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Abstract: This paper is concerned with collocation methods for one class of impulsive delay dif-
ferential equations (IDDEs). Some results for the convergence, global superconvergence and local
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collocation space to obtain high-order numerical methods. Some illustrative examples are given to
verify the theoretical results.
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1. Introduction

Impulsive differential equations appear to represent models of several real-life phe-
nomena. In recent decades, systems with impulse effects have arisen in control theory,
medicine, biotechnology, economics, population growth, etc. Some work on these systems
was presented [1-5]. In recent years, there has been increasing attention on the initial value
problem of IDDEs. The corresponding theory of the exact solutions of IDDEs has been
studied from different angles (see [6-12]): oscillation, stability, asymptotic stability and
exponential stability in some specific classes of IDDEs.

Collocation methods as numerical methods have a wide range of applications in the
treatment of integral-algebraic equations [13-16], Volterra integral equations [17-19] and
delay differential equations [20-22]. Specifically, the convergence of the collocation methods
has received a lot of attention, such as the convergence of collocation methods for weakly
singular Volterra integral equations [23], the superconvergence of collocation methods
for first-kind Volterra integral equations [24], the convergence of collocation methods for
Volterra integral equations [25], the convergence of multistep collocation methods for
integral-algebraic equations [16], etc. But to the best of our knowledge, there are no articles
referring to the convergence of the collocation method for IDDEs.

In this paper, we consider the following impulsive delay differential equation with
collocation methods:

t#kt,k=1,2,---,tel,

t=kt,k=1,2---, )
te[-1,0],

y'(t) = pty(t) +q9(t)y(t — 1),
Ay = By,

y(t) = ¢(b),

where I := [0, T], Ay = y(t+) —y(t), y(tT) is the right limit of y(¢), p: > R,q: [ - R
are two given functions and sufficiently smooth, T > 0 is a positive constant, ¢ is a
continuous function on [—7,0] and y(¢) denotes the left-hand derivative of y(t).

The rest of the present paper is organized as follows: Firstly, the existence and unique-
ness of collocation methods are presented in Section 2. In Section 3, the global convergence
of collocation methods is analytically derived. Following that, Section 4 gives the global
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and local superconvergence of properties. Finally, two numerical experiments are given in
Section 5.

Definition 1 (Jurang Yan [8]). The function y : I — R is said to be a solution of system (1) when
the following conditions are satisfied:

Lo y(t) =¢(t),tc[-7,0);

2. fort e It # kt, the function y(t) is differentiable and y' (t) = p(t)y(t) +q(H)y(t — T);

3. the function y(t) is left-continuous in I, and if t € I and t = kt, then y(+*) = (1 + By)y(t),
y(t7) = y(t);

4. By € (—00,—1)U(—1,+400) are constants, k =1,2,- - -.

2. Collocation Methods

For ease of notation, we assume that T = Nt, N is a positive integer. All kT,
k=1,2,---,N, are chosen as numerical nodes to ensure the convergence of collocation
methods. Define a positive integer p > 1 and the stepsize h = % corresponding to the given

intervals (t,, t,+1). tn = nh are fixed time. The global mesh I, on I is defined by
Iy={th: 0=ty <t <--- <ty,=T}.
Firstly, we will choose the collocation points as follows:
Xy ={thi=th+ch:0<c; < - <cp<1},

where {¢;} indicates a series of collocation parameters. Define 0y, := (t5, t;,+1]. The exact
solution can be approximated by a collocation solution in the piecewise polynomial space

N Ao =0 ift £kt,tel
S(O) I = . SV 7 ’ ' 4
m’ (In) {U v, "\ Av=Bw, t=kt

where 77, denotes the space of all real polynomials of degree not exceeding m (see [17,21]),
and Av = v(t") — v(t). The collocation solution uy, is the element of the piecewise
polynomial space that satisfies the following equation:

(1) = p(Dun(t) + q(Bunlt 1), t £ kT tE X,
Auy, (tkp) = Buy, (tkp)’ k=1,2,---, 2)
up(t) = ¢(t), te[-1,0]

where u;,(t) and u;l(t) are left-continuous.
Setting Y}, ; := u;l (tn +cjh), we have

y (b +0h) = Y Li(0)Y, ), )

M

where L;j(v) denotes the following Lagrange fundamental corresponding to the collocation
parameters {c;} (see [17,21]):
mo v —C
Liw)= IT 224
i=1,i#j Cj—¢C

