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Abstract: The present study focuses on estimating the stress–strength parameter when the parent
distribution is the alpha power exponential model and the available data are progressively Type-II
censored. As a starting point, the usual maximum likelihood approach is applied to obtain point
and interval estimates of the model parameters, as well as the stress–strength parameter. Another
competing strategy employed in this paper is the maximum product of spacing method, which may
be thought of as a rival to the maximum likelihood method. The product of spacing approach is
used to obtain point and interval estimates for the various parameters. The asymptotic properties of
both methods are used to obtain interval estimates of the model parameter and the stress–strength
parameter, and the variance of the stress–strength parameter is approximated using the well-known
delta method. Two parametric bootstrap confidence intervals are provided based on the suggested
classical estimation procedures. A simulation study is also used to assess the performance of various
point and interval estimations. For illustrative purposes, the proposed methods are applied to two
real data sets, one for the kidney patients’ recurrence times to infection and the other for breaking the
strength of jute fibers.

Keywords: stress–strength reliability; alpha power exponential distribution; maximum likelihood;
maximum product of spacing estimation; stress–strength parameter
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1. Introduction

Since the work of Birnbaum [1], the issue of estimating the stress–strength parameter
R = P(Y < X) and its associated inference when X and Y are two independent random
variables has attracted a lot of interest. If X reflects a component’s strength under the stress
of Y, then R can be thought of as an indicator of the performance of the system. When the
stress on the system surpasses its strength, the system loses control. Since R reflects a rela-
tionship between a system’s stress and strength, it is frequently referred to as the system’s
stress–strength parameter. The estimation problems of the stress–strength parameter for
numerous known distributions have been discussed by several authors in the statistical liter-
ature. Based on the complete sample data, Chung [2], Kundu and Gupta [3], Raqab et al. [4]
and Sharma [5] addressed the estimation of R for the exponential, Weibull, three-parameter
generalized exponential, and generalized inverse Lindley distributions, respectively. The
estimation of R based on record and censored data has also been taken into consideration
by many authors. For example, in dealing with lower record values, Baklizi [6] estimated R
for the generalized exponential distribution. Valiollahi et al. [7] and Asgharzadeh et al. [8]
studied the estimation of R for the Weibull distribution, given progressively Type-II and
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hybrid censored data, respectively. See also the work of Yadav et al. [9], Rostamian and
Nematollahi [10], Ghanbari [11], and Asadi and Panahi [12].

In a lot of lifespan tests, the experimenter may remove the cases they are looking at
before the experiment ends. The removal procedure could be unintentional or preplanned
by the experimenter. To further explain the situation, it should be noted that during clinical
trials, participants may decline to complete for personal reasons or the trial may end before
all patients whose lifetimes last longer years have been observed. The experimenter would
then encounter censored data. Therefore, a censoring scheme has to be specifically defined.
Many censoring schemes are available in the literature. One of the most important types of
censoring samples is the progressively Type-II censored sample, which operates as follows:
Let r = (r1, r2, . . . , rn) be a provided vector defined by the researcher that shows the line of
removal of some experimental elements before ending the test. In this censored procedure,
n(n < N) stands for the number of observed failures, while N represents the number
of experimental elements. Upon the initial failure, r1 of the surviving units is arbitrarily
eliminated from the remaining units in the experiment. When the second failure happens,
r2 of the remaining units is randomly eliminated, and the experiment proceeds until the
nth failure, then all of the remaining units are eliminated. One can see that the complete
sample can be derived as a special case of the progressively Type-II censored sample by
setting (r1 = · · · = rn = 0). Also, the Type-II censored sample can be given by putting
(r1 = · · · = rn−1 = 0) and rn = N − n. Readers are highly recommended to take a look at
the book authored by Balakrishnan and Aggarwala [13] for additional information on the
theory, methodology, and applications of progressively Type-II censored data. In addition,
one may refer to the book authored by Balakrishnan and Cramer [14] for more forms of
censoring schemes, inference of parameters, and its applications in reliability.

Adding a parameter to well-known distributions is common in the literature to increase
the flexibility of the existing ones. Mahdavi and Kundu [15] recently proposed a new variant
of the conventional exponential distribution by adding a new shape parameter, naming
the new distribution the alpha power exponential (APE) distribution. In terms of real data
analysis, they showed that the APE distribution has more flexibility than some well-known
distributions like Weibull and gamma distributions in modeling various types of data. The
APE distribution with shape parameter α and scale parameter σ, denoted by APE(α, θ) has
the following probability density function (PDF):

f (x; α, σ) =
σ log(α)e−σxα1−e−σx

α− 1
, x > 0, σ, α > 0, α 6= 1, (1)

and the corresponding cumulative distribution function (CDF) is given by

F(x; α, σ) =
α1−e−σx − 1

α− 1
. (2)

Despite the importance of the APE distribution, little work has been performed
on the estimation of the distribution parameters and some of its indices. For example,
Nassar et al. [16] studied some classical parameter estimation methods. Alotaibi et al. [17]
considered some statistical inferences using adaptive progressive censoring. Nassar et al. [18]
studied the competing risks model using progressively Type-II censored samples. How-
ever, no one has paid attention to the estimation of the stress–strength parameter under
censoring in the case of the APE distribution. Furthermore, the majority of studies that
estimated the stress–strength parameter used the maximum likelihood (ML) method as the
sole approach among the classical ones, whereas the maximum product of spacing (MPS)
method can be considered an effective alternative, particularly for small sample sizes as
pointed out by Anatolyev and Kosenok [19]. As a result, the main focus of this study is
to analyze the estimation issues of the stress–strength parameter of the APE distribution,
with a common scale parameter, in the case of progressively Type-II censored data. To
accomplish this, two classical estimation methods are considered, namely ML and MPS.
Besides the point estimates, the approximate confidence intervals (ACIs) are investigated
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based on the asymptotic properties of the ML estimates (MLEs) and MPS estimates (MPSEs).
Moreover, two parametric bootstrap confidence intervals are obtained based on both the
MLEs and MPSEs.

The remainder of the paper is divided into the following sections: Section 2 presents the
MLEs and the related ACIs of the unknown parameters and the stress–strength parameter.
Section 3 discusses the MPSEs and ACIs constructed using the MPSEs of the various
parameters. Section 4 displays the bootstrap confidence intervals based on MLEs and
MPSEs. Section 5 describes the simulation research that was conducted to compare the
performance of the proposed estimators. Section 6 demonstrates the study’s applicability
by examining two real-world data sets. Section 7 summarizes the findings of the study.

