which is strategically derived using a combination of the fourth-order Robin boundary scheme and
the fourth-order compact finite difference scheme near boundary. Furthermore, we implement a
three-step high-order correction scheme for computing interior values of the option value and delta
sensitivity. The discrete matrix system of this correction scheme has a tri-diagonal structure and
strictly diagonal dominance. This nice feature allows for the implementation of the Thomas algorithm,
thereby enabling fast computation. The optimal exercise boundary value is also corrected in each
of the three correction steps with the derived Robin boundary scheme. Our implementations are
fast on both coarse and very refined grids and provide highly accurate numerical approximations.
Moreover, we recover a reasonable convergence rate. Further extensions to high-order predictor
two-step corrector schemes are elaborated.

Keywords: American options; optimal exercise boundary; fourth-order compact finite difference
scheme; predictor–corrector methods
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1. Mathematical Model

Predictor–corrector numerical methodologies have been implemented for solving
American-style option pricing partial differential equation (PDE) models, as seen in the
past literature. Solution frameworks with the predictor–corrector schemes have been
implemented for solving these models in the form of variational inequality [1], with a
penalty term [2,3] or as a free boundary problem [4–7]. The first two formulations introduce
some constraints that remove the free boundary, known as the optimal exercise boundary.
Here instead, because of our interest in computing the optimal exercise boundary, option
value, and delta sensitivity with much precision, we consider the American-style options as
a free boundary problem. If we consider non-dividend-paying put options V(t, S) written
on an underlying asset with a price S(t), strike price K, and a time to maturity T, then the
free boundary partial differential equation can be written as

Vt(t, S) +
σ2

2
VSS(t, S) + rSVS(t, S)− rV(t, S) = 0, (1)
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where the asset price S(t) is driven by geometric Brownian motion W(t), given as

dS(t) = µS(t)dt + σS(t)dW(t), (2)

where σ represents the volatility and r is the interest rate. Under risk neutral probability Q,
we have

dS(t) = rS(t)dt + σS(t)dW(t). (3)

Let τ = T − t; then, the governing differential equation in (1) can be changed to the free
boundary PDE as follows:

Vt(t, S)− σ2

2
VSS(t, S)− rSVS(t, S) + rV(t, S) = 0, S > s f (τ); (4)

V(τ, S) = K− S, VS(τ, S) = −1, S < s f (τ). (5)

The boundary and initial conditions are assumed to be

V(τ, s f (τ)) = K− s f (τ), VS(τ, s f (τ)) = −1; (6)

V(τ, ∞) = 0, VS(τ, ∞) = 0; (7)

V(0, S) = (K− S)+. (8)

To fix the free boundary and to further remove the convective term, we implement the
Landau transformation [8] and further take the derivative as follows:

x = ln
S

s f (τ)
, V(τ, S) = U(τ, x), W(τ, x) = Ux(τ, x). (9)

The transformation above results in a system of non-linear American option pricing models
consisting of option values and delta sensitivity as follows:

Uτ(τ, x)− σ2

2
Uxx(τ, x)− ξ(τ)Ux(τ, x) + rU(τ, x) = 0 , x > 0; (10)

Wτ(τ, x)− σ2

2
Wxx(τ, x)− ξ(τ)Uxx(τ, x) + rW(τ, x) = 0 , x > 0; (11)

ξ(τ) = r +
s′f (τ)

s f (τ)
− σ2

2
, (12)

U(τ, x) = K− exs f (τ), W(τ, x) = −exs f (τ), x < 0, (13)

U(0, x) = 0, U(τ, 0) = K− s f (τ), U(τ, ∞) = 0, τ > 0; (14)

W(0, x) = 0, W(τ, 0) = −s f (τ), W(τ, ∞) = 0, τ > 0. (15)

Note that, for the second derivative of the option value, we have the following implied
boundary conditions.

Uxx(τ, 0) =
2rK
σ2 − s f (τ), Uxx(τ, ∞) = 0. (16)

To the best of our knowledge, only a few authors have solved the American-style options
as a free boundary problem with predictor–corrector schemes and their extensions based
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on a front-fixing approach. Zhu and Zhang [6] used a second-order central difference
scheme with the (1,2) Euler-CN scheme to solve the fixed free boundary American option
model. Zhu and Chen [7] further extended the method in [6] for solving stochastic volatility
with the ADI time integration scheme. Chen et al. [4] solved the American options under
the finite moment log-stable model with the predictor–corrector method in [6]. Hajipour
and Malek [5] used both BDF3 for the predictor and corrector schemes and recovered
the second-order convergence rate result. The above-mentioned methods give at most a
second-order convergence rate in space and do not consider a system of pricing consisting
of option value and Greeks. In this study, we propose a kind of fast and accurate method of
explicit–implicit predictor–corrector schemes for solving systems of American-style option
pricing models as a free boundary problem by using fourth-order compact finite difference
and the discrete solution of the option value and delta sensitivity. Here, the systems of free
boundary PDEs are used to solve the option value, delta sensitivity, and optimal exercise
boundary simultaneously. In addition, we further explore and study a suite of high-order
predictor–corrector schemes and understand their relative performance for solving the
above-mentioned PDEs. To the best of our knowledge, we are the first to propose predictor–
corrector methods with a fourth-order compact finite difference scheme for solving systems
of fixed free boundary option pricing PDEs that simultaneously approximate the option
value, delta sensitivity, and the optimal exercise boundary.

The remaining sections of this work are organized as follows: In Section 2, we describe
order (1,2) Euler-CN and (2,2) Leapfrog-CN predictor–corrector methods for solving the
system of PDEs in (10) and (11) using a fourth-order compact finite difference scheme. In
Section 3, we explore the high-order predictor–corrector schemes. We verify the perfor-
mance of these schemes with some of the existing methods and present our results and
findings in Section 4. We then conclude our study in Section 5.

2. Order (1,2) and (2,2) Predictor–Corrector Compact Differencing

In the section, we present a suite of predictor–corrector fourth-order compact finite dif-
ference schemes for solving a system of fixed free boundary option pricing PDEs consisting
of the option value and delta sensitivity. Our space-time grid is defined as follows:

xi+1 − xi = h =
xM
M

, τn+1 − τn = k =
T
N

, x ∈ [0, xM], τ ∈ [0, T]. (17)

We denote the numerical approximations of the option value, delta sensitivity, and the
optimal exercise boundary at grid points xi and τn as u(τn, xi), w(τn, xi), and s f (τn), re-
spectively. xM is denoted the far right artificial boundary, which replaces the infinite right
boundary. Moreover, the far right boundary value for the option value and delta sensitivity
is as follows:

u(τn, xM) = 0, w(τn, xM) = 0. (18)

2.1. Order (1,2) Euler-CN PC Method with Fourth-Order Compact Scheme

Here, we set up a high-order scheme for predicting the optimal exercise boundary,
which is based on the combination of the fourth-order scheme near boundary and a third-
order Robin-style boundary scheme. To this end, we present the two high-order boundary
and near-boundary schemes by considering the following Lemma for the third-order Robin
boundary scheme.

Lemma 1. Assume that u(τn, xi) ∈ C1,2((0, T], [0, xM]). It holds that

−7
2

u(τn, x0) + 4u(τn, x1)−
1
2

u(τn, x2) = 3hux(τn, x0) + h2uxx(τn, x0) + O(h4). (19)
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Proof. Let xi+j − xi = jh. The Taylor series expansion around x0 = 0 gives

u(τn, x1) = u(τn, x0) + hux(τn, x0) +
h2

2
uxx(τn, x0) +

h3

6
uxxx(τn, x0) + O(h4), (20)

u(τn, x2) = u(τn, x0) + 2hux(τn, x0) +
4h2

2
uxx(τn, x0) +

4h3

3
uxxx(τn, x0) + O(h4). (21)

Multiplying (20) by 8 and then subtracting from (21), we obtain (19).

It is important to mention, as we will see below, that the manner for which we
implement (19) enables us to obtain a fourth-order approximation. To obtain the optimal
exercise boundary scheme, we construct the following fourth-order compact scheme near
boundary [9–11]:

uxx(τn, xi) =
2
h2 [u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1)]

− 1
2h2 [ux(τn, xi+1)− ux(τn, xi−1)] + O(h4) = U (τn, xi) + O(h4), i = 1, 2. (22)

If we consider value matching, smooth pasting, and the implied second derivative boundary
conditions as follows,

u(τn, x0) = K− s f (τn), w(τn, x0) = ux(τn, x0) = −s f (τn), uxx(τn, x0) =
2rK
σ2 − s f (τn), (23)

we obtain from Lemma 1 that

4u(τn, x1)−
1
2

u(τn, x2) =

(
7
2
+

2rh2

σ2

)
K−

(
7
2
+ 3h + h2

)
s f (τn) + O(h4). (24)

Based on the forward Euler scheme and the fixed free boundary American options repre-
senting the option value in (10), we obtain

σ2

2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
=

σ2

2

(
4uxx(τn, x1)−

1
2

uxx(τn, x2)

)
= 4uτ(τn, x1)−

1
2

uτ(τn, x2)

− 1
s f (τn)

ds f (τn)

dτ

(
4w(τn, x1)−

1
2

w(τn, x2)

)
−
(

r− σ2

2

)(
4w(τn, x1)−

1
2

w(τn, x2)

)

+ r
(

4u(τn, x1)−
1
2

u(τn, x2)

)
= 4

[u(τn+1, x1)− u(τn, x1)]

k
− 1

2
[u(τn+1, x2)− u(τn, x2)]

k

− 1
s f (τn)

s f (τn+1)− s f (τn)

k

(
4w(τn, x1)−

1
2

w(τn, x2)

)
−
(

r− σ2

2

)(
4w(τn, x1)−

1
2

w(τn, x2)

