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Óbuda University, Tavaszmező u. 17, H-1084 Budapest, Hungary; gambar.katalin@uni-obuda.hu

2 Department of Natural Sciences, National University of Public Service, Ludovika tér 2,
H-1083 Budapest, Hungary

3 Department of Physics, Institute of Physics, Budapest University of Technology and Economics,
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Abstract: One might think that a Lagrangian function of any form is suitable for a complete descrip-
tion of a process. Indeed, it does not matter in terms of the equations of motion, but it seems that this
is not enough. Expressions with Poisson brackets are displayed as required fulfillment filters. In the
case of the Schrödinger equation for a free particle, we show what we have to be careful about.
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1. Introduction

The least action principle has an efficiency that is difficult to overestimate in the
study of physical processes. The principle is axiomatic. Mathematically it is based on
the variational calculus that pertains to the extremal problems of motion integrals [1,2].
Lagrange original idea was to deduce the Newton’s laws from a “higher principle”. Today,
we consider that these desciptions are equivalent. The first step is to find the Lagrange
function, to which we obtain the equation of motion of the physical problem by applying
the extremization procedure. However, over the equations of motion or field equations, the
Lagrangian formulation involves more desired physical relations. We can explore inner
symmetries, conserved quantities of the process, the energy expressions, canonical variables
and conjugated pairs [3]. The identifiability of these relationships and quantities enables
the theory to become the basis of modern physics. The motivation of the present article is
the following. There are such opinions in the literature that all Lagrangians are equivalent,
producing the correct equations of motion [4,5]. We show that a careful examination of the
Poisson bracket formulation is required to be sure of the right choice because deriving the
correct equations of motion is only part of the solution.

A system can be described by a Lagrange function LV , by which the action S can
be obtained

S =
∫ t2

t1

LVdt, (1)

and it is extremal for the real physical path during the time evolution (t1 ≤ t ≤ t2).
Applying the calculus of variations we obtain the so-called Euler-Lagrange equations as
equations of motions. If Lagrangian LV depends on the coordinate q and its time derivative
q̇, i.e., LV = LV(q, q̇), the Euler-Lagrange equation is

∂LV
∂q
− d

dt
∂LV
∂q̇

= 0, (2)

Axioms 2023, 12, 706. https://doi.org/10.3390/axioms12070706 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms12070706
https://doi.org/10.3390/axioms12070706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://doi.org/10.3390/axioms12070706
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms12070706?type=check_update&version=1


Axioms 2023, 12, 706 2 of 8

which is a second order ordinary differential equation. In the case of the systems with
infinite degree of freedom (continua), the principle can be expressed by

δS = δ
∫ t2

t1

LdVdt = 0, (3)

where L is the Lagrange density function. The Lagrangian L may depend on the field
variable Ψ = Ψ(r, t) as a generalized coordinate, and its time Ψ̇, Ψ̈ and space ∇Ψ,4Ψ
derivatives (∇ is the gradient, 4 is the Laplace operator), i.e., L = L(Ψ, Ψ̇, Ψ̈,∇Ψ,4Ψ).
Then, the Euler-Lagrange equation is

∂L
∂Ψ
− ∂

∂t
∂L
∂Ψ̇
−∇ ∂L

∂∇Ψ
+

∂2

∂t2
∂L
∂Ψ̈

+4 ∂L
∂4Ψ

= 0. (4)

As a general rule, if the Lagrangian L contains a linear operator A acting on Ψ, then
the term