Integrating (3), we can obtain

Mh(tn + Uh) = uy (t;) +h i IB]'(U)Yn/]',U € (0, 1], (4)
=1
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where
v
Bj(v) = / Li(s)ds
0
According to the definition of SES ) (I;), we have
u,(t , t kT/k:LZ,"‘,
un(£5) = § 1 (tn) ¥ )
(1 + Bk)uh(tn), t, = kt.
By (2) and (4), we obtain
Yn,i = p(tn,i)uh(tn,i) + q(tn,i)uh(tn,i - T)
m
= p(tui) [uh(ti) +h ) Bi(v)Yu,
i=1 (6)

7

+q(tni) luh (ti—p) +h ; Bi(v)Yu_p,

]

where a;; := B;(c;). Let
~n = diag(p(tn,i)),A = (ai]-) € L(Rm), P, = pnA/

Qn 1= diag(q(ts)), A = (a;7) € L(R™), Qu := QuA,

T

B(v) := (B1(v), B2(), -, Bm(0)) ", Yo 1= (Y1, Yo+, Yum) 0= (1,‘ 5 ,1) :
Then

[Imxm - hpn]Yn = [ﬁnuh (t,—f) + Qnuh (tf{,p)]e + hQnYn,p. (7)

When the solution Y}, has been found by (6), the collocation solution on the interval (¢, t,, 1]
is determined by

up[(ta + oh)] = uy, (87) + 1B (v) Yu, v € (0,1]. ©)
According to [17], the following theorem is given without proof.

Theorem 1. There exists an h > 0 such that for the mesh diameter h belonging to the interval

(0,h), (7) has unique solutions Y, € R™. Then, the collocation solution u; € S,(,? )(Ih) for
impulsive delay differential Equation (1) is unique and is given by (8) on the subinterval (t,, t;11].

3. Global Convergence

In the following section, the global convergence of the collocation solution for IDDEs
will be analyzed.

Theorem 2. If p,q € C™(I) and the collocation solution uy, for (1) is defined by (2), then there
exists two constants Cy and Cy which are independent of h, satisfying

Iy = 0l = maxty(t) =, (8)] < o[y ", ©)
Hy' - u;,Hoo = suII)|y’(t) - “Z(t)‘ < Cluy(”‘“) H ", (10)
te o

for h € (0,h) and any collocation parameters with 0 < ¢1 < -+ < ¢y < 1.
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Proof. Assume that p,q € C"(I) implies y € C"*1(¢;,) and ¥’ € C™(0y). The collocation

error ey (t) := y(t) — uy(t) satisfies the equation

ep(t) = p(Hen(t) +q(t)en(t = 1), t#kt, te€X),

with e, (t) = 0,t < 0. By Peano’s theorem [17], we can obtain that
Y (t + 0h) ZL 0)Zy; +H"RU, (0), ve (0],
where

1
RErBﬂ,n(”) = / Km(vrz)y(mﬂ)(fn +zh)dz,

Kin(v,2) :_(mil)!{ v—2z)" ZLk )k —2) 1},06(0,1],

and Z,, ; := y' (ty,;). Integrating (12), we have

y(ta +oh) =y () +h2ﬁ] )Zn,j + " Ryi1,0(0),0 € (0,1],

where
Ry1,n( /RS}A ,
and
- {?itl)/Bwy(tn), M

Lete, ; := Z,; — Y,;. Comparing (4) and (13), we obtain

en(tn +vh) = e, (t) +h 2 Bj(0)en; + " Ryyi1,4(0),0 € (0,1],

where

e (t+) _ eh(tn)l tn #kt,k=1,2,--+,
e (1+ By)ey(tn), tn =kt

Due to (3) and (12), we can obtain that
m

e;l(tn +oh) =) Li(v)e,j+ hmR(l)mH,n(v),v € (0,1].
j=1

(11)

(12)

(13)

(14)

(15)

(16)
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By the definition of ¢, ; and (14), we obtain

En,i = ]//(tn,i) - uil(tn,i)
= p(tni)en(tn +vh) +q(tyi)ey[(tn +vh) — T]

7!

tn,i)en(tn + 0) 4 q(ta,i)en [ (tn—p + 0h) ]

= p(tni) )
m
= p(tni) [eh (E5) +h) ajen+ hmHRmH,n(Ci)]
=1

(17)
- 1
+q(tni) en (frf_p) + 1) ajien_pi+ " Ry n—p(ci) |,
p=i
ie.,
(Lo = WPaJen = [ Puen(t5) + Quen (5=, ) [ e + H" 1 PuRos 1, )