)

+ r
(

4u(τn, x1)−
1
2

u(τn, x2)

)
+ O(h4 + k). (25)

Multiplying it by k, we then obtain
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σ2k
2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
= 4[u(τn+1, x1)− u(τn, x1)]−

1
2
[u(τn+1, x2)− u(τn, x2)]

−
s f (τn+1)− s f (τn)

s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)
−
(

r− σ2

2

)
k
(

4w(τn, x1)−
1
2

w(τn, x2)

)

+ rk
(

4u(τn, x1)−
1
2

u(τn, x2)

)
+ O(h4 + k2). (26)

Note that

4u(τ, x1)−
1
2

u(τ, x2) =

(
7
2
+

2rh2

σ2

)
K−

(
7
2
+ 3h + h2

)
s f (τ). (27)

Denote

a1 =
7
2
+

2rh2

σ2 , a2 =
7
2
+ 3h + h2. (28)

We may simplify (26) to

σ2k
2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
= a1K− a2s f (τn+1) + (rk− 1)[a1K− a2s f (τn)]

−
s f (τn+1)

s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)
−
[(

r− σ2

2

)
k− 1

](
4w(τn, x1)−

1
2

w(τn, x2)

)

+ O(h4 + k2). (29)

Denote

a3(τn) = (rk− 1)[a1K− a2s f (τn)], a4(τn) =

[(
r− σ2

2

)
k− 1

](
4w(τn, x1)−

1
2

w(τn, x2)

)
. (30)

The optimal exercise boundary is then predicted from the Euler scheme and fourth-order
difference scheme as follows:

s f (p)(τn+1) = H1(τn)s f (τn) + O(h4 + k2), (31)

H1(τn) = −
σ2k

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
− a3(τn) + a4(τn)− a1K

a2s f (τn) +
(

4w(τn, x1)− 1
2 w(τn, x2)

) . (32)

Remark 1. At this point, it is worth acknowledging the work of Egorova et al. [12], where they
formulated a similar equation in (32) with the second-order central finite difference scheme to solve
the American option pricing model with the second-order explicit method. They further implemented
another similar approach for solving the regime-switching American option pricing problem [13].
Here, our formulation ensures that the present scheme admits fourth-order accuracy, and we only
use (32) to predict the optimal exercise boundary and then use (27) to correct the optimal exercise
after each implicit iteration step.
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Furthermore, the time-dependent coefficient associated with the transformed American
option pricing model is then predicted as follows:

ξp(τn+ 1
2
) = r +

2
[
s f (p)(τn+1)− s f (τn)

]
k
[
s f (p)(τn+1) + s f (τn)

] − σ2

2
, (33)

which is a part of the discrete system when correcting the option value, delta sensitivity,
and optimal exercise boundary. It is worth mentioning that because we present two systems
of fixed free boundary PDEs consisting of the option value and its first derivative known
as the delta sensitivity, we can easily use the discrete solution of the delta sensitivity for the
prediction of the optimal exercise boundary. Note that the left boundary value of the option
value, which is used to formulate the first step of the correction scheme, can be obtained
from the predicted value of the optimal exercise boundary as follows:

u(τn+1, x0) = K− s f (p)(τn+1). (34)

Below, we present the well-known fourth-order compact finite difference scheme for the
interior approximations of the option value and delta sensitivity with the implicit Crank–
Nicholson (CN) time integration scheme:

uxx(τn, xi−1)+10uxx(τn, xi) + uxx(τn, xi+1) =

12
h2 [u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1)] + O(h4), i = 2, 3 · · ·M− 1, (35)

Implementing this high-order interior scheme for the two systems of transformed and
nonlinear PDEs in (10) and (11), we obtain a scheme for the option value as follows:

σ2

2

(
uxx(τn+ 1

2
, xi−1) + 10uxx(τn+ 1

2
, xi) + uxx(τn+ 1

2
, xi+1)

)
=

uτ(τn+ 1
2
, xi−1) + 10uτ(τn+ 1

2
, xi) + uτ(τn+ 1

2
, xi+1)

− ξc(τn+ 1
2
)
(

w(τn+ 1
2
, xi−1) + 10w(τn+ 1

2
, xi) + w(τn+ 1

2
, xi+1)

)

+ r
(

u(τn+ 1
2
, xi−1) + 10u(τn+ 1

2
, xi) + u(τn+ 1

2
, xi+1)

)
=

6σ2

h2

(
u(τn+ 1

2
, xi−1)− 2u(τn+ 1

2
, xi) + u(τn+ 1

2
, xi+1)

)
. (36)

Applying the CN method in time for (36), we then obtain the discrete equation as follows:
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[
uτ(τn+1, xi−1)− uτ(τn, xi−1)

12k

]
+ 10

[
uτ(τn+1, xi)− uτ(τn, xi)

12k

]
+

[
uτ(τn+1, xi+1)− uτ(τn, xi+1)

12k

]

=
σ2

4h2 [u(τn+1, xi−1)− 2u(τn+1, xi) + u(τn+1, xi+1)] +
σ2

4h2 [u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1)]

+
ξc(τn+ 1

2
)

24
[w(τn+1, xi−1) + w(τn, xi−1)] +

10ξc(τn+ 1
2
)

24
[w(τn+1, xi) + w(τn, xi)]

+
ξc(τn+ 1

2
)

24
[w(τn+1, xi+1) + w(τn, xi+1)]−

r
24

[u(τn+1, xi−1) + u(τn, xi−1)]

− 10r
24

[u(τn+1, xi) + u(τn, xi)]−
r

24
[u(τn+1, xi+1) + u(τn, xi+1)]. (37)

Simplifying further, we obtain a discrete equation as follows:[
1
12
− σ2k

4h2 +
rk
24

]
u(τn+1, xi−1) +

[
10
12

+
σ2k
2h2 +

10rk
24

]
u(τn+1, xi) +

[
1

12
− σ2k

4h2 +
rk
24

]
u(τn+1, xi+1)

=

[
1

σ2k
4h2 −

rk
24

]
u(τn, xi−1) +

[
1− σ2k

2h2 −
10rk
24

]
u(τn, xi) +

[
1 +

σ2k
4h2 −

rk
24

]
u(τn, xi+1)

+
ξc(τn+ 1

2
)k

24
[w(τn+1, xi−1) + w(τn, xi−1)] +

10ξc(τn+ 1
2
)k

24
[w(τn+1, xi) + w(τn, xi)]

+
ξc(τn+ 1

2
)k

24
[w(τn+1, xi+1) + w(τn, xi+1)]. (38)

Denote

ai,i =
10
12

+
σ2k
2h2 +

10rk
24

, ai,i−1 = ai,i+1 =
1
12
− σ2k

4h2 +
rk
24

; (39)

bi,i =
10
12
− σ2k

2h2 −
10rk
24

, bi,i−1 = bi,i+1 =
1

12
+

σ2k
4h2 −

rk
24

. (40)

Hence, (38) can be re-written as

ai,i−1u(τn+1, xi−1) + ai,iu(τn+1, xi) + ai,i+1u(τn+1, xi+1) = bi,i−1u(τn, xi−1) + bi,iu(τn, xi)

+ bi,i+1u(τn, xi+1) +
ξc(τn+ 1

2
)k

24
([w(τn+1, xi−1) + w(τn, xi−1)])

+
10ξc(τn+ 1

2
)k

24
([w(τn+1, xi) + w(τn, xi)]) +

ξc(τn+ 1
2
)k

24
([w(τn+1, xi+1) + w(τn, xi+1)]). (41)

It can be seen that (41) presents a tridiagonal discrete matrix system. Moreover, it is easy to
see that

|ai,i| > |ai,i−1 + ai,i+1|. (42)
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Thus, our discrete system admits strictly diagonal dominance and can easily be solved
using the Gauss–Seidel (GS) iteration method or Thomas algorithm. Moreover, we use the
previous solution of w(τn+1, xi) when solving (41) using the Thomas algorithm. That is, we
use w(τl

n+1, xi) when solving for u(τl+1
n+1, xi).

Once un+1 is obtained, the optimal exercise boundary is then corrected based on (43):

s f (c)(τ
l
n+1) = −

M(τn+1)− a1K
a2

+ O(h4), l = 1, 2, 3; (43)

where

M(τn+1) = 4u(τn+1, x1)−
1
2

u(τn+1, x2), a1 =
7
2
+

2rh2

σ2 , a2 =
7
2
+ 3h + h2. (44)

Here, l represent the number of iterations carried out at each time-level. In this research
work, we only consider three iterations at each time-level based on our implemented
corrector scheme since we have observed that three iterations with our scheme yield a very
good approximation. Moreover, the optimal exercise boundary is re-corrected whenever
the option’s value is approximated in each iteration step based on (43). For brevity, we
remove the l notation in the optimal exercise boundary. The boundary value of the delta
sensitivity is then computed from s f (c)(τn+1) as follows:

u(τn+1, x0) = K− s f (c)(τn+1), w(τn+1, x0) = −s f (c)(τn+1). (45)

The time-dependent coefficient is corrected as follows:

ξc(τn+ 1
2
) = r +

2
[
s f (c)(τn+1)− s f (τn)

]
k
[
s f (c)(τn+1) + s f (τn)

] − σ2

2
(46)

Similarly for the delta sensitivity, we obtain the discrete system as follows:

σ2

2

(
wxx(τn+ 1

2
, xi−1) + 10wxx(τn+ 1

2
, xi) + wxx(τn+ 1

2
, xi+1)

)
=

wτ(τn+ 1
2
, xi−1) + 10wτ(τn+ 1

2
, xi) + wτ(τn+ 1

2
, xi+1)

−
ξc(τn+ 1

2
)

h2

(
u(τn+ 1

2
, xi−1)− 2u(τn+ 1

2
, xi) + u(τn+ 1

2
, xi+1)