Ã
∂L

∂(AΨ)
(5)

appears in the Euler-Lagrange equation, where Ã is the adjoint operator to A. The A = Ã
means that the operator is self-adjoint. Here, we find the answer why it is impossible to
calculate a Lagrangian for e.g., first time derivative of variables without any mathematical
tricks. In general, we can say that for non-selfadjoint operators the Lagrangian can not be
constructed directly. There are some useful ideas to override the difficulties: e.g., intro-
ducing the dissipation potential [6–13] in mechanical, and [14–21] in tranport problems.
Many other modifications of variation methods exist to find relevant calculus to obtain the
correct equations of motion [22–42]. The duplication of the variables—introduction the
complex conjugted field variables—is also an applicable method in the case of Schrödinger
field [43,44], other quantum fields [45], moreover the transport equations such as Fourier
heat conduction [46–48]. A promising solution is usage of potential (generator) functions
in different ways for electrodynamics [49,50], for the field theory of thermodynamics [51],
or for dissipative mechanical systems [52]. In this method the potential functions gener-
ates the measurable fields. The potential based proceure is so effective that the canonical
quantization of the dissipative harmonic oscillator becomes possible [53].

Regardless of the method used, it is true that not only the derived equations of motion
(and their solutions) of the investigated system must be clear, but also that all related
concepts must be part of the coherent description [54–57]. In this article, we present a
well-known and interesting problem, which control points may be necessary for the correct
construction of the theory.

2. Lagrange Density Functions for the Schrödinger Field of Free Particles

We show some examples for the possible Lagrange density functions in the classical
quantum mechanics. It can be easily seen that the choice is not unique. The question is,
are they all suitable for further description? We will use the physically-mathematically
simplest example, the free quantum particle, to point out the background of the problem. It
is enough because, from a logical point of view, even one case is enough to reveal a faulty
construction. We can formulate different Lagrangians of a free quantum particle [4], e.g.,

L1 = − h̄2

2m
∇Ψ∗∇Ψ +

ih̄
2
(Ψ∗Ψ̇− Ψ̇∗Ψ), (6)

L2 = − h̄2

2m
∇Ψ∗∇Ψ− ih̄Ψ̇∗Ψ, (7)

L3 =
h̄2

2m
Ψ4Ψ∗ +

ih̄
2
(Ψ∗Ψ̇− Ψ̇∗Ψ), (8)



Axioms 2023, 12, 706 3 of 8

L4 =
h̄2

2m
Ψ4Ψ∗ − ih̄Ψ̇∗Ψ. (9)

Here, Ψ∗ is the complex conjugated variable to Ψ, and these are considered as inde-
pendent of each other. All of these give the same two Euler-Lagrange equations

ih̄Ψ̇ = − h̄2

2m
4Ψ (10)

ih̄Ψ̇∗ =
h̄2

2m
4Ψ∗, (11)

which are the Schrödinger equations. The real question is, are these Lagrangian functions equiv-
alent? We show that it seems somehow contradictory to specify with Equations (6) and (8).
It is enough to restrict our examination for the free particle because, in the case of any
conservative potential of V, the required VΨΨ∗ does not influence the exposition below.

3. Canonical Momenta, Hamiltonian, and Poisson Bracket Expressions

To develop the description of behavior of the Schrödinger field, we shortly discuss the
canonical formalism and the Poisson brackets. In general, the canonical momentum is

p =
∂L
∂q̇

, (12)

when the Lagrangian is L(q, q̇), it does not contain higher order time derivatives. In the case
of fields when L(Ψ, Ψ̇,∇Ψ,4Ψ) is without higher order time derivatives, the momentum
can be similarly written by

p =
∂L
∂Ψ̇

. (13)

When the Lagrangian depends on two independent variables (Ψ and Ψ∗ in Equations (10)
and (11)), there are two momenta

p =
∂L
∂Ψ̇

, and p∗ =
∂L

∂Ψ̇∗
. (14)

The Hamilton density function will be as it is usual

H = pΨ̇ + p∗Ψ̇∗ − L. (15)

The time evolution of a physical quantity F can be obtained by the Poisson bracket
expression, which means

Ḟ = [F, H], (16)

where F and H may depend on ϕi, ϕ∗i ,∇ϕi,∇ϕ∗i ,4ϕi,4ϕ∗i , pi and p∗i . Here, Ψ, p, Ψ∗ and
p∗ are considered independent variables. The Poisson bracket is