2. Maximum Likelihood Estimation

In this section, both point and interval estimations of R are investigated by employing
the ML method. Let X and Y be independent APE random variables, where X ∼ APE(α1, σ)
and Y ∼ APE(α2, σ), respectively, then according to Mahdavi and Kundu [15], we can
express the parameter R = P(Y < X) as follows:

R =
(α1α2 − 1) log(α2)

(α1 − 1)(α2 − 1) log(α1α2)
− 1

α1 − 1
. (3)

One can see from (3) that the parameter R is a function of α1 and α2. Then, the point
estimator of R can be obtained based on the invariance property of the MLEs after obtaining
the MLEs of α1 and α2. Let (X1:n:N , . . . , Xn:n:N) be a progressively Type-II censored sample
randomly taken from a population that follows APE(α1, σ) distribution with the censoring
scheme (r1, . . . , rn), and (Y1:m:M, . . . , Ym:m:M) be a progressively Type-II censored sample
randomly selected from the APE(α2, σ) population with the censoring scheme (s1, . . . , sm).
Then, we can write the likelihood function of the observed data as

L(α1, α2, σ) = A1 A2

{
n

∏
i=1

f (xi)[1− F(xi)]
ri

}{
m

∏
j=1

f (yj)[1− F(yj)]
sj

}
, (4)

where A1 and A2 are two constants that do not depend on the unknown parameters,
xi = xi:n:N and yi = yj:m:M for simplicity. From (1), (2), and (4), we can write the likelihood
function of α1, α2, and σ, ignoring the constant term, in the following form:

L(α1, α2, σ) =

(
α1

α1 − 1

)N( α2

α2 − 1

)M
σn+m logn(α1) logm(α2)

× exp

[
−σ

(
n

∑
i=1

xi +
m

∑
j=1

yj

)
− log(α1)

n

∑
i=1

e−σxi − log(α2)
m

∑
j=1

e−σyj

]
(5)

×
n

∏
i=1

(
1− α−e−σxi

1

)ri
m

∏
j=1

(
1− α−e−σyj

2

)sj
.

The natural logarithm of (5) can be expressed as shown below:

l(α1, α2, σ) = N log(α1) + M log(α2)− N log(α1 − 1)−M log(α2 − 1) + (n + m) log(σ)

+ n log[log(α1)] + m log[log(α2)]− σ

(
n

∑
i=1

xi +
m

∑
j=1

yj

)
− log(α1)

n

∑
i=1

e−σxi (6)

− log(α2)
m

∑
j=1

e−σyj +
n

∑
i=1

ri log
(

1− α−e−σxi
1

)
+

m

∑
j=1

sj log
(

1− α−e−σyj

2

)
.
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The MLEs of α1, α2, and σ, denoted by α̂1, α̂2, and σ̂, can be acquired by maximiz-
ing (6) with respect to the unknown parameters, alternatively by solving the following
normal equations:

∂l(α1, α2, σ)

∂α1
=

1
α1

[
N +

n
log(α1)

]
− N

α1 − 1
− 1

α1

n

∑
i=1

e−σxi +
1
α1

n

∑
i=1

rie−σxi

αe−σxi
1 − 1

= 0, (7)

∂l(α1, α2, σ)

∂α2
=

1
α2

[
M +

m
log(α2)

]
− M

α2 − 1
− 1

α2

m

∑
j=1

e−σyj +
1
α2

m

∑
j=1

sje
−σyj

αe−σyj
2 − 1

= 0 (8)

and

∂l(α1, α2, σ)

∂σ
=

n + m
σ
−
(

n

∑
i=1

xi +
m

∑
j=1

yj

)
+ log(α1)

n

∑
i=1

xie−σxi

(
1− ri

αe−σxi
1 − 1

)

+ log(α2)
m

∑
j=1

yje
−σyj

(
1−

sj

αe−σyj
2 − 1

)
= 0. (9)

It is clear that the normal equations in (7)–(9) require a numerical solution in order
to yield the MLEs α̂1, α̂2, and σ̂. This is because the normal equations do not yield explicit
solutions for α1, α2, and σ. After obtaining the MLEs, one can easily obtain the MLE of R
from (3) by substituting the unknown parameters with their respective MLEs, as shown
below, owing to the invariance property of the MLEs:

R̂ =
(α̂1α̂2 − 1) log(α̂2)

(α̂1 − 1)(α̂2 − 1) log(α̂1α̂2)
− 1

α̂1 − 1
.

The normal approximation of the MLEs is used in this part to derive the ACI of the
unknown parameters. As a result of the asymptotic properties of MLEs, we can investi-
gate the interval estimation for R. It is known, under some mild regularity conditions,
that the asymptotic distribution of the MLEs (α̂1, α̂2, σ̂) is a trivariate normal distribu-
tion with mean (α1, α2, σ) and a variance–covariance matrix J(α1, α2, σ). In practice, we
can estimate J(α1, α2, σ) by J(α̂1, α̂2, σ̂) due to the difficulties of obtaining the expected
values of the second-order derivatives of the log-likelihood function. In this case, the
estimated variance–covariance matrix J(α̂1, α̂2, σ̂) is obtained based on the empirical Fisher
information matrix as

J(α̂1, α̂2, σ̂) =


− ∂2l(α1,α2,σ)

∂α2
1

0 − ∂2l(α1,α2,σ)
∂α1σ

− ∂2l(α1,α2,σ)
∂α2

2
− ∂2l(α1,α2,σ)

∂α2∂σ

− ∂2l(α1,α2,σ)
∂σ2


−1

(α1,α2,σ)=(α̂1,α̂2,σ̂)

=

 V̂11 0 V̂13
V̂22 V̂23

V̂33

, (10)

where

∂l2(α1, α2, σ)

∂α2
1

=
N(2α1 − 1)
[α1(α1 − 1)]2

− n[1 + log(α1)]

[α1 log(α1)]2
+

1
α2

1

n

∑
i=1

e−σxi +
n

∑
i=1

rie−σxi φ1i(
α1 − α1+e−σxi

1

)2 , (11)
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∂l2(α1, α2, σ)

∂α2
2

=
M(2α2 − 1)
[α2(α2 − 1)]2

− m[1 + log(α2)]