)

+ r
(

w(τn+ 1
2
, xi−1) + 10w(τn+ 1

2
, xi) + w(τn+ 1

2
, xi+1)

)
=

6σ2

h2

(
w(τn+ 1

2
, xi−1)− 2w(τn+ 1

2
, xi) + w(τn+ 1

2
, xi+1)

)
. (47)

Note that

ξc(τn+ 1
2
)

12

(
uxx(τn+ 1

2
, xi−1) + 10uxx(τn+ 1

2
, xi) + uxx(τn+ 1

2
, xi+1)

)
=

ξc(τn+ 1
2
)

h2

(
u(τn+ 1

2
, xi−1)− 2u(τn+ 1

2
, xi) + u(τn+ 1

2
, xi+1)

)
. (48)
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With the CN method, we then obtain the discrete equation for the delta sensitivity:[
wτ(τn+1, xi−1)− wτ(τn, xi−1)

12k

]
+ 10

[
wτ(τn+1, xi)− wτ(τn, xi)

12k

]
+

[
wτ(τn+1, xi+1)− wτ(τn, xi+1)

12k

]

=
σ2

4h2 [w(τn+1, xi−1)− 2w(τn+1, xi) + w(τn+1, xi+1)] +
σ2

h2 [w(τn, xi−1)− 2w(τn, xi) + w(τn, xi+1)]

+
ξc(τn+ 1

2
)k

2h2 ([u(τn+1, xi−1) + u(τn, xi−1)])−
ξc(τn+ 1

2
)k

h2 ([u(τn+1, xi) + u(τn, xi)])

ξc(τn+ 1
2
)k

2h2 [u(τn+1, xi+1) + u(τn, xi+1)]−
rk
24

[w(τn+1, xi−1 + w(τn, xi−1)]

− 10rk
24

[w(τn+1, xi) + w(τn, xi)]−
rk
24

[w(τn+1, xi+1) + w(τn, xi+1)]. (49)

Simplifying further, we obtain a discrete equation for the delta sensitivity:[
1

12
− σ2k

4h2 +
rk
24

]
w(τn+1, xi−1) +

[
10
12

+
σ2k
2h2 +

10rk
24

]
w(τn+1, xi) +

[
1
12
− σ2k

4h2 +
rk
24

]
w(τn+1, xi+1)

=

[
1 +

σ2k
4h2 −

rk
24

]
w(τn, xi−1) +

[
1− σ2k

2h2 −
10rk
24

]
w(τn, xi) +

[
1 +

σ2k
4h2 −

rk
24

]
w(τn, xi+1)

+
ξc(τn+ 1

2
)k

2h2 [u(τn+1, xi−1) + u(τn, xi−1)]−
ξc(τn+ 1

2
)k

h2 [u(τn+1, xi) + u(τn, xi)]

+
ξc(τn+ 1

2
)k

2h2 [u(τn+1, xi+1) + u(τn, xi+1)]. (50)

Similar to our description for the option value, we obtain a scheme for the delta sensitivity
as follows:

ai,i−1w(τn+1, xi−1) + ai,iw(τn+1, xi) + ai,i+1w(τn+1, xi+1) = bi,i−1w(τn, xi−1) + bi,iw(τn, xi)

+ bi,i+1w(τn, xi+1) +
ξc(τn+ 1

2
)k

h2 [u(τn+1, xi−1) + u(τn, xi−1)]

−
ξc(τn+ 1

2
)k

2h2 [u(τn+1, xi) + u(τn, xi)] +
ξc(τn+ 1

2
)k

h2 [u(τn+1, xi+1) + u(τn, xi+1)], (51)

which can be solved using the Thomas algorithm. In summary, our low-order (1,2)
predictor–three-step-corrector method with the fourth-order compact finite difference
scheme enables us to approximate the optimal exercise boundary simultaneously with
the option value and delta sensitivity by solving the set of discrete equations in (31), (41),
and (51).
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2.2. Stability Analysis

Here, we carry out a stability analysis of the order (1,2) predictor–corrector fourth-
order compact finite difference scheme. Because we use a one-step predictor scheme and
three implicit correction steps at each time-level, it is observable that the influence of the
correction scheme will become dominant. Moreover, the optimal exercise boundary, left
boundary values and the time dependent coefficient in the model are predicted and further
corrected at each stage of the three implicit correction step based on the optimal exercise
boundary equation and the scheme presented in (31) and (27), respectively. To this end, we
first investigate the stability of the high-order correction scheme with three iterative steps
as given below.[

u(τn+1, xi−1)− u(τn, xi−1)

12k

]
+ 10

[
u(τn+1, xi)− u(τn, xi)

12k

]
+

[
u(τn+1, xi+1)− u(τn, xi+1)

12k

]

=
σ2

4h2 [u(τn+1, xi−1)− 2u(τn+1, xi) + u(τn+1, xi+1)] +
σ2

4h2 [u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1)]

+
ξc(τn+ 1

2
)

24
[w(τn+1, xi−1 + w(τn, xi−1)]

10ξc(τn+ 1
2
)

24
[w(τn+1, xi) + w(τn, xi)]

+
ξc(τn+ 1

2
)

24
[w(τn+1, xi+1) + w(τn, xi+1)]−

r
24

[u(τn+1, xi−1 + u(τn, xi−1)]

− 10r
24

[u(τn+1, xi) + u(τn, xi)]−
r

24
[u(τn+1, xi+1) + u(τn, xi+1)]. (52)

[
w(τn+1, xi−1)− w(τn, xi−1)

12k

]
+ 10

[
w(τn+1, xi)− w(τn, xi)

12k

]
+

[
w(τn+1, xi+1)− w(τn, xi+1)

12k

]

=
σ2

4h2 [w(τn+1, xi−1)− 2w(τn+1, xi) + w(τn+1, xi+1)] +
σ2

h2 [w(τn, xi−1)− 2w(τn, xi) + w(τn, xi+1)]

+
ξc(τn+ 1

2
)k

2h2 [u(τn+1, xi−1) + u(τn, xi−1)]−
ξc(τn+ 1

2
)k

h2 [u(τn+1, xi) + u(τn, xi)]

+
ξc(τn+ 1

2
)k

2h2 [w(τn+1, xi+1) + w(τn, xi+1)]−
rk
24

[w(τn+1, xi−1) + w(τn, xi−1)]

− 10rk
24

[w(τn+1, xi) + w(τn, xi)]−
rk
24

[w(τn+1, xi+1) + w(τn, xi+1)]. (53)

Our analysis follows the matrix form of the von Neumann stability analysis and we let the
Fourier modes

un
i = υneijβh, wn

i = ψneijβh, j =
√
−1. (54)

Note that

ξ(τn+ 1
2
) = r +

2
[
s f (τn+1)− s f (τn)

]
k
[
s f (τn+1) + s f (τn)

] − σ2

2
. (55)
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Let µ = σ2k
4h2 > 0. Substituting (54) into (52) and (51), we obtain

υn+1
[

1− 1
3

sin2
(

βh
2

)
+ 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)]

− υn
[

1− 1
3

sin2
(

βh
2

)
− 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)]

− ξ(τn+ 1
2
)

[
ψn+1

(
1
2
− 1

6
sin2

(
βh
2

))
+ ψn

(
1
2
− 1

6
sin2

(
βh
2

))]
= 0, (56)

ψn+1
[

1− 1
3

sin2
(

βh
2

)
+ 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)]

− ψn
[

1− 1
3

sin2
(

βh
2

)
− 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)]

− ξ(τn+ 1
2
)

[
−

2ξ(τn+ 1
2
)

h2 υn+1 sin2
(

βh
2

)
−

2ξ(τn+ 1
2
)

h2 υn sin2
(

βh
2

)]
= 0. (57)

If we denote

φ1 = 1− 1
3

sin2
(

βh
2

)
+ 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)
, (58)

φ2 = 1− 1
3

sin2
(

βh
2

)
− 4µ sin2

(
βh
2

)
+ rk− rk

2
sin2

(
βh
2

)
, (59)

φ3(τn) = ξ(τn+ 1
2
)

[
1
2
− 1

6
sin2

(
βh
2

)]
, φ4(τn) = −

2ξ(τn+ 1
2
)

h2 sin2
(

βh
2

)
; (60)

then we obtain two systems of equations as follows:

φ1υn+1 − φ2υn = φ3(τn)ψ
n+1 + φ3(τn)ψ

n, (61)

φ1ψn+1 − φ2υn = φ4(τn)υ
n+1 + φ4(τn)υ

n. (62)

Presenting (61) and (62) in matrix form, we obtain[
φ1 −φ3(τn)

−φ4(τn) φ1

][
υn+1

ψn+1

]
=

[
φ2 φ3(τn)

φ4(τn) φ2

][
υn

ψn

]
.

Denote

An =

[
φ1 −φ3(τn)

−φ4(τn) φ1

]
, Bn =

[
φ2 φ3(τn)

φ4(τn) φ2

]
;

Thus, we have [
υn+1

ψn+1

]
= A−1

n Bn

[
υn

ψn

]
.
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Here, it is important to observe that the two matrices An and Bn are not constant due to the
time-dependent coefficients. We have to ensure that An is invertible. This indicates that the
determinant of An should not be zero at any time-level n. Note that

0 ≤ sin2
(

βh
2

)
≤ 1, φ3(τn) > 0; (63)

φ3(τn)φ4(τn) = −
[

1
2
− 1

6
sin2

(
βh
2

)]2ξ2(τn+ 1
2
)

h2 sin2
(

βh
2

)
≤ 0. (64)

Furthermore, because µ > 0, we have φ1 ≥ φ2, implying

|An| = φ2
1 − φ3(τn)φ4(τn) > 0, |Bn| = φ2

2 − φ3(τn)φ4(τn) > 0. (65)

Hence, we can invert both matrices An and Bn even though both matrices are time-
dependent, which gives[

υn+1

ψn+1

]
= A−1

n Bn

[
υn

ψn

]
=

1
φ2

1 − φ3(τn)φ4(τn)

[
φ1 φ3(τn)

φ4(τn) φ1

][
φ2 φ3(τn)

φ4(τn) φ2

][
υn

ψn

]
.