[F, H] =
δF
δϕi

δH
δpi
− δF

δpi

δH
δϕi

, (17)

where we apply the notations ϕ1 = Ψ, ϕ2 = Ψ∗, p1 = p and p2 = p∗, and

δ

δϕi
=

∂

∂ϕi
−∇ ∂

∂(∇ϕi)
+4 ∂

∂(4ϕi)
, and

δ

δpi
=

∂

∂pi
(18)

are the functional derivatives. In our cases we may expect that

Ψ̇ = [Ψ, H], ṗ = [p, H], (19)
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and

Ψ̇∗ = [Ψ∗, H], ṗ∗ = [p∗, H] (20)

are completed.

4. Discussion of Lagrangians

Now, let us examine the different versions of Lagrangians given by Equations (6)–(9)
from the viewpoint of the canonical formalism. We would expect that canonical variables
ensures the same correct Hamiltonians. This is a strong requirement since the Hamiltonian
relates to the energy of the system.
In the case of L1 the momenta are

p1 =
ih̄
2

Ψ∗, and p∗1 = − ih̄
2

Ψ. (21)

Applying Equation (15) the deduced Hamilton density is

H1 =
h̄2

2m
∇Ψ∗∇Ψ, (22)

by which we obtain the equation

Ψ̇ = [Ψ, H1] =
δΨ
δΨ

δH1

δp1
− δΨ

δp1

δH1

δΨ
+

δΨ
δΨ∗

δH1

δp∗1
− δΨ

δp∗1

δH1

δΨ∗
= − h̄

im
4Ψ. (23)

It can be seen that the result is not the Schrödinger equation, i.e., Equation (10) is not equal
to Equation (23). Similarly,

Ψ̇∗ = [Ψ∗, H1] =
h̄

im
4Ψ∗. (24)

We can try it in another way. Substituting Ψ∗ from Equation (21)

Ψ∗ =
2
ih̄

p1

into the Hamilton density (22), so we get

H1 =
h̄

im
∇p1∇Ψ. (25)

Then we obtain

Ψ̇ = [Ψ, H1] =
δΨ
δΨ

δH1

δp1
− δΨ

δp1

δH1

δΨ
+

δΨ
δΨ∗

δH1

δp∗1
− δΨ

δp∗1

δH1

δΨ∗
= − h̄

im
4Ψ, (26)

which is also incorrect, and of course this is the same as in Equation (23). The number 2
is missing from the denominator. It seems to us that there is no way to find the correct
Schrödinger equation. Calculating the time evolution of p we obtain

ṗ1 = [p1, H1] =
δp1

δΨ
δH1

δp1
− δp1

δp1

δH1

δΨ
=

h̄
im
4p1, (27)

and using the form of p by Equation (21) we can write

Ψ̇∗ =
h̄

im
4Ψ∗ (28)

Here, the number 2 is similarly missing from the denominator. This discrepancy is the
previously mentioned motivation of the work.

In the case of L2 the momenta are asymmetric

p2 = 0, and p∗2 = −ih̄Ψ, (29)
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the total momentum is in one of the canonical variable. The Hamiltonian is

H2 =
h̄2

2m
∇Ψ∗∇Ψ, (30)

which is equal to H1. Learning from the previous example, it is obvious to eliminate one of
the variables, e.g., Ψ, by which we get

H2 = − h̄
2im
∇p∗2∇Ψ∗. (31)

At this point we should calculate Ψ̇∗

Ψ̇∗ = [Ψ∗, H2] =
δΨ∗

δΨ∗
δH2

δp∗2
− δΨ∗

δp∗2

δH2

δΨ∗
=

h̄
2im
4Ψ∗, (32)

which is exactly the Schrödinger equation for Ψ∗

ih̄Ψ̇∗ =
h̄2

2m
4Ψ∗. (33)