[α2 log(α2)]2
+

1
α2

2

m

∑
j=1

e−σyj +
m

∑
j=1

sje
−σyj φ2j(

α2 − α1+e−σyj

2

)2 , (12)

∂l2(α1, α2, σ)

∂σ2 = −n + m
σ2 − log(α1)

n

∑
i=1

x2
i e−σxi (1 + ri ϕ1i)− log(α2)

m

∑
j=1

y2
j e−σyj(1 + sj ϕ2j),

∂l2(α1, α2, σ)

∂α1∂σ
=

1
α1

n

∑
i=1

xie−σxi (1 + ri ϕ1i)

and

∂l2(α1, α2, σ)

∂α2∂σ
=

1
α2

m

∑
j=1

yje
−σyj(1 + sj ϕ2j),

where

φkt = 1− (1 + e−σzt)αe−σzt
k and ϕkt =

1 + αe−σzt
k [log(αk)e−σzt − 1](

1− αe−σzt
k

)2 ,

with k = 1, 2, (z, t) = (x, i) for k = 1 and (z, t) = (y, j) for k = 2, i = 1, . . . , n, j = 1, . . . , m.
Therefore, the 100(1− τ) ACIs for α1, α2, and σ can be formulated, respectively, as

α̂1 ± zτ/2

√
V̂11, α̂2 ± zτ/2

√
V̂22 and θ̂ ± zτ/2

√
V̂33, (13)

where zτ/2 is the upper (τ/2)th percentile point of a standard normal distribution. Let n =
m; using the delta method, the distribution of R̂ as n tends to infinity is a normal distribution
with mean R and variance VR, where VR = Λ́J(α1, α2, σ)Λ, where Λ́ = (Rα1 , Rα2 , 0) is the
vector of the first-order partial derivativesof R with respect to the unknown parameters;
see, for more detail, the work of Davison [20], and Nadarajah and Jia [21]. In practice, the
variance VR can be estimated by replacing the unknown parameters with their MLEs as
follows:

V̂R =
(

R̂α1 , R̂α2 , 0
) V̂11 0 V̂13

V̂22 V̂23
V̂33

 R̂α1

R̂α2

0

, (14)

where

R̂α1 =
1

(α̂1 − 1)2 + ω

{
α̂2 − (α̂1α̂2 − 1)

[
1

α̂1 − 1
+

1
α̂1 log(α̂1α̂2)

]}
(15)

and

R̂α2 =
ω(α̂1α̂2 − 1)

α̂2

[
1

log(α̂2)
+

α̂1α̂2

α̂1α̂2 − 1
− α̂2

α̂2 − 1
− 1

log(α̂1α̂2)

]
, (16)

where

ω =
log(α̂2)

(α̂1 − 1)(α̂2 − 1) log(α̂1α̂2)
.

From (14), the approximate estimated variance of R̂ can be as follows:

V̂R = R̂2
α1

V̂11 + R̂2
α2

V̂22.
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This outcome can be used to build the ACI of R. With a 100%(1− τ) confidence level,
the ACI of R can be obtained as

R̂± zτ/2

√
V̂R.

3. Maximum Product of Spacing Estimation

Cheng and Amin [22] proposed the MPS approach as an alternative to the ML method.
The MPS method has all of the large sample properties of the ML method and keeps most
of the ML method’s properties under more general conditions; for more information, see
Cheng and Iles [23] and Cheng and Traylor [24]. The MPSEs are calculated by selecting pa-
rameter values that maximize the product of the distances between the distribution function
values at neighboring ordered points. Numerous authors recently used the MPS approach
to estimate various lifetime distributions, such as Basu et al. [25,26] and Nassar et al. [27].
In this part, the MPS procedure is used to derive point and interval estimators of R as an
alternative to the ML approach. As in the case of the ML method, the point and interval
estimations of the parameter R are acquired based on some properties of MPSEs, including
the invariance property and normal approximation. Let (X1:n:N , . . . , Xn:n:N) be a progres-
sively Type-II censored sample drawn at random from a population with an APE(α1, σ)
distribution with the censoring scheme (r1, . . . , rn), and let (Y1:m:M, . . . , Ym:m:M) be a pro-
gressively Type-II censored sample randomly chosen from the APE(α2, σ) population with
the censoring scheme (s1, . . . , sm). To apply the MPS method, we first need to define the
following quantities based on the CDF given by (2):

41i = F(xi:n:N |α1, σ)− F(xi−1:n:N |α1, σ)

=
α1

α1 − 1

(
α−e−σxi

1 − α−e−σxi−1
1

)
(17)

and

42j = F(yj:m:M|α2, σ)− F(yj−1:m:M|α2, σ)

=
α2

α2 − 1

(
α−e−σyj

2 − α−e−σyj−1

2

)
, (18)

where xi = xi:n:N and yi = yj:m:M. Based on (17) and (18), we can write the product of the
spacing function to be maximized as shown below:

P(α1, α2, σ) =

(
α1

α1 − 1

)N+1( α2

α2 − 1

)M+1 n+1

∏
i=1

D1i

m+1

∏
j=1

D2j

n

∏
i=1

(
1− α−e−σxi

1

)ri

×
m

∏
j=1

(
1− α−e−σyj

2

)sj
. (19)

where D1i = (α1 − 1)41i/α1 and D2j = (α2 − 1)42j/α2. From the product of the spacing
function in (19), we can write the natural logarithm of P(α1, α2, σ) as follows:

p(α1, α2, σ) = N∗ log(α1) + M∗ log(α2)− N∗ log(α1 − 1)−M∗ log(α2 − 1) +
n+1

∑
i=1

log(D1i)

+
m+1

∑
j=1

log(D2j) +
n

∑
i=1

ri log
(

1− α−e−σxi
1

)
+

m

∑
j=1

sj log
(

1− α−e−σyj

2

)
, (20)

where N∗ = N + 1 and M∗ = M + 1. The MPSEs of α1, α2, and σ, denoted by α̃1, α̃2, and σ̃,
can be acquired by solving the following normal equations:

∂p(α1, α2, σ)

∂α1
=

N∗

α1
− N∗

α1 − 1
−

n+1

∑
i=1

Ψ1i
D1i

+
1
α1

n

∑
i=1

rie−σxi

αe−σxi
1 − 1

= 0, (21)



Axioms 2023, 12, 752 7 of 20

∂p(α1, α2, σ)