Simplifying further, we obtain

[
υn+1

ψn+1

]
=

 φ1φ2+φ3(τn)φ4(τn)

φ2
1−φ3(τn)φ4(τn)

φ1φ3(τn)+φ2φ3(τn)

φ2
1−φ3(τn)φ4(τn)

φ2φ4(τn)+φ1φ4(τn)

φ2
1−φ3(τn)φ4(τn)

φ3(τn)φ4(τn)+φ1φ2
φ2

1−φ3(τn)φ4(τn)

[υn

ψn

]
= Cn

[
υn

ψn

]
,

where Cn is the amplification matrix. Let λn represent the eigenvalue of the matrix Cn. To
confirm the unconditional stability of the coupled implicit discrete system, we need to
show that |λn| ≤ 1. It can be seen that λn satisfies

λ2
n − 2λn

φ1φ2 + φ3(τn)φ4(τn)

φ2
1 − φ3(τn)φ4(τn)

+
[φ1φ2 + φ3(τn)φ4(τn)]2

[φ2
1 − φ3(τn)φ4(τn)]2

− [φ2φ4(τn) + φ1φ4(τn)][φ1φ3(τn) + φ2φ3(τn)]

[φ2
1 − φ3(τn)φ4(τn)]2

= 0, (66)

in which the solutions are

λn(1,2) =
φ1φ2 + φ3(τn)φ4(τn)

φ2
1 − φ3(τn)φ4(τn)

± (φ1 + φ2)
√

φ3(τn)φ4(τn)

φ2
1 − φ3(τn)φ4(τn)

. (67)

Note that we obtain −φ3(τn)φ4(τn) ≥ 0 and the complex solutions

λn(1,2) =
φ1φ2 + φ3(τn)φ4(τn)

φ2
1 − φ3(τn)φ4(τn)

± j
(φ1 + φ2)

√
−φ3(τn)φ4(τn)

φ2
1 − φ3(τn)φ4(τn)

, (68)

where j =
√
−1. For simplicity, let κ(τn) = −φ3(τn)φ4(τn). Hence, we obtain

|λn(1,2)| =
[φ1φ2 − κ(τn)]2

[φ2
1 + κ(τn)]2

+
(φ1 + φ2)

2κ(τn)

[φ2
1 + κ(τn)]2

=
[φ2

1 + κ(τn)][φ2
2 + κ(τn)]

[φ2
1 + κ(τn)]2

. (69)

Simplifying further, we then obtain that

|λn(1,2)| =
φ2

2 + κ(τn)

φ2
1 + κ(τn)

≤ 1, ∀n. (70)
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Hence, the interior implicit three-step correction scheme based on the second-order CN
time integration method and fourth-order compact finite difference scheme is uncondition-
ally stable.

Next, we navigate the stability of the boundary Euler scheme for predicting the optimal
exercise boundary, left boundary values of the option value and the delta sensitivity, and
the time-dependent coefficient of the convective term. To this end, we recall the optimal
exercise boundary predictor equation:

s f (p)(τn+1) = H1(τn)s f (τn), (71)

where

H1(τn) = −
σ2k

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
− a3(τn) + a4(τn)− a1K

a2s f (τn) +
(

4w(τn, x1)− 1
2 w(τn, x2)

) . (72)

To ensure the stability of (71), we need

|H1(τn)| =
∣∣∣∣∣−

σ2k
2

[
4U (τn, x1)− 1

2U (τn, x2)
]
− a3(τn) + a4(τn)− a1K

a2s f (τn) +
(

4w(τn, x1)− 1
2 w(τn, x2)

) ∣∣∣∣∣ < 1, (73)

which implies

−1 < −
σ2k

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
− a3(τn) + a4(τn)− a1K

a2s f (τn) +
(

4w(τn, x1)− 1
2 w(τn, x2)

) < 1. (74)

From (30), we can further deduce the term in (74) as follows:

−a3(τn) + a4(τn)− a1K = −(rk− 1)[a1K− a2s f (τn)]

+ [νk− 1]
(

4w(τn, x1)−
1
2

w(τn, x2)

)
− a1K =

− rk
(

4u(τn, x1)−
1
2

u(τn, x2)

)
+ νk

(
4w(τn, x1)−

1
2

w(τn, x2)

)
, (75)

where ν = r− σ2

2 . For simplicity, let

a5(τn) = a2s f (τn) + 4w(τn, x1)−
1
2

w(τn, x2) =
(

3h + h2
)

s f (τn)

− 7
2

w(τn, x0) + 4w(τn, x1)−
1
2

w(τn, x2). (76)

Note that the delta sensitivity is monotonically increasing and non-positive with

−s f (τn) = w(τn, x0) ≤ w(τn, xi) ≤ 0, ∀n, ∀i ≥ 0. (77)

Moreover, the optimal exercise boundary is monotonically decreasing with

0 < s f (∞) ≤ s f (τn) ≤ s f (0), s f (0) = K, s f (∞) =
γ

γ + 1
K, γ =

2r
σ2 . (78)
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We refer the reader to the work of Kwok [14], Musiela [15], and Zhang et al. [16] for details.
Thus, we have

−7
2

w(τn, 0) + 4w(τn, x1)−
1
2

w(τn, x2) > 0, (3h + h2)s f (τn) > 0, ∀h > 0, ∀n, (79)

and a5(τn) ≥ 0. Denote

Qu(τn) = 4u(τn, x1)−
1
2

u(τn, x2), (80)

Qw(τn) = 4w(τn, x1)−
1
2

w(τn, x2). (81)

Then, (74) becomes

−1 < 1− k
σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
< 1. (82)

Note that

1− k
σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
< 1, (83)

implying that

k
σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
> 0. (84)

To ensure that k > 0, we have to confirm

σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
> 0. (85)

From (76)–(79), we have confirmed that a5(τn) > 0. Moreover, we see that

σ2

2

[
4U (τn, x1)−

1
2
U (τn, x2)

]
+ rQu(τn)− νQw(τn) = 4uτ(τn, x1)−

1
2

uτ(τn, x2)

− Qw(τn)

s f (τn)
s′f (τn) + O(h4) = −

(
a2 +

Qw(τn)

s f (τn)

)
s′f (τn) + O(h4) =

−
(

a2s f (τn) +Qw(τn)

s f (τn)

)
s′f (τn) + O(h4). (86)

Since the first derivative of the optimal exercise boundary s′f (τn) is non-positive ∀τn, when
h is very small, we obtain

σ2

2

[
4U (τn, x1)−

1
2
U (τn, x2)

]
+ rQu(τn)− νQw(τn) = −

(
a2s f (τn) +Qw(τn)

s f (τn)

)
s′f (τn) > 0, (87)

and
σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
> 0. (88)
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Next, we verify the right bound as given below

−1 < 1− k
σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

a5(τn)
. (89)

Simplifying further, we then obtain

k <
2a5(τn)

σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

. (90)

Considering the non-positivity of the delta sensitivity coupled with an extrapolated Taylor
series expansion, we can further obtain

4w(τn, x1)−
1
2

w(τn, x2) =
7
2

w(τn, x0 + hwx(τn, x0) + O(h2). (91)

Considering the left boundary value of the delta sensitivity and implied second derivative
left boundary condition, we further obtain

4w(τn, x1)−
1
2

w(τn, x2) = −
7
2

s f (τn) +
6rh
σ2 K− 3hs f (τn) + O(h2). (92)

Hence, with (76) and a very small h, we can obtain

a5(τn) =

(
7
2
+ 3h + h2

)
s f (τn) + 4w(τn, x1)−

1
2

w(τn, x2) =

(
7
2
+ 3h + h2

)
s f (τn)

− 7
2

s f (τn) +
6rh
σ2 K− 3hs f (τn) = h2s f (τn) +

6rh
σ2 K ≤

(
h2 +

6rh
σ2

)
K. (93)

Substituting to (90), we then obtain

k <
2
(

h2 + 6rh
σ2

)
K

σ2

2

[
4U (τn, x1)− 1

2U (τn, x2)
]
+ rQu(τn)− νQw(τn)

. (94)

Note that

σ2

2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
=

σ2

2h2 (8u(τn, x0)− 17u(τn, x1) + 10u(τn, x2)− u(τn, x3))

+
σ2

2h2

(
2hw(τn, x0)−

h
4

w(τn, x1)− 2hw(τn, x2) +
h
4

w(τn, x3)

)
. (95)

Let
Pu(τn) = 8u(τn, x0)− 17u(τn, x1) + 10u(τn, x2)− u(τn, x3), (96)

Pw(τn) = 2w(τn, x0)−
1
4

w(τn, x1)− 2w(τn, x2) +
1
4

w(τn, x3). (97)

Thus,

k <
4
(

h2 + 6rh
σ2

)
K

Pu(τn) + hPw(τn) +
2r
σ2 h2Qu(τn)− 2

σ2 h2νQw(τn)

h2

σ2 = C(h, τn)
h2

σ2 . (98)
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Here, we need to further obtain at least a reasonable upper bound for C(h, τn) in (98)
given as

C(h, τn) =
4
(

h2 + 6rh
σ2

)
K

Pu(τn) + hPw(τn) +
2r
σ2 h2Qu(τn)− 2

σ2 h2νQw(τn)
. (99)