+hQn5n7p + pmtl Qan—H,n—p/

where Ry 11, = (Ryg1,n(c1), - .,Rm+1’n(cm))T and g, := (snll,sn,z,...,sn,m)T. For ease
of notation, we assume n = pk + (I = 1,2,...,p), then t, =t € (kt, (k+1)7]. By (14)
and (15),

en(ty)

en (t;kH) = Wip1en (tpk+l) = Wir1ep (tpk+171 + h)

Wit [eh (fpk+l 1) +h Z bie prri—1,j + H" T Rypga piey1-1 (1)]
=

-1
o= Wi [eh< pk) + Z th&]—l— Z ht Ryy1,(1 )]

zpk] i=pk

= Wiy | (1+ Be)en (1) + ¥ hzbsl,+ 2 R i )]
i= pk j=
= =W H(l + By) Z h Z biei i+ Z hmHRmH,z‘(l)]
=1 i—0 =1 i=0

k

2p 1 m 2p—1
Z hzb81]+ Z hm+ Rm+1z )]

kp—1 m kp—1
o+ W (1+B) | Y ths,,+ Y. TRy (1)
i=(k-1)p j= i=(k=1)p
pktl-1 pk+1-1
+Wk+1[ Y hY b+ ) hmHRmH,i(l)]/
i=kp  j=1 i=kp

where b; := B;(1),¢,(0") = 0, and

W = 1+ B, ifl=p, (19)
1, I #p.
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Hence,

h (ti P) eh(t;;(kfl)ﬂ) = Wien (fp(k—1)+z> = Wkeh(t (k—1)+1-1 +h)

k=1
= =W, [[(1+By) Zh2b51]+zh Rint,i( )1
d=1
k=1 2p=1 m 2p—l
JrI/vkl_[(1+Bd Zh2b81]+2hm+Rm+11 )‘|
3 = (20)
kp—p—-1 kp—p—1 1
ot We(l4+Beon) | ) B bjeii+ )}, W Rugai(1)
i=(k—=2)p j=1 i=(k=2)p
pk—p+l-1  m pk—pti-1
Wl X R b+ ) hmHRmH,i(l)] :
i=kp—p  j=1 i=kp—p

where b := (by, by, -, bm)T. In view of Theorem 1, we can easily obtain that the matrices
(Im — hP, — hQy) have bounded inverses whenever 1 € (0, /), and there exists a constant
Dy < oo such that
|t = 12w 1) Y| < Do =012,
y (18),
llenlly < D0||hm+1pn Rit1,n + K"t Qan+1,n—p
_ m p—1 .
Z h Z b]'81',]' + Z | i Rm+1,i(1)
i=0  j=1 i=0

2p—1 m 2p—1

Yo nY bieii+ Y HTIR,,(1)
i=p j=1 i=p

=1

k
+ PreWia [T(1+ By)
i=2

B kp—1 m kp—1
+ ~~+PneWk+1(1+Bk)[ Z hzbgz]-l- Z s Rm+lz(1)]

=(k-1p j= i=(k=1)p
_ pk+1-1 pk+1-1
+PneWk+1[ Yo hY b+ Y, W Ry )1
i=kp  j=1 i=kp
k-1

Zhibsu""zh m—l—ll )‘|

+ QneWk H(l + Bd
d=1

201 m 2p—1
Zh2b81]+2hm+ Ryi1i( )1

k—1
+ QueW, [ T(1 + By)
d=2

_ kp—p=1  m kp—p—1 .
+ o 4 QueWr(1+ Br_q) Z h Z bjei,j + Z hmt Rm-i—l,i(l)
i=(k=2)p j=1 i=(k=2)p
~ pk—p+l-1 pk—p+1-1
+ QueWj [ Y. hY b+ ) hm+1Rm+1,i(1)] 1.
i=kp—p j=1 i=kp—p

Because |B;|(i=1,2,...,k) is finite, there exists a constant R(R > 1), satisfying
., (1 +B,,,)‘ <R(d=1,2- k). Let

7

(m+1) ‘
(e )

Py := [P(0)aor Q0 2= 19(8) o M1 2= |3
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v —
Ky := max / |Kin(v,2)|dz, b := max|b;|.
vel0,1] Jo (/)