∂α2
=

M∗

α2
− M∗

α2 − 1
−

m+1

∑
j=1

Ψ2j

D2j
+

1
α2

m

∑
j=1

sje
−σyj

αe−σyj
2 − 1

= 0 (22)

and

∂p(α1, α2, σ)

∂σ
=

n+1

∑
i=1

ξ1i
D1i

+
m+1

∑
j=1

ξ2j

D2j
+ log(α1)

n

∑
i=1

xie−σxi

(
1− ri

αe−σxi
1 − 1

)

+ log(α2)
m

∑
j=1

yje
−σyj

(
1−

sj

αe−σyj
2 − 1

)
= 0. (23)

where Ψkt =
e−σzt

α1+e−σzt
k

− e−σzt−1

α1+e−σzt−1
k

and ξkt =
zte−σzt log(αk)

αe−σzt
k

− zt−1e−σzt−1 log(αk)

αe−σzt−1
k

, and the values

of k, z, and t as mentioned before in the previous section. As (21)–(23) show, the MPSEs
of α1, α2, and σ do not have closed forms; therefore, they can be solved numerically as
in the case of MLEs to obtain α̃1, α̃2, and σ̃. According to Ranneby [28] and Coolen and
Newby [29], the MPSEs possess a similar invariance property as MLEs. Utilizing this
property, the MPSE of R can be acquired as follows:

R̃ =
(α̃1α̃2 − 1) log(α̃2)

(α̃1 − 1)(α̃2 − 1) log(α̃1α̃2)
− 1

α̃1 − 1
.

One can simply derive the ACIs of the model parameters as well as the parameter
R based on the asymptotic normality of the MPSEs. Studies on the asymptotic normality
of the MSPEs can be found in the works of Ranneby [28], Cheng and Stephens [30] and
Ghosh and Jammalamadaka [31]. According to this property, the MPSEs (α̃1, α̃2, σ̃) are
asymptotically normally distributed, i.e., (α̃1, α̃2, σ̃) ∼ N[(α1, α2, σ), I(α1, α2, σ)]. In practice,
we use I(α̃1, α̃2, σ̃) to estimate the variance–covariance matrix I(α1, α2, σ), where

I(α̃1, α̃2, σ̃) =


− ∂2 p(α1,α2,σ)

∂α2
1

0 − ∂2 p(α1,α2,σ)
∂α1σ

− ∂2 p(α1,α2,σ)
∂α2

2
− ∂2 p(α1,α2,σ)

∂α2∂σ

− ∂2 p(α1,α2,σ)
∂σ2


−1

(α1,α2,σ)=(α̃1,α̃2,σ̃)

=

 Ṽ11 0 Ṽ13
Ṽ22 Ṽ23

Ṽ33

, (24)

where

∂2 p(α1, α2, σ)

∂α2
1

=
N(2α1 − 1)
[α1(α1 − 1)]2

−
n+1

∑
i=1

D1iΨ́1i −Ψ2
1i

D2
1i

+
n

∑
i=1

rie−σxi φ1i(
α1 − α1+e−σxi

1

)2 ,

∂2 p(α1, α2, σ)

∂α2
2

=
M(2α2 − 1)
[α2(α2 − 1)]2

−
m+1

∑
j=1

D2jΨ́2j −Ψ2
2j

D2
2j

+
m

∑
j=1

sje
−σyj φ2j(

α2 − α1+e−σyj

2

)2 ,

∂l2(α1, α2, σ)

∂σ2 =
n+1

∑
i=1

D1i ξ́1i − ξ2
1i

D2
1i

+
m+1

∑
j=1

D2j ξ́2j − ξ2
2j

D2
2j

− log(α1)
n

∑
i=1

x2
i e−σxi (1 + ri ϕ1i)

− log(α2)
m

∑
j=1

y2
j e−σyj(1 + sj ϕ2j),
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∂p2(α1, α2, σ)

∂α1∂σ
=

n+1

∑
i=1

D1iν1i −Ψ1iξ1i

D2
1i

+
1
α1

n

∑
i=1

xie−σxi (1 + ri ϕ1i)

and

∂p2(α1, α2, σ)

∂α2∂σ
=

m+1

∑
j=1

D2jν2j −Ψ2jξ2j

D2
2j

+
1
α2

m

∑
j=1

yje
−σyj(1 + sj ϕ2j),

where

Ψ́kt =
(1 + e−σzt−1)

eσzt−1 α2+e−σzt−1
k

− (1 + e−σzt)

eσzt α2+e−σzt
k

,

ξ́kt =
z2

t log(αk)(e−σzt log(αk)− 1)

eσzt αe−σzt
k

−
z2

t−1 log(αk)(e−σzt−1 log(αk)− 1)

eσzt−1 αe−σzt−1
k

and

νkt =
zt(e−σzt log(αk)− 1)

eσzt α1+e−σzt
k

− zt−1(e−σzt−1 log(αk)− 1)

eσzt−1 α1+e−σzt−1
k

.

Thus, the 100(1− τ) ACIs for α1, α2, and σ can be obtained, respectively, as follows:

α̃1 ± zτ/2

√
Ṽ11, α̃2 ± zτ/2

√
Ṽ22 and θ̃ ± zτ/2

√
Ṽ33. (25)

On the other hand, based on the delta method, one can approximate the estimate of
the variance for R̃ using the MPSEs from (14) as follows:

ṼR = R̃2
α1

Ṽ11 + R̃2
α2

Ṽ22,

where R̃α1 and R̃α2 as given by (15) and (16), respectively, but evaluated at the MPSEs.
Therefore, the 100%(1− τ) ACI of R takes the form

R̃± zτ/2

√
ṼR,

4. Bootstrap Confidence Intervals

In this section, we look at two parametric bootstrap confidence intervals. The boot-
strap confidence intervals are used because the ACIs can be inaccurate, especially when the
sample size is small. The first one is the percentile bootstrap confidence interval (PBCI),
which was developed by Efron [32]. The second is the student-t bootstrap confidence inter-
val (SBCI) by Hall [33]. It should be noted that we obtain these two bootstrap confidence
intervals using the MLEs and MPSEs. To compute the PBCIs and SBCIs, we can utilize the
next procedures. It is essential to note that the following processes are used to obtain the
PBCIs and SBCIs based on the MLEs. On the other side, the same processes can be used to
obtain the needed intervals based on the MPSEs.

(A) PBCIs

(1) Use the original data n, m, xi, yj, ri, and sj to calculate α̂1, α̂2, σ̂, and R̂.