To this end, we further simplify the denominator of (99). Let xi − x0 = ih. If we derive
Taylor series expansion around x0, we further obtain the following:

u(τn, xi) = u(τn, x0) + ihux(τn, x0) +
i2h2

2
uxx(τn, x0) + O(h3) (100)

hw(τn, xi) = hw(τn, x0) + ih2uxx(τn, x0) + O(h3) (101)

If we consider (100), (101), left boundary values of the option value and delta sensitivity,
and the implied left boundary value of the second derivative of the option value, we can
further simplify the terms in Pu(τn) and Pw(τn) given in (96) and (97) as follows:

−17u(τn, x1) = −
(

17 +
17rh2

σ2

)
K +

(
17 + 17h +

17h2

2

)
s f (τn) + O(h3), (102)

10u(τn, x2) =

(
10 +

40rh2

σ2

)
K−

(
10 + 20h + 20h2

)
s f (τn) + O(h3), (103)

−u(τn, x3) = −
(

1 +
9rh2

σ2

)
K +

(
1 + 3h +

9h2

2

)
s f (τn) + O(h3). (104)

−h
4

w(τn, x1) = −
rh2

2σ2 K +
1
4

(
h + h2

)
s f (τn) + O(h3), (105)

−2hw(τn, x2) = −
8rh2

σ2 K +
(

2h + 4h2
)

s f (τn) + O(h3), (106)

h
4

w(τn, x3) =
3rh2

2σ2 K− 1
4

(
h + 3h2

)
s f (τn) + O(h3), (107)

Note that
8u(τn, x0) = 8K− 8s f (τn), 2hw(τn, x0) = −2hs f (τn). (108)

Substituting them into (96) and (97), we obtain

Pu(τn) =
14rh2

σ2 K− 7h2s f (τn) + O(h3), (109)

hPw(τn) = −
7rh2

σ2 K +
7h2

2
s f (τn) + O(h3). (110)

Furthermore, for a very small h, we have
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2r
σ2 h2Qu(τn) =

2r
σ2 h2

(
4u(τn, x1)−

1
2

u(τn, x2)

)
=

2r
σ2 h2

[(
7
2
+

2rh2

σ2

)
K−

(
7
2
+ 3h + h2

)
s f (τn)

]
=

4r2h4

σ4 K +
7rh2

σ2 K− 7rh2

σ2 s f (τn)−
6rh3

σ2 s f (τn)−
2rh4

σ2 s f (τn) ≥

4r2h4

σ4 K− 6rh3

σ2 K− 2rh4

σ2 K, (111)

−2h2ν

σ2 Qw(τn) =−
2h2ν

σ2

(
4w(τn, x1)−

1
2

w(τn, x2)

)
=

−
2h2
(

r− σ2

2

)
σ2

[
6rh
σ2 K−

(
7
2
+ 3h

)
s f (τn)

]
. (112)

With further simplification of (112), we obtain

−2h2ν

σ2 Qw(τn) = −
12h3r2

σ4 K +
7rh2

σ2 s f (τn) +
6rh3

σ2 s f (τn) +
6rh3

σ2 K− 7h2

2
s f (τn)− 3h3s f (τn). (113)

Hence, we have

2r
σ2 h2Qu(τn)−

2h2ν

σ2 Qw(τn) ≥
4r2h4

σ4 K− 2rh4

σ2 K− 12h3r2

σ4 K +
7rβh2

σ2 K

+
6βrh3

σ2 K− 7h2

2
K− 3h3K. (114)

Here, β = γ
γ+1 , where β is defined in (78). For a very small h, we further obtain

Pu(τn) + hPw(τn) =
7rh2

σ2 K− 7h2

2
s f (τn) ≥

(
7rh2

σ2 −
7h2

2

)
K. (115)

Thus, we have

Pu(τn) + hPw(τn) +
2r
σ2 h2Qu(τn)−

2h2ν

σ2 Qw(τn) ≥
7h2

σ2

(
2rβ− σ2

)
K

+
3h3

σ4

(
2βrσ2 − 4r2 − σ4

)
K +

2rh4

σ4

(
2r− σ2

)
K, (116)

and

C(h, τn) ≤
4σ2(6r + σ2h

)
7hσ2(2rβ− σ2) + 3h2(2βrσ2 − 4r2 − σ4) + 2rh3(2r− σ2)

. (117)
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To conclude our proof, we need to ensure that

7hσ2
(

2rβ− σ2
)
+ 3h2

(
2βrσ2 − 4r2 − σ4

)
+ 2rh3

(
2r− σ2

)
> 0, (118)

which implies that

2rβ > max
(

σ2,
4r2 + σ4

σ2

)
. (119)

Hence, we conclude that if the assumption in (119) holds, then

k <
4
(
6r + σ2h

)
7hσ2(2rβ− σ2) + 3h2(2βrσ2 − 4r2 − σ4) + 2rh3(2r− σ2)

h2. (120)

Remark 2. For the remainder of the low- and high-order predictor–corrector schemes considered in
this section and the following section, we will not take into account the stability analysis. We limit
our stability analysis to the (1,2) Euler-CN predictor–corrector compact finite difference scheme
described above.

2.3. Order (2,2) Leapfrog-CN PC Method with Fourth-Order Compact Scheme

For the Leapfrog predictor scheme, we obtain

σ2k
(

4U (τn, x1)−
1
2
U (τn, x2)

)
= 4[u(τn+1, x1)− u(τn−1, x1)]−

1
2
[u(τn+1, x2)− u(τn−1, x2)]

−
s f (τn+1)− s f (τn−1)

s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)
− 2νk

(
4w(τn, x1)−

1
2

w(τn, x2)

)

+ 2rk
(

4u(τn, x1)−
1
2

u(τn, x2)

)
+ O(h4 + k3). (121)

Simplifying further, we obtain

σ2k
(

4U (τn, x1)−
1
2
U (τn, x2)

)
= a1K− a2s f (τn+1) + (2rk− 1)a1K

+ 2a2rks f (τn)− a2s f (τn−1)−
s f (τn+1)

s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)

−
[

2νk−
s f (τn−1)

s f (τn)

](
4w(τn, x1)−

1
2

w(τn, x2)

)
+ O(h4 + k3). (122)

Let
a6(τn|τn−1) = a1K + (2rk− 1)a1K + 2a2rks f (τn)− a2s f (τn−1), (123)

a7(τn|τn−1) =

[
2νk−

s f (τn−1)

s f (τn)

](
4w(τn, x1)−

1
2

w(τn, x2)

)
. (124)

Subsequently, the optimal exercise boundary is then predicted using the second-order
Leapfrog time integration method and fourth-order difference scheme as follows:

s f (p)(τn+1) = H2(τn|τn−1)s f (τn) + O(h4 + k3), (125)
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H2(τn|τn−1) = −
σ2k
[
4U (τn, x1)− 1

2U (τn, x2)
]
− a6(τn|τn−1) + a7(τn|τn−1)

a2s f (τn) +
(

4w(τn, x1)− 1
2 w(τn, x2)

) . (126)

Remark 3. In our numerical experiment and study, we initialize the (2,2) Leapfrog-CN predictor–
corrector fourth-order compact scheme with the (1,2) Euler-CN predictor–corrector fourth-order
compact scheme.

3. Order (3,3) and (4,4) Predictor–Corrector Compact Differencing

In this subsection, we extend our research study to high-order predictor–corrector
methods for pricing free boundary options using fourth-order compact finite difference
scheme. To this end, we present a suite of order (3,3) and (4,4) predictor–corrector schemes.
Here, our choices of (4,4) predictor–corrector schemes exclude Adam Bashforth (AB) and
Adam–Moulton (AM) methods because of the irregularity that is inherent in the locality of
τ = 0 and x = 0 and the singularity of the s′f (0) therein. Thus, we want to avoid, as much as
possible, using more previous derivative (in time) of the optimal exercise boundary, option
value, and delta sensitivity for predicting and correcting the present value, especially when
the latter is close to the terminal point. Implementing the above-mentioned high-order
schemes (AB and AM) adaptively can be more suitable for allowing optimal selection of
the time step at each time-level. However, this is not within the scope of our research
exploration of (3,3) and (4,4) predictor–corrector schemes.

3.1. Order (3,3) PC Method with Fourth-Order Compact Scheme

To formulate order (3,3) predictor–corrector methods with a fourth-order compact
finite difference scheme, we first derive an equation that computes the first derivative of
the optimal exercise boundary, which can be used to set up the optimal exercise boundary
predictor scheme. To this end, we take the derivative of (24) and obtain

4uτ(τn, x1)−
1
2

uτ(τn, x2) = −
(

7
2
+ 3h

)
s′f (τn) + O(h4). (127)

Furthermore, considering the PDE governing the fixed free boundary American options,
we obtain

σ2

2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
=

σ2

2

(
4uxx(τn, x1)−

1
2

uxx(τn, x2)

)
= 4uτ(τn, x1)−

1
2

uτ(τn, x2)

− 1
s f (τn)

s′f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)
− ν

(
4w(τn, x1)−

1
2

w(τn, x2)

)

+ r
(

4u(τn, x1)−
1
2

u(τn, x2)

)
= −

[
7
2
+ 3h + h2 +

1
s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)]
s f (τn)

− ν

(
4w(τn, x1)−

1
2

w(τn, x2)

)
+ r
(

4u(τn, x1)−
1
2

u(τn, x2)

)
. (128)

Further simplification reveals that

s′f (τn) =
F (τn)

G(τn)
, (129)
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with

F (τn) =
σ2

2

(
4U (τn, x1)−

1
2
U (τn, x2)

)
− r
(

4u(τn, x1)−
1
2

u(τn, x2)

)

+ ν

(
4w(τn, x1)−

1
2

w(τn, x2)

)
, (130)

G(τn) = −
[

7
2
+ 3h + h2 +

1
s f (τn)

(
4w(τn, x1)−

1
2

w(τn, x2)

)]
. (131)

For the third-order predictor scheme, as mentioned earlier, we avoid schemes that require
more of the previous derivatives of the optimal exercise boundary, like the high-order
Adam–Bashforth methods. Here, we consider two third-order predictor time integration
methods. The first predictor scheme requires only the first-order derivative of the optimal
exercise boundary at level n. To this end, we present the following Lemma.