Let us calculate ṗ∗2

ṗ∗2 = [p∗, H2] = −
h̄

2im
4p∗2 . (34)

Using the form of p∗2 from Equation (29) we obtain

ih̄Ψ̇ = − h̄2

2m
4Ψ, (35)

which is also correct. It seems that the only non-zero momentum resolves the problem.
It is easy to check by a short calculation that the case of L3 is similar to the (L1). The

momenta are

p3 =
ih̄
2

Ψ∗, and p∗3 = − ih̄
2

Ψ. (36)

The Hamilton density is

H3 = − h̄2

2m
Ψ4Ψ∗, (37)

by which we obtain

Ψ̇ = [Ψ, H3] =
δΨ
δΨ

δH3

δp3
− δΨ

δp3

δH3

δΨ
+

δΨ
δΨ∗

δH3

δp∗3
− δΨ

δp∗3

δH3

δΨ∗
= − h̄

im
4Ψ. (38)

One can recognize that the term

ih̄
2
(Ψ∗Ψ̇− Ψ̇∗Ψ) (39)

causes the problem in both cases, because it results the devided momenta.
In the last case, L4, the canonical momenta are asymmetric

p4 = 0, and p∗4 = −ih̄Ψ. (40)

The Hamiltonian density is

H4 = − h̄2

2m
Ψ4Ψ∗ = H4 =

h̄
2im

p∗44Ψ∗. (41)
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Now, we can calculate the Poisson bracket

Ψ̇∗ = [Ψ∗, H4] =
h̄

2im
4Ψ∗, (42)

which results the Schrödinger equation. Moreover, we obtain ṗ4
∗

ṗ∗4 = [p∗4 , H4] = −
h̄

2im
4p∗4 , (43)

which gives the Schrödinger equation for Ψ

Ψ̇ = − h̄
2im
4Ψ. (44)

That is correct, i.e., the there must be only one non-zero canonical momentum. The space
derivative terms keep intact the description.

5. Resolution of the Problem

As we see, the problem is with the “symmetric” cases, with the time derivatives in
the Lagrange term in Equations (6), (8) and (39). In contrast, the Poisson bracket of the
“asymmetric” Lagrangian term results the correct equations of motion. It is because one of
the canonically conjugate momenta, e.g., p, is zero, so the entire pulse of the space is in the
other momentum p∗. This total pulse takes part in the generation of the time evolution of
the relevant fields. From the point of view of the variational problem, the spaces Ψ and Ψ∗

are considered independent. However, physically they are not. Similarly, the momenta p
and p∗. They share the total impulse. On the other hand, it is also necessary to remember
that Hamilton means total energy. Thus, when we calculate the Poisson brackets, the effect
of Hamilton appears with a double weight. That is why division by two disappears. The
solution is to enter only half of the Hamiltonian in the Poisson bracketed expression. We
have shown this problem in a simple case. For complex tasks, the calculation of the Poisson
brackets can ensure the selection of the correct Lagrange function.

6. Conclusions

We can deduce the equations of motion from different Lagrangian functions. In gen-
eral, the canonical formulation and the construction of Hamiltonian allow a free choice
since the Poisson brackets result from the correct equations of motion. In the present article,
we point out a particular trap. We show the case of the free particle quantum motion,
the Schrödinger equation, in which we must restrict the construction. The wave function,
its complex conjugate, and derivatives formulate the time-dependent part. If both the
canonical conjugated momenta (pulses) are non-zero, the Poisson brackets do not serve
the required Scröndinger equations. If one of the momenta is zero, we obtain the correct
Scrödinger equation. The reason for the faulty solution is the physical situation that the
wave function and its complex conjugate are not independent fields. However, in the
calculus of variation, we consider these fields independent. The requirement of physical
independence is fulfilled if one of the momenta is zero. It means that the contradiction
disappears by the asymmetric choice in the time-dependent term of the Lagrangian. The
conclusion is that the Poisson brackets give a filter to get the correct Lagrangians.
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