(2) Based on the same ri and sj and the estimates α̂1, α̂2, and σ̂, generate two progressively
Type-II censored samples.

(3) Use the simulated bootstrap samples in step (2) to compute α̂∗1 , α̂∗2 , σ̂∗, and R̂∗.

(4) Repeat steps 2 and 3 B times to compute α̂
∗(i)
1 , α̂

∗(i)
2 , σ̂∗(i), and R̂∗(i), i = 1, . . . , B.

(5) Arrange the estimates in (t) to obtain (α̂∗[1]1 , . . . , α̂
∗[B]
1 ), (α̂∗[1]2 , . . . , α̂

∗[B]
2 ), (σ̂∗[1], . . . , σ̂∗[B]),

and (R̂∗[1], . . . , R̂∗[B]).
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(6) For any parameter, say θ, the 100(1− τ)% PBCI is obtained as follows:{
θ̂∗[Bτ/2], θ̂∗[B(1−τ/2)]

}
.

(B) SBCIs

(1–4) As displayed in the PBCIs.

(5) Obtain the statistics T∗(i)1 =
α̂
∗(i)
1 −α̂1√

V̂11(α̂
∗(i)
1 )

, T∗(i)2 =
α̂
∗(i)
2 −α̂2√

V̂22(α̂
∗(i)
2 )

, T∗(i)3 = σ̂∗(i)−σ̂√
V̂33(σ̂∗(i))

, and

T∗(i)4 = R̂∗(i)−R̂√
V̂R(R̂∗(i))

, i = 1, . . . , B.

(6) Arrange the values in step 5 to get (T∗[1]1 , . . . , T∗[B]1 ), (T∗[1]2 , . . . , T∗[B]2 ), (T∗[1]3 , . . . , T∗[B]3 ),

and (T∗[1]4 , . . . , T∗[B]4 ).

(7) The 100(1− τ) SBCIs of α1, α2, σ and R are given, respectively, as{
α̂1 + T∗[Bτ/2]

1

√
V̂11(α̂1), α̂1 + T∗[B(1−τ/2)]

1

√
V̂11(α̂1)

}
,{

α̂2 + T∗[Bτ/2]
2

√
V̂22(α̂2), α̂2 + T∗[B(1−τ/2)]

2

√
V̂22(α̂2)

}
,{

σ̂ + T∗[Bτ/2]
3

√
V̂33(σ̂), σ̂ + T∗[B(1−τ/2)]

3

√
V̂33(σ̂)

}
and {

R̂ + T∗[Bτ/2]
4

√
V̂R(R̂), R̂ + T∗[B(1−τ/2)]

4

√
V̂R(R̂)

}
.

5. Simulation Study

In this section, we perform a simulation study to investigate the performance of pa-
rameter estimates and reliability estimates for the progressively censoring stress–strength
model. The random variables X and Y in this model are distributed as the APE distribu-
tion with a common scale parameter but different shape parameters. The ML and MPS
estimation methods are used to obtain the estimates of parameters and reliability. For
performance comparison between MLE and MPS methods, we choose different sample
sizes of X and Y denoted by N and M, respectively. The shape parameters are set as
α1 = 2.0 for X and α2 = 0.8 for Y, and the scale parameter is σ = 1.5. Substituting the shape
parameters and the scale parameter into Equation (3), we have the reliability R = 0.58. Let
n and m be the failure numbers of the observations for X and Y. For each observation time,
ri, i = 1, 2, . . . , n and sj, j = 1, 2, . . . , m are the progressive censoring schemes for X and Y,
respectively. Considering that the ri for X and si for Y are different, in the following, we
show two general progressive censoring schemes for ri and si, where p = 8% units are
censored.

Scheme 1: R1 = r, R2 = R3 = . . . = Rn = 0.

Scheme 2: Ri1 = Ri2 = . . . = Rin = 1, and the others Ri = 0 for
i = {1, 2, . . . , n}/{i1, i2, . . . , in}.

In the schemes above, n = N × (1− p), ∑n
i=1 ri = N × p and i1, i2, . . . , in is the subset

randomly selected from the set {1, 2, . . . , n}. The same censoring schemes are used for
Y. We choose the sample size of X as N = {30, 50, 100, 150} and the sample size of Y as
M = {30, 40, 100, 200}. We consider the sample pairs denoted by (N, M), covering the
cases such as N < M, N > M and N = M. In the progressively censoring stress–strength
reliability model, we conduct the simulation study given the sample pair (N, M) and the
specific progressive censoring schemes for X and Y.

We consider the absolute bias (ABias), absolute relative error (ARE), and mean square
error (MSE) for point estimates, and the interval length (IL) and coverage probability (CP)
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for interval estimates at the confidence level 95% to show the estimation performance based
on different point and interval estimation methods. The ABias is defined as |θ̂ − θ|, and

the ARE is defined as |θ̂−θ|
θ given the true parameter θ and the parameter estimate θ̂. The

estimation performance of model parameters (α1, α2, σ) and reliability R = P(Y < X) using
the MLE and MPS methods, and ACI, PBCI, and SBCI methods are shown in Figures 1–5
under Scheme 1 and Figures 6–10 under Scheme 2.
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Figure 1. Performance for the estimated parameters using the maximum likelihood method and the
maximum product of spacing method under Scheme 1 for both X and Y.
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Figure 2. Performance for the reliability R = P(Y < X) using the maximum likelihood method and
the maximum product of spacing method under Scheme 1 for both X and Y.
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Figure 3. Interval lengths for the estimated parameters using the maximum likelihood method and
the maximum product of spacing method under Scheme 1 for both X and Y.
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Figure 4. Interval lengths for the reliability R = P(Y < X) using the maximum likelihood method
and the maximum product of spacing method under Scheme 1 for both X and Y.



Axioms 2023, 12, 752 11 of 20

α1

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.97

0.98

0.99

1.00

(N,M)

C
P

α2

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.94

0.96

0.98

1.00

(N,M)

C
P

σ

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.985

0.990

0.995

1.000

(N,M)

C
P

R

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.96

0.97

0.98

0.99

(N,M)

C
P

Method

MLE

MPS

Interval

ACI

PBCI

SBCI

Figure 5. Coverage probabilities for the estimated parameters and the reliability R = P(Y < X) using
the maximum likelihood method and the maximum product of spacing method under Scheme 1 for
both X and Y.
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Figure 6. Performance for the estimated parameters using the maximum likelihood method and the
maximum product of spacing method under Scheme 1 for both X and Y.