Lemma 2. Assume that s f (τn) ∈ C1((0, T]). It holds that

s f (p)(τn+1) = −
3
2

s f (τn) + 3s f (τn−1)−
1
2

s f (τn−2) + 3ks′f (p)(τn) + O(k4). (132)

Proof. Let τn+m − τn = mk. The Taylor series expansion around τn gives

s f (τn+1) = s f (τn) + ks′f (τn) +
k2

2
s′′f (τn) +

k3

6
s′′′f (τn) + O(k4), (133)

s f (τn−1) = s f (τn)− ks′f (τn) +
k2

2
s′′f (τn)−

k3

6
s′′′f (τn) + O(k4), (134)

s f (τn−2) = s f (τn)− 2ks′f (τn) + 2k2s′′f (τn)−
4k3

3
s′′′f (τn) + O(k4). (135)

Subtracting (133) from (134), we obtain

s f (τn+1)− s f (τn−1) = 2ks′f (τn) +
k3

3
s′′′f (τn) + O(h4). (136)

Multiplying (134) by 4 and subtracting it from (135), we obtain

4s f (τn−1)− s f (τn−2) = 3s f (τn)− 2ks′f (τn) +
2k3

3
s′′′f (τn) + O(k4). (137)

Multiplying (136) by 2, we further obtain

2s f (τn+1)− 2s f (τn−1) = 4ks′f (τn) +
2k3

3
s′′′f (τn) + O(k4). (138)

Subtracting (137) from (138) with some rearrangement of result, we then obtain (132).

Here, we label the third-order predictor scheme in the above Lemma as P3a. The
second third-order predictor scheme requires only two previous derivative of the optimal
exercise boundary and is given as follows:

s f (p)(τn+1) = −4s f (τn) + 5s f (τn−1) + 4ks′f (p)(τn) + 2ks′f (τn−1) + O(k4). (139)



Axioms 2023, 12, 762 21 of 33

One may see the work of Adam [17,18] and Carpenter et al. [19,20] on how to derive this
scheme and its extensions. The third-order predictor scheme is labelled as P3b. Here,

s′f (p)(τn) =
F (τn)

G(τn)
, s′f (τn−1) =

F (τn−1)

G(τn−1)
, (140)

F (τn) =
σ2

2

(
4U (τn, x1)−

1
2
U (τn, x2)+

)
− r
(

4u(τn, x1)−
1
2

u(τn, x2)

)

+ ν

(
4ux(τn, x1)−

1
2

ux(τn, x2)

)
, (141)

G(τn) = −
[

7
2
+ 3h + h2 +

1
s f (τn)

(
4ux(τn, x1)−

1
2

ux(τn, x2)

)]
, (142)

ξn+1(p) = r +
s′f (p)(τn)

s f (p)(τn+1)
− σ2

2
. (143)

To implement our high-order corrector scheme, we need to compute the boundary value of
the option value from the predicted optimal exercise boundary as follows:

u(τn+1, x0) = K− s f (p)(τn+1). (144)

For the third- and fourth-order corrector schemes, we construct the near-boundary scheme
to take into account the associated derivative term in the time integration method. To
this end, for the option value, we use a one-sided fourth-order combined compact finite
difference [9–11] as follows:

14uxx(τn, xi)−5uxx(τn, xi+1) + 4uxx(τn, xi+2)− uxx(τn, xi+3) =

2
h2 [u(τn, xi−1)− 2u(τn, xi) + u(τn, xi+1)] + O(h4), i = 1. (145)

Furthermore, we use a different fourth-order near-boundary combined compact finite
difference scheme for the delta sensitivity by considering the following Lemma.

Lemma 3. Assume that u(τn, xi) ∈ C1,3((0, T], (0, xM]). It holds that

uxxx(τn, xi) =
15
2h3 [u(τn, xi+1)− u(τn, xi−1)])

− 3
2h2 [ux(τn, xi−1) + 8ux(τn, xi) + ux(τn, xi+1)] + O(h4), i = 1. (146)

Proof. Let xi+j − xi = jh. The Taylor series expansions give

u(τn, xi−1)− u(τn, xi+1) = 2hux(τn, xi) +
h3

3
uxxx(τn, xi) +

h5

60
uxxxxx(τn, xi) + O(h7), (147)

u(τn, xi−1) + u(τn, xi+1) = 2u(τn, xi) + h2uxx(τn, xi) +
h4

12
uxxxx(τn, xi) + O(h6). (148)

Taking derivative of (148) with respect to x and multiplying it by h
5 , we obtain
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h
5

ux(τn, xi−1) +
h
5

ux(τn, xi+1) =
2h
5

ux(τn, xi) +
h3

5
uxxx(τn, xi) +

h
60

uxxxxx(τn, xi) + O(h7). (149)

Subtracting (147) from (149) and re-arranging the result, we then obtain (146).

Remark 4. We observed that the fourth-order combined compact scheme derived in the above
Lemma has been recently presented and used in the work of Abrahamsen and Fornberg [21] and as
such, we acknowledge and reference their work here.

The high-order scheme in (146) enables us to approximate the near boundary value
of delta sensitivity using the discrete value of the option value. Moreover, fewer nodal
points of the higher derivatives are used when deriving the near-boundary scheme for the
delta sensitivity, as shown in (146). It is worth mentioning that for the delta sensitivity,
the near-boundary fourth-order combined compact scheme in (146) is very suitable and
provides more accurate result when compared with (145). However, for the option value,
we still use (145) when accounting for the near-boundary scheme. For the rest of the interior
points for the option value and delta sensitivity, we use the same fourth-order compact
scheme presented in (35). Hence, we obtain two systems as follows:

Auuxx = Buu + bu, Awwxx = Bww + bw, (150)

where Au, Bu, bu, Aw, Bw, bw are given as follows:

Au =



14 −5 4 1 0 0 · · · 0 0
1 10 1 0 0 0 · · · 0 0
0 1 10 1 0 0 · · · 0 0
0 0 1 10 1 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 1 10 1 0 0
0 0 · · · 0 0 1 10 1 0
0 0 · · · 0 0 0 1 10 1
0 0 · · · 0 0 0 0 1 10


,

Aw =



10 0 0 0 0 0 · · · 0 0
1 10 1 0 0 0 · · · 0 0
0 1 10 1 0 0 · · · 0 0
0 0 1 10 1 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 1 10 1 0 0
0 0 · · · 0 0 1 10 1 0
0 0 · · · 0 0 0 1 10 1
0 0 · · · 0 0 0 0 1 10


;

Bu =
1
h2



−24 12 0 0 0 0 · · · 0 0
12 −24 12 0 0 0 · · · 0 0
0 12 −24 12 0 0 · · · 0 0
0 0 12 −24 12 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 12 −24 12 0 0
0 0 · · · 0 0 12 −24 12 0
0 0 · · · 0 0 0 12 −24 12
0 0 · · · 0 0 0 0 12 −24


,
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Bw =
1
h2



−120 −15 0 0 0 0 · · · 0 0
12 −24 12 0 0 0 · · · 0 0
0 12 −24 12 0 0 · · · 0 0
0 0 12 −24 12 0 · · · 0 0
...

...
...

. . . . . . . . .
...

...
...

0 0 · · · 0 12 −24 12 0 0
0 0 · · · 0 0 12 −24 12 0
0 0 · · · 0 0 0 12 −24 12
0 0 · · · 0 0 0 0 12 −24


,

bu =



12
h2 un

0
0
0
0
0
0
0
0
0


, bw =



75
h3

(
un

2 − un
0
)
− 15

h2 wn
0

0
0
0
0
0
0
0
0


.

To further show the importance of the presented fourth-order near-boundary scheme for the
delta sensitivity, we compute the condition number of Au and Aw using the cond function
in MATLAB. We observe that the condition number of matrix Aw is 1.49997, while the
condition number of matrix Au is 2.02913. It is seen that the condition number of Aw is less
than the condition number of Aw, hence validating the benefit of our presented fourth-order
near-boundary scheme for the delta sensitivity. With the discrete matrix system above, we
then obtain the semi-discrete system for the option value as given below:

un
τ =

σ2

2
A−1

u (Buun + bn
u) + ξnwn − run + O(h4). (151)

For corrections using a high-order implicit scheme, we consider two methods that require
fewer derivatives of the option value and delta sensitivity. The first third-order implicit
corrector scheme is the BDF3 method.

un+1 =
18
11

un − 9
11

un−1 +
2

11
un−2 +

6
11

kun+1
τ + O(k3 + h4). (152)

The second third-order corrector scheme requires only two derivative terms at τn+1 and
τn as

un+1 =
4
5

un +
1
5

un−1 +
2
5

kun+1
τ +

4
5

kun
τ + O(k3 + h4). (153)

One may see the work of Adam [17,18] and Carpenter et al. [19,20] on how to derive the
scheme in (153) and its extensions. We label it as C3. The last third-order predictor scheme
we considered is the third-order Adam–Moulton corrector scheme as follows:

un+1 = un +
5

12
kun+1

τ +
8
12

kun
τ −

1
12

kun−1
τ + O(k3 + h4). (154)

We label (166) as AM3. The optimal exercise boundary, its first derivative, and the non-
constant coefficient of the first derivative of the option value are then corrected as follows:

s f (c)(τ
l
n+1) = −

M(τn+1)− a1K
a2

+ O(h4), l = 1, 2. (155)

a1 =
7
2
+

2rh2

σ2 , a2 =
7
2
+ 3h + h2; (156)
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u(τn+1, x0) = K− s f (c)(τn+1), (157)

M(τn+1) = 4u(τn+1, x1)−
1
2

u(τn+1, x2), (158)

s′f (τn+1) = −
Mτ(τn+1)

a2
+ O(h4), (159)

Mτ(τn+1) = 4uτ(τn+1, x1)−
1
2

uτ(τn+1, x2), (160)

ξn+1(c) = r +
s′f (τn+1)

s f (τn+1)
− σ2

2
. (161)

The corrected ξn+1(c) and s f (c)(τ
l
n+1) are then used to obtain the discrete solution of the

delta sensitivity:
w(τn+1, x0) = −s f (c)(τn+1), (162)

wn
τ =

σ2

2
A−1

w (Bwwn + bn
w) + ξn+1(c)A−1

u (Buun + bn
u)− rwn + O(h4). (163)

For the BDF3, we obtain

wn+1 =
18
11

wn − 9
11

wn−1 +
2

11
wn−2 +

6
11

kwn+1
τ + O(k3 + h4). (164)

Similarly, for the second third-order corrector scheme

wn+1 =
4
5

wn +
1
5

wn−1 +
2
5

kwn+1
τ +

4
5

kwn
τ + O(k3 + h4). (165)

The last third-order predictor scheme is the third-order Adam–Moulton corrector scheme.

wn+1 = wn +
5

12
kwn+1

τ +
8

12
kwn

τ −
1

12
kwn−1

τ + O(k3 + h4). (166)

Remark 5. For the order (3,3) predictor–corrector fourth-order compact finite difference shown
above, including the order (4,4) we will present below, we use only two correction iterative steps to
correct the option value, delta sensitivity, and optimal exercise boundary, unlike the (1,2) and (2,2)
schemes where we implemented three correction iterative steps.

3.2. Order (4,4) PC Method with Fourth-Order Compact Scheme

For the fourth-order predictor scheme, we consider the scheme below [19,20]:

s f (p)(τn+1) = −9s f (τn) + 9s f (τn−1) + s f (τn−2) + 6ks′f (p)(τn) + 6ks′f (τn−1) +O(k5). (167)

We label it as P4. For the fourth-order correction time integration scheme, we consider the
BDF4 scheme as follows:

un+1 =
48
35

un − 36
25

un−1 +
16
25

un−2 − 3
25

un−3 +
12
25

kun+1
τ + O(k4 + h4), (168)

and another fourth-order time integration method that require fewer previous first deriva-
tive term as follows [22]:

un+1 =
9
17

un +
9
17

un−1 − 1
17

un−2 +
6
17

kun+1
τ +

18
17

kun
τ + O(k4 + h4). (169)
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We label the correction scheme in (169) as C4. The choice of BDF4 and C4 as the corrector
scheme over fourth-order AB and AM is mainly to avoid using more of the previous first
derivatives (in time) of the option value close to τ = 0. This is similar to our reason for
deriving a new third-order predictor scheme for this work, as presented in (132).

Similarly, for the delta sensitivity, we obtain

wn+1 =
48
35

wn − 36
25

wn−1 +
16
25

wn−2 − 3
25

wn−3 +
12
25

kwn+1
τ + O(k4 + h4), (170)

wn+1 =
9

17
wn +

9
17

wn−1 − 1
17

wn−2 +
6

17
kwn+1

τ +
18
17

kwn
τ + O(k4 + h4). (171)

For the initial procedure, we use the SSPRK3 method for both order (3,3) and (4,4) predictor–
corrector fourth-order compact finite difference schemes.

Remark 6. It is worth mentioning that we can further recombine our predictor–corrector methods
to include order (2,3) and (3,4). Moreover, an adaptive implementation can further be generated
with (1,2), (2,3), and (3,4) predictor–corrector schemes. However, for brevity, our description will
not include order (2,3) and (3,4) predictor–corrector compact finite difference schemes.

4. Numerical Results

The experiments were performed on a computer with a 12th Gen Intel(R) Core(TM)
i7-12700H at 2.30 GHz on a 64-bit Windows 11 operating system. Furthermore, MATLAB
Programming Language was used for numerical experiments and visualization. We present
our findings and results in the following subsections.

4.1. Order (1,2) and (2,2) Predictor–Corrector Schemes

In this subsection, we first consider (1,2) and (2,2) predictor–corrector fourth-order
compact finite difference schemes for solving a system of free boundary American put
option pricing problem. Here, we would like to verify the performance of the presented
PC-compact finite difference scheme in terms of solution accuracy, computational run-
time, and convergence rate. Furthermore, we want to compare their results with the
existing methods.

To this end, we first consider the example in the work of Zhu and Zhang [6] with the
parameters listed in Table 1.

Table 1. Option parameters.

K T r σ xM

100 1.00 0.10 0.30 3.00

Our focus here is to compare the values of the optimal exercise boundary obtained
based on our method and the method of Zhu and Zhang [6]. s f (T) = 76.163220 is the bench-
mark value, which was obtained from the highly accurate sixth-order compact finite differ-
ence scheme [23] with step size of h = 0.01. The solution profiles with the (1,2) predictor–
corrector fourth-order compact finite difference scheme were plotted in Figures 1 and 2.
The values and computational runtime in seconds are listed in Tables 2 and 3, respectively.

Table 2. Optimal exercise boundary with the predictor–corrector schemes (No. of grid interval
N = 120, k = h2).

PC (1,2) Euler-CN (2,2) Leapfrog-CN Zhu and Zhang [6] (N = 400)

s f (T) 76.163227 76.163151 76.163742
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Table 3. Computational runtime(s) of the predictor–corrector schemes (No. of grid interval N = 120).

PC (1,2) Euler-CN (2,2) Leapfrog-CN

Total Runtime (s) 0.2 s 0.2 s

In Figures 1 and 2, we observe the smoothness in the numerical approximation of the
optimal exercise boundary, option value, and delta sensitivity. Moreover, we observe that
the results of order (1,2) and (2,2) predictor–corrector fourth-order compact finite difference
schemes agree well with the result obtained from the method of Zhu and Zhang [6]. It is
very important to observe from Tables 2 and 3 that with small number of grid intervals
(h = 0.025, k = h2), the order (1,2) and (2,2) predictor–corrector fourth-order compact finite
difference schemes provide a solution accuracy much closer to the result of the sixth-order
compact finite difference up to 6-digit. Moreover, our (1,2) and (2,2) predictor–corrector
schemes are very fast in computation even though our system of PDEs simultaneously
solve the option value and delta sensitivity.

Figure 1. Optimal exercise boundary and option value with order (1,2) predictor–corrector scheme
(h = 0.01, k = h2).

Figure 2. Delta sensitivity with order (1,2) predictor–corrector scheme (h = 0.01, k = h2).

Here, it is worth mentioning that we define the runtime in seconds as the time required
to run the whole code that approximates the option value, delta sensitivity, and the optimal
exercise boundary simultaneously, excluding initialization and visualization. Initialization
and visualization take insignificant computational runtime. However, it could be slightly
significant here because we achieve reasonable accuracy with a very coarse grid and very
little computational runtime. The main reason that enables the order (1,2) Euler-CN and
(2,2) Leapfrog-CN predictor–corrector scheme to be very fast is the implementation of the
Thomas algorithm in the three-iterative step of the corrector scheme.
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To fully describe the computational speed we achieved with order (1,2) Euler-CN and
(2,2) Leapfrog-CN predictor–corrector compact finite difference schemes, we computed the
optimal exercise boundary, option value, and delta sensitivity simultaneously using a very
small-time step k = 4× 10−6 with varying step sizes. We then compared the results with the
one obtained from the sixth-order compact finite difference scheme. The numerical solution
of the optimal exercise boundary and the computational runtime with these methods are
listed in Tables 4 and 5.

Table 4. Computational runtime(s) and with k = 4× 10−6 and varying step sizes.

Methods h = 0.01 h = 0.006 h = 0.003

(1,2) Euler-CN 24 s 32 s 56 s
(2,2) Leapfrog-CN 21 s 26 s 51 s
Sixth-order compact scheme 9 s 180 s 4785 s

Table 5. Optimal exercise boundary with k = 4× 10−6 and varying step sizes.

Methods h = 0.01 h = 0.006 h = 0.003

(1,2) Euler-CN 76.163078 76.163188 76.163226
(2,2) Leapfrog-CN 76.163059 76.163182 76.163225
Sixth-order compact scheme 76.163220 76.163226 76.163226

The importance of our order (1,2) and (2,2) predictor–corrector fourth-order compact
finite difference schemes is that if we fix a very small-time step, as shown in Table 5,
their computational runtime grows almost insignificantly and linearly as the step size
in the space grid is exceedingly reduced. We observe this nice feature across all our
numerical experiment with the above low-order (1,2) and (2,2) predictor–corrector fourth-
order compact finite difference schemes. It is easy to further observe in Tables 4 and 5
that both predictor–corrector schemes outperform the sixth-order compact scheme method
in terms of computational runtime from h = 0.006. It is also interesting to see that when
h = 0.003, the results of the (1,2) Euler-CN and (2,2) Leapfrog-CN predictor–corrector
schemes are the same as that of the sixth-order compact scheme up to seven and eight
digits even though our (1,2) and (2,2) PC schemes are implemented with a fourth-order
compact scheme, signaling that our implementation shows a highly accurate result with a
very little computational runtime. Moreover, the computational runtime for the sixth-order
compact finite difference scheme is significantly high with a very refine space and time
grid. Notwithstanding, we have already achieved seven-digit accuracy with the sixth-order
compact finite difference method with h = 0.01 and a runtime of 9 seconds, which is the
main advantage of the sixth-order compact finite difference scheme over our (1,2) and (2,2)
predictor–corrector schemes.