ABias

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.03

0.04

0.05

0.06

(N,M)

V
al

ue
s

MSE

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.002

0.003

0.004

0.005

(N,M)

V
al

ue
s

ARE

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.08

0.10

0.12

0.14

(N,M)

V
al

ue
s Method

MLE

MPS

Figure 7. Performance for the reliability R = P(Yb < X) using the maximum likelihood method and
the maximum product of spacing method under Scheme 1 for both X and Y.
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Figure 8. Interval lengths for the estimated parameters using the maximum likelihood method and
the maximum product of spacing method under Scheme 1 for both X and Y.



Axioms 2023, 12, 752 12 of 20

ACI

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.075

0.100

0.125

0.150

0.175

(N,M)

IL

PBCI

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.12

0.16

0.20

0.24

(N,M)

IL

SBCI

(30, 30) (50, 40) (50, 100) (100, 100) (150, 100) (150, 200)

0.12

0.16

0.20

0.24

(N,M)

IL

Method

MLE

MPS

Figure 9. Interval lengths for the reliability R = P(Y < X) using the maximum likelihood method
and the maximum product of spacing method under Scheme 1 for both X and Y.
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Figure 10. Coverage probabilities for the estimated parameters and the reliability R = P(Y < X)

using the maximum likelihood method and the maximum product of spacing method under Scheme
1 for both X and Y.

From Figure 1 under Scheme 1 and Figure 6 under Scheme 2, we see that the two
estimation methods perform well for the APE stress–strength model under the progressively
censoring scheme. The ABias, MSE, and ARE are decreasing with the increasing N and
M for the specific schemes for X and Y. This indicates that the performance becomes
better when N + M is increased. Comparing the estimates under the same sample size
pair but different progressively censoring schemes, we observe that the point estimates
are slightly affected by the choices of schemes. This indicates the estimation methods are
stable to analyze the progressively censoring data in the stress–strength model. For the
model parameters, the MLE has lower ABias, MSE, and ARE compared with MPSE. We
also observe that the MPSE of the reliability parameter R has the smaller ABias, MSE, and
ARE compared with the MLE from Figures 2 and 7. Comparing the ILs of the interval
estimates in Figures 3 and 4 under Scheme 1 and Figures 8 and 9 under Scheme 2, we
can see that the ILs of the parameters and the reliability based on the MPS method are
lower than those based on the MLE for the specific progressively censoring schemes. The
interval estimates have minor differences with the choices of schemes of X and Y. The ILs
are decreasing with the increasing N and M. For the reliability parameter R, it is seen that
the interval estimates obtained based on the MPSEs have the smaller ILs. From Figure 5
under Scheme 1 and Figure 10 under Scheme 2, we see that the CPs of confidence intervals
for model parameters and reliability are around 95%, and the CPs of the model parameters
using the MLEs are greater than those using the MPSEs.
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6. Real Data Applications

In this part, two applications to real data sets are considered to demonstrate the
importance and applicability of the proposed approaches.

6.1. Recurrence Times to Infection for Kidney Patients

The first real data consist of two groups of recurrence times from McGilchrist and
Aisbett [34], which are the times to infection at the point of insertion of the catheter for
each kidney patient using portable dialysis equipment, short for KID data. In the original
data set, the event types are 1 for infection occurring and 0 for censoring. See McGilchrist
and Aisbett [34] for a more detailed description. To use the introduced APE stress–strength
reliability model under the progressively censoring scheme, we first transform the data set
by dividing by 300 to fit the APE distribution with stable distribution parameters when
the maximum likelihood method and the maximum product of spacing method are used,
that is, X/300 and Y/300 for each patient. The transformed data set is shown in Table 1
where ri and si denote the progressively censoring schemes for X and Y, respectively. We
then compare two such recurrence times for each patient to show the time difference by
estimating the reliability, such as the case of Y < X for the transformed data set. We
mention that the same transformation in the two groups of recurrence times would not
affect the reliability estimates. Specifically, given an increasing function g(·) on X and Y,
we have R = P(Y < X) = P(g(Y) < g(X)).

Table 1. Transformed KID data.

Number X ri Y si Number X ri Y si

1 0.0267 0 0.0533 0 20 0.0500 0 0.3600 1
2 0.0767 0 0.0433 1 21 0.5067 0 1.8733 0
3 0.0733 0 0.0933 0 22 1.3400 0 0.0800 1
4 1.4900 0 1.0600 0 23 0.0433 0 0.2200 0
5 0.1000 0 0.0400 0 24 0.1300 0 0.1533 1
6 0.0800 0 0.8167 0 25 0.0400 0 0.1333 0
7 0.0233 0 0.0300 0 26 0.3767 1 0.6700 0
8 1.7033 0 0.1000 0 27 0.4400 0 0.5200 0
9 0.1767 0 0.6533 0 28 0.1133 0 0.1000 0

10 0.0500 0 0.5133 0 29 0.0067 0 0.0833 0
11 0.0233 0 1.1100 0 30 0.4333 0 0.0867 0
12 0.4700 0 0.0267 1 31 0.0900 0 0.1933 0
13 0.3200 0 0.1267 0 32 0.0167 1 0.1433 0
14 0.4967 1 0.2333 1 33 0.5067 0 0.1000 0
15 1.7867 0 0.0833 1 34 0.6333 0 0.0167 1
16 0.0567 0 0.0133 1 35 0.3967 0 0.0267 0
17 0.6167 0 0.5900 0 36 0.1800 1 0.0533 1
18 0.9733 0 0.3800 0 37 0.0200 1 0.2600 0
19 0.0733 1 0.5300 1 38 0.2100 0 0.0267 1

To show the goodness-of-fit of APE distribution, the Kolmogorov–Smirnov (KS) test is
used for the observations of X and Y in the KID data set. Parameter estimates (shape and
scale parameters) based on the two mentioned methods, K-S value and p-value of the fitted
distribution for stress–strength random variables (RV) using the transformed KID data are
presented in Table 2. We also present the quantile–quantile (Q-Q) plot and the estimated
CDF of the APE distribution, given the progressively censored data of X and Y on the
left side of Figure 11 based on the ML method and Figure 12 using the MPS method. For
performance comparison with APE distribution, we have the estimated CDFs using APE
distributions and the empirical CDF using the generalization of the produce-limit method
by Michael and Schucany [35] for these progressively censoring KID data on the right side
of Figures 11 and 12. For each variable in Figures 11 and 12, we see that most observations
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are close to the straight line in the Q-Q plots, and the estimates of CDFs perform well for
the two methods using APE distribution in the stress–strength model.