To better understand the importance of the three-step correction scheme we proposed
based on the order (1,2) Euler-CN and order (2,2) Leapfrog-CN fourth-order compact
finite difference scheme, we compared the computational results of the optimal exercise
boundary based on one, two, three, and four iteration steps with the implicit scheme, as
described in Table 6. From Table 6, we observe that as the number of iteration increases
from 1 to 3, there is a substantial improvement in the solution accuracy. However, beyond a
number of iterations of 3, the improvement in the solution accuracy is insignificant. Hence,
there is no need to waste more computational effort, which is the reason why we use three
iteration steps.

In the second experiment, we compared the results of the option value and delta
sensitivity with the existing methods. To this end, we considered the example in the work
of Tangman et al. [24] with the parameter given in Table 7. For numerical comparison, we
used a benchmark value obtained from the Binomial method with 15,001 steps [25]. We
used a step size of h = 0.01 and a time step of k = h2. The numerical results are listed
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in Tables 8 and 9. For this example, we display the plot profiles for the (2,2) predictor–
corrector fourth-order compact finite difference scheme in Figures 3 and 4. The curves of the
optimal exercise boundary, option value, and delta sensitivity admit sufficient smoothness.
Moreover, we observe a close match between the result obtain from the low-order (1,2) and
(2,2) predictor–corrector schemes as compared with the well-known methods, including
the benchmark from the Binomial method [25].

Table 6. Optimal exercise boundary with different number of iterations using Euler-CN predictor–
corrector compact scheme (h = 0.01).

No. of Iteration 1 2 3 4

s f (T) 76.163841 76.163388 76.163276 76.163268

Table 7. Option parameters.

K T r σ xM

100 3.00 0.05 0.20 3.00

Table 8. Option value with predictor–corrector schemes. WK is the method of Wu and Kwok [8]. OP
is the operator splitting method [26]. BS1 and BS2 is the method of Brennan and Schwartz [27].

S Euler-CN Leapfrog-CN Binomial WK OP BS-1 BS-2

80 20.2820 20.2820 20.2797 20.2825 20.2795 20.2785 20.2783
90 13.3077 13.3077 13.3075 13.3117 13.3074 13.3047 13.3072
100 8.7107 8.7107 8.7106 8.7135 8.7104 8.7070 8.7102
110 5.6826 5.6826 5.6825 5.6867 5.6824 5.6791 5.6822
120 3.6965 3.6965 3.6964 3.7001 3.6963 3.6935 3.6961

Table 9. Delta sensitivity with predictor–corrector schemes. WK is the method of Wu and Kwok [8].
OP is the operator splitting method [26]. BS1 and BS2 is the method of Brennan and Schwartz [27].

S Euler-CN Leapfrog-CN Binomial WK OP BS-1 BS-2

80 −0.8537 −0.8537 −0.8536 −0.8508 −0.8536 −0.8539 −0.8536
90 −0.5619 −0.5619 −0.5619 −0.5600 −0.5619 −0.5621 −0.5619
100 −0.3706 −0.3706 −0.3706 −0.3694 −0.3706 −0.3707 −0.3706
110 −0.2436 −0.2436 −0.2436 −0.2429 −0.2436 −0.2436 −0.2436
120 −0.1594 −0.1594 −0.1594 −0.1589 −0.1594 −0.1593 −0.1594

Figure 3. Optimal exercise boundary and option value with order (2,2) predictor–corrector scheme
(h = 0.01, k = h2). s f (T) = 76.284497.
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Figure 4. Delta sensitivity with order (2,2) predictor–corrector scheme (h = 0.01, k = h2).

In the last experiment, our interest was to compute the convergence rates of the
present predictor–corrector schemes. To this end, we considered parameters in the sec-
ond example. The only difference is that we used different time to maturity, given as
T = 0.125. Here, we fixed the time step k = 10−6 and then varied the step size, as shown
in Tables 10 and 11, where the maximum errors and convergence rate are displayed. The
convergence rate results for the low-order (1,2) and (2,2) predictor–corrector schemes are
reasonable. Moreover, further improvement can be achieved if the singularity associated
with the first derivative of the optimal exercise boundary and inherent discontinuity associ-
ated with the model are carefully improved. In general, our proposed low-order (1,2) and
(2,2) predictor–corrector fourth-order compact finite schemes which simultaneously solve
the optimal exercise boundary, option value, and delta sensitivity are very fast and provide
reasonable solution accuracy on both coarse and very refined grids.

Table 10. Convergence rate result of the option value with (1,2) Euler-CN compact scheme.

h Maximum Errors Convergence Rate

0.2
0.1 3.636750127435
0.05 0.541734921861 2.747
0.025 0.169692227237 1.675
0.0125 0.026627237617 2.672
0.00625 0.001969927462 3.757

Table 11. Convergence rate result of the option value with (2,2) Leapfrog-CN compact scheme.

h Maximum Errors Convergence Rate

0.2
0.1 3.662480988725
0.05 0.594074051436 2.624
0.025 0.153110702238 1.956
0.0125 0.032427092114 2.239
0.00625 0.001585082185 4.355

4.2. Order (3,3) and (4,4) Predictor–Corrector Schemes

Here, we investigate the performance of the presented (3,3) and (4,4) predictor–
corrector integration methods with fourth-order compact finite difference scheme for
solving the American option pricing model as a fixed free boundary problem. Consider the
example in the work of Bunch and Johnson [28] with the following parameters displayed
in Table 12.
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Table 12. Option parameters.

S0 T r σ xM

40 4.00 0.0488 0.30 3.00

The benchmark solution as presented in the work of Bunch and Johnson [28] was
obtained from the Binomial tree method with 10,000 steps. Our numerical approximations
with this high-order predictor–corrector schemes are presented in Tables 13 and 14. From
Tables 13 and 14, we observe reasonable solution accuracy across the high-order predictor–
corrector schemes. Moreover, for the order (3,3) predictor–corrector fourth-order compact
finite difference schemes, we observe that the BDF3 scheme has the lowest accuracy and
P3b-C3 has the best accuracy as compared with the benchmark value. For the (4,4) predictor–
corrector scheme, P4-C4 performed better than P4-BDF4. However, the discrepancy in
results among the high-order predictor–corrector compact finite difference schemes is not
substantial. Finally, we plotted the curves of the optimal exercise boundary, option value,
and delta sensitivity obtained from the P4-C4 predictor–corrector fourth-order compact
finite difference schemes in Figures 5–7.

Table 13. Option value with the (3,3) and(4,4) predictor–corrector schemes (h = 0.01, k = h2). The
benchmark value is the Binomial method (BM) with 10,000 steps.

K P3a-BDF3 P3b-BDF3 P3a-C3 P3b-C3 P3b-M3 P4-BDF4 P4-C4 BM

35 0.6978 0.6978 0.6978 0.6977 0.6976 0.6977 0.6975 0.6975
40 2.4837 2.4836 2.4832 2.4832 2.4833 2.4833 2.4830 2.4825
45 5.7073 5.7072 5.7067 5.7068 5.7068 5.7069 5.7065 5.7056

Time (s) 5.9 5.8 5.7 5.7 5.8 5.9 5.5 None

Table 14. Delta sensitivity with the (3,3) and (4,4) predictor–corrector schemes (h = 0.01, k = h2). The
benchmark value is the Binomial method (BM) with 10,000 steps.

K P3a-BDF3 P3b-BDF3 P3a-C3 P3b-C3 P3b-M3 P4-BDF4 P4-C4 BM

35 −0.1740 −0.1740 −0.1740 −0.1740 −0.1740 −0.1740 −0.1740 −0.1741
40 −0.4418 −0.4418 −0.4419 −0.4419 −0.4419 −0.4419 −0.4419 −0.4420
45 −0.7262 −0.7262 −0.7263 −0.7263 −0.7263 −0.7263 −0.7264 −0.7266

Time (s) 5.9 5.8 5.7 5.7 5.8 5.9 5.5 None

Figure 5. Optimal exercise boundary with P4-C4 and varying strike price.
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Figure 6. Option value with P4-C4 and varying strike price.

Figure 7. Delta sensitivity with P4-C4 and varying strike price.

5. Conclusions

We have explored the efficiency of a suite of predictor–corrector schemes with fourth-
order compact finite difference for solving a system of American option pricing PDEs con-
sisting of the option value and delta sensitivity as a free boundary problem. The numerical
results shows that the low-order (1,2) Euler-CN and (2,2) Leapfrog-CN predictor–corrector
compact finite difference schemes have great performance in terms of computational speed
and accuracy. Moreover, (1,2) Euler-CN and (2,2) Leapfrog-CN are very fast in both coarse
and very refined grids and also present highly accurate solutions with coarse grids and little
computation runtime. This is largely possible due to the implementation of the Thomas
algorithm and fourth-order compact finite difference schemes. Moreover, the speed of
our computation is further enhanced by using only three iterative steps at each time-level
with the second-order CN and fourth-order compact finite difference correction schemes.
We also obtain reasonable convergence rate results with these two implementations. For
extension purposes, we have further explored the suite of high-order predictor–corrector
schemes and have obtained reasonable solution accuracy. In general, we can validate
that our implementations are very efficient and could be extendable to solving other free
boundary option pricing problems.

In our future work, we hope to further enhance the performance of our proposed suite
of low- and high-order predictor–corrector fourth-order compact finite difference schemes
by improving the smoothness and irregularity inherent in the transformed model such that
we can recover numerical convergence rate that is consistently in good agreement with the
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theoretical one. Furthermore, we hope in our future work to extend this method and its
variants to non-standard and exotic options including stochastic volatility models.
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