Table 2. Estimates, K-S value and p-value of X and Y in the transformed KID data.

Method RV Shape Scale K-S p-Value

MLE X 0.2081 3.6256 0.1464 0.5160
Y 0.2962 3.6256 0.1493 0.6059

MPS X 0.1036 2.5161 0.1277 0.6846
Y 0.1921 2.5161 0.1185 0.8503
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Figure 11. Q-Q plots and estimated cumulative distribution functions for X and Y using MLEs for
the recurrence times to infection for kidney patients.
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Figure 12. Q-Q plots and estimated cumulative distribution functions for X and Y using MPSEs for
the recurrence times to infection for kidney patients.
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Based on the ML and MPS methods, we obtain the point and interval estimates of
model parameters and the reliability R for these KID data shown in Table 3. We observe
that both the reliability estimates are less than 0.5 using the ML and MPS methods. But
they are near 0.5. This implies that a minor difference exists between the two groups of
recurrence times, and the second group of recurrence times Y is slightly larger than the
first group of times X. For further illustration, we simulate KID data using the MLEs
and MPSEs of parameters in Table 3, respectively. Based on the simulated KID data, the
parameter and reliability estimates are obtained in Tables 4 and 5, where SE indicates the
standard error. We see that the estimated parameters using the simulated KID data are
close to the estimated parameters using the real KID data by comparing Tables 3 and 4, and
Tables 3 and 5.

Table 3. Point and interval estimates for KID data.

Method Para Estm ACI PBCI SBCI

MLE α1 0.2081 (0, 0.7097) (0.0048, 2.0938) (0, 1.8176)
α2 0.2962 (0, 1.043) (0.004, 3.5501) (0, 2.8458)
σ 3.6256 (0.8434, 6.4078) (1.3919, 8.3672) (0.1653, 7.1406)
R 0.4724 (0.3855, 0.5788) (0.3202, 0.5697) (0.3508, 0.6004)

MPS α1 0.1036 (0, 0.5072) (0.0036, 0.6737) (0.0025, 0.6726)
α2 0.1921 (0, 0.9703) (0.006, 1.6753) (0, 1.5647)
σ 2.5161 (0, 5.7229) (1.0222, 4.9372) (1.2234, 5.1384)
R 0.4544 (0.3643, 0.5668) (0.3068, 0.535) (0.3382, 0.5665)

Table 4. Parameter and reliability estimation for simulated KID data using MLEs.

Method Para Estm SE ACI PBCI SBCI

MLE α1 0.6234 0.4095 (0, 1.8753) (0.0727, 2.5088) (0, 2.3308)
α2 1.7012 0.8346 (0, 4.8596) (0.4902, 10.1192) (0, 8.6733)
σ 3.3854 0.8927 (1.5711, 5.1997) (2.3328, 5.5307) (1.9076, 5.1055)
R 0.4170 0.0641 (0.337, 0.5161) (0.2728, 0.5064) (0.3017, 0.5353)

MPS α1 0.2875 0.1958 (0, 1.0799) (0.0035, 0.9391) (0.1063, 1.0419)
α2 0.8581 0.4699 (0, 2.9505) (0.01, 4.281) (0, 4.2514)
σ 2.6094 0.7945 (0.4889, 4.73) (0.7402, 4.1098) (1.2233, 4.5929)
R 0.4112 0.0615 (0.3326, 0.5084) (0.265, 0.5136) (0.294, 0.5427)

Table 5. Parameter and reliability estimation for simulated KID data using MPSEs.

Method Para Estm SE ACI PBCI SBCI

MLE α1 0.3333 0.9462 (0, 1.0616) (0.0101, 2.2839) (0, 2.0505)
α2 0.7203 1.3071 (0, 2.2618) (0.0371, 6.1638) (0, 5.1807)
σ 1.9772 0.8694 (0.6885, 3.2659) (0.8767, 3.7931) (0.4772, 3.3936)
R 0.4371 0.0567 (0.3547, 0.5388) (0.2863, 0.5283) (0.3177, 0.5597)

MPS α1 0.0828 0.4884 (0, 0.5641) (0.003, 0.5729) (0, 0.5633)
α2 0.1923 0.6476 (0, 1.224) (0.0077, 1.5637) (0, 1.4653)
σ 1.2133 0.6819 (0, 3.4036) (0.5192, 2.411) (0.5969, 2.4887)
R 0.4387 0.0534 (0.3577, 0.5381) (0.2966, 0.527) (0.3224, 0.5527)

6.2. Breaking Strengths of Jute Fibre Data

We apply the progressively censored stress–strength model to analyze another real
data set. This data set is the breaking strengths of jute fiber at gauge lengths 10 mm and
20 mm, short for JFG data; see, for more detail, the work of Xia et al. [36]. Similarly, with
the transformation on the KID data set, we show the transformed JFG data in Table 6
by dividing by 500. Here, the transformed breaking strengths at gauge length 10 mm
are the observations of X under the progressively censoring scheme ri = 0 for X and at
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gauge length 20 mm for Y under the progressively censoring scheme si = 0 for Y, where
i = 1, 2, . . . , 30. Therefore, the censoring schemes are not shown in Table 6.

Table 6. Transformed breaking strengths for X and Y for JFG data.

X 1.3875 1.4093 0.6477 1.5563 0.2461 1.2753 0.7669 0.3030 0.2179 0.1003
1.3430 0.3663 0.5149 1.4545 0.5825 0.2023 0.7528 0.3268 0.2828 1.4015
0.5258 0.7065 0.8442 0.0879 1.1810 0.4243 0.6078 1.0132 1.0611 0.3545

Y 0.1429 0.8380 0.5693 1.1711 0.9132 0.2277 0.3757 1.3763 1.3253 0.0912
1.1572 1.5134 1.1886 0.3330 0.1994 1.4147 1.5303 0.3743 0.2919 0.7014
1.0949 0.2340 0.7516 1.1632 0.2397 0.0960 0.4003 0.0735 0.4891 0.1671

For these JFG data, the estimates and the KS testing values are presented in Table 7 to
show the goodness-of-fit of each APE distribution for the stress–strength random variables.
The Q-Q plot and the estimated CDFs are also shown in Figure 13 based on the ML method
and in Figure 14 using the MPS method. We observe that the CDF estimation performance
of APE distribution is good for each variable, and each estimation method is compared
with the empirical CDF. This also implies that the estimates of distribution parameters are
reasonable using the introduced progressively censoring stress–strength reliability model
with APE distribution.

Table 7. Estimates, K-S value and p-value of X and Y in the transformed JFG data.

Method RV Shape Scale K-S p-Value

MLE X 16.9289 2.2980 0.0849 0.9692
Y 7.5969 2.2980 0.1593 0.3903

MPS X 10.0976 2.0821 0.0961 0.9200
Y 5.0576 2.0821 0.1428 0.5266
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Figure 13. Q-Q plots and estimated cumulative distribution functions for X and Y using MLEs for
the breaking strengths in JFG data.
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Figure 14. Q-Q plots and estimated cumulative distribution functions for X and Y using MPSEs for
the breaking strengths in JFG data.

In the stress–strength model, the reliability R = P(Y < X) is estimated given the trans-
formed observations of X and Y given in Table 6. To compare the difference between the
breaking strengths at gauge lengths 10 mm and 20 mm, the reliability is defined to measure
the difference in a parametric model framework on the censored data. Nadeb et al. [37]
used an exponentiated Fréchet distributed stress–strength reliability model to analyze these
JFG data to show the difference. Here, we choose the APE distribution to fit this data set.
The point and interval estimates of distribution parameters and the reliability R are shown
in Table 8 based on the ML and MPS methods. From Table 8, we observe that the difference
of point estimates between the two methods is small, but the MPS method is better than
the ML method in terms of the interval lengths. Both the R estimates are larger than 0.5.
The reliability estimates are also higher than 0.5 in the work of Nadeb et al. [37]. Similarly,
simulated JFG data are generated using the MLEs and MPSEs of the parameters in Table 8,
respectively. The parameters and reliability estimates are obtained in Tables 9 and 10 based
on the simulated JFG data.

Table 8. Point and interval estimates for JFG data.

Method Para Estm ACI PBCI SBCI

MLE α1 16.9289 (0, 42.034) (3.1314, 36.8634) (0, 31.9271)
α2 7.5969 (0, 17.9733) (1.3987, 32.4363) (0, 28.102)
σ 2.2980 (1.8713, 2.7246) (1.739, 2.828) (1.7014, 2.7904)
R 0.5558 (0.4612, 0.6697) (0.4198, 0.6731) (0.4257, 0.6789)

MPS α1 10.0976 (0, 24.0585) (0.9452, 29.2365) (1.4248, 29.7162)
α2 5.0576 (0, 11.635) (0.594, 19.8588) (0.7678, 20.0326)
σ 2.0821 (1.6764, 2.4878) (1.2571, 2.4602) (1.4731, 2.6762)
R 0.5510 (0.457, 0.6643) (0.4158, 0.6755) (0.4156, 0.6753)
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Table 9. Parameter and reliability estimation for simulated JFG data using MLEs.

Method Para Estm SE ACI PBCI SBCI

MLE α1 13.4211 10.4318 (0, 36.4709) (2.0164, 33.6128) (0, 30.8833)
α2 7.0213 7.8096 (0, 24.6551) (0.7734, 30.4276) (0, 26.1548)
σ 2.1080 0.3062 (1.8108, 2.6475) (1.4328, 2.5851) (1.4572, 2.6095)
R 0.5475 0.0684 (0.466, 0.676) (0.3974, 0.6645) (0.4149, 0.6819)

MPS α1 6.7101 4.8405 (0, 21.154) (0.0019, 30.795) (0, 30.7761)
α2 3.8624 3.7854 (0, 9.349) (0.0049, 14.2785) (0, 13.335)
σ 1.8197 0.2900 (1.6097, 2.4028) (0.2274, 2.2947) (0.4093, 2.4766)
R 0.5436 0.0644 (0.4636, 0.6727) (0.3696, 0.699) (0.3843, 0.7138)

Table 10. Parameter and reliability estimation for simulated JFG data using MPSEs.

Method Para Estm SE ACI PBCI SBCI

MLE α1 16.5095 10.7951 (0, 29.5292) (4.3397, 38.6413) (0, 30.0847)
α2 12.4487 11.0307 (0, 21.1622) (1.4595, 30.7399) (0, 33.1656)
σ 2.2606 0.2678 (1.6076, 2.3475) (1.8619, 2.8978) (1.1694, 2.601)
R 0.5290 0.0712 (0.43, 0.6342) (0.4508, 0.6707) (0.3833, 0.6351)

MPS α1 8.5118 5.1865 (0, 13.8538) (0.0089, 15.9341) (0.3599, 16.2851)
α2 7.1433 6.9200 (0, 11.2661) (0.0041, 14.3265) (0.4654, 14.7878)
σ 1.9773 0.2628 (1.3569, 2.0465) (0.2937, 2.188) (0.4476, 2.3419)
R 0.5263 0.0695 (0.4233, 0.6266) (0.3733, 0.6143) (0.3692, 0.6102)

7. Conclusions

In this paper, we suggest several point and interval estimators for the stress–strength
parameter when the alpha power exponential is the underlying distribution for both
stress and strength populations and the available data are progressively Type-II censored.
Two classical estimation methods are offered for the point and interval estimation of the
model parameters and the stress–strength parameter. The first method is the maximum
likelihood method, and the second one is the maximum product of spacing method. The
point estimates of the various unknown parameters are acquired using both methods, and
the associated confidence intervals are obtained using the asymptotic properties of the
proposed estimation methods. Moreover, two parametric confidence intervals are studied
based on the two estimation approaches. In order to evaluate the efficiency and applicability
of the proposed procedures, a simulation study is conducted, and two real-life data sets are
examined. Based on the numerical findings, it is seen that the maximum product of spacing
point estimator of the stress–strength reliability performs better than the usual maximum
likelihood estimator in terms of the minimum absolute bias, absolute relative error, and
mean square error. In terms of minimum interval length, the same pattern is observed
when comparing the approximate confidence intervals based on both methods. Finally, it is
noted that the bootstrap confidence intervals obtained based on the maximum likelihood
estimates have higher coverage probabilities than those obtained using the maximum
product of spacing estimates for the model parameters. Finally, it is important to mention
that the two selected data sets were used for the practical investigation, which does not
necessarily imply the same connection with other data sets of this type.
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