Consequently, we have

n—1 n—1 _
llenlls < D0|Wk+l|RHpneH1 2 h‘bTei + Z hm+1|Rm+1,z‘(1)| + DOhmH‘ PuRyy1,n .
=0 i=0
. n—p—1 n—p—1 _
+ Do| Wi |R|| Qe [ > hfpTel 4 Y K Ry i (V)] |+ Dol QuRonsin
i=0 i=0
B n—1 n—1 B
< Dol Wi [R[[Paelly | X2 h[oTei] + 1 1Y Ry s (V)] | + Dol™ | PR,
i=0 i=0
B n—1 n—1 B
=+ DO|Wk|R||QneH1 [2 h’bTEi + Z hm+1|Rm+1,i(1>| + DOhm+1||Qan+1,n7p||1
i=0 i=0
n—1
< Do max{|Wil, [Wi1[}m(Po + Qo)Rb ) hlle;lly
i=0

n—1

+ Dy max{|Wk|, W1 |}T}’l(P0 + Qo)R ( Z h) Ky My B™
i=0

+ Dom (P + Qo) MK M1 h" !

n—1
< Dom(Py+ Qo)R?b Y_ hleil;
i=0

+ (Do (Po + Qo) R*TKy, + Dom(Po + Qo) mKyn T ) My 1h™
n—1
=170 Z hleill; +v1Mpg1h™,
i=0
with obvious meaning of 7, ¥1. Due to the discrete Gronwall inequality [17], we obtain
lenlly < 11Mpsah™ exp(10T) =: BMy1h™,n=0,1,-- -,
and

-1 n—1
en(E))] < RIWea BT el +R|wk+lyhm(z h) KMy,
= i=0

n
i=0
By (14) and (16),
len(tn + 0h)| < Jen (t7) | +hBllenlly + " KMy i1
i=0 i=0
+hBllenlly +H" T KMo
n—1 B n—1 B
< [R|Wk+1| (Z h) bB + R|Wy 1] (Z h) Ky + hBB + hKy
i=0 i=0

< [RZTEB + R2TK,, + TBB + TKm] My h™ =: CoMyp s 1h™,

n—1 n—1
< RIWia[B Y Hlleilly + RIWi| (2 h) KMy 1"

Myl

and

‘e;(tn + vh)’ < ABMypit i + H" Ky My 1

= (AB 4 Ky )My 1" (21)
= Cle+1hm,
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where

B := max||B;|

A= maxHLjH
() () *©

The proof of Theorem 2 is complete. []

4. Global Superconvergence and Local Superconvergence

In this part, the global superconvergence of the collocation solution is discussed first
and the local superconvergence is analyzed later.

Theorem 3. Let the given function in (1) satisfy p,q € C4(I),¢ € C*+[—7,0],d > m + 1.
Assume that the m collocation parameters {c;} are subject to the orthogonality condition

1 m
To ::/0 [ (s—ci)ds =0. (22)
i=1
Then, the corresponding collocation solution uy, on I satisfies the following conditions:
ly = unllo < Coh™*, (23)
Iy — . < o™ @

where h € (0,h), Cy and Cs are two constants which are independent of h.

Proof. The (24) can be obtained with (21). The following discussion is for (23). We define
the defect J;,(t) by

() = —u (1) + p(D)un(t) + (Dt — )t € 1. 5)
By (1), we can easily obtain the following form:
on(t) = e, (t) = p(t)en(t) —q(B)en(t —7), t € 1, (26)
and ¢;,(t) = 0 for all t € Xj,. Due to Theorem 2, we can obtain that
[6n]lee < CtMy1h™ + PoCoMyy1h™ + QoCoMyy1h™ =: D1M; 1 0™, (27)

forany c;in {c;:i=1,2,---,m,0 <¢; <1}.
Here, ej,(t) can be treated as the solution of the following equation:

e, () = p(t)en(t) +q(t)en(t — ) +o4(t), t#kr,tel,
ep(tt) = (1 + By)en(t), t =kt, (28)
en(t) = t e [—1,0].

Let r(t,s) denote the resolvent of (1)

r(t,s) == exp (/St p(v)dv),r € C"(D),

where D := {(t,5) : 0 < s <t < T}. So, for t € (0, 7], we have

en(t) = [ 165)aS)ents = ) +0,(5))s,
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for t € (1,27], we obtain

quw:u+BnmuwAUuwxww%@—ﬂ+wﬂwws
+/ r(t,s)(q(s)en(s — T) + y(s))ds,

for t € (27,37], we can obtain that

ep(t) = (14 Bo)r(t,27) {(1 + By)r(27,7T) /OT r(t,s)(q(s)en(s — T) + oy(s))ds
t

—|—/2T t,s)(q(s)e(s —T) + (s ))ds] +/ r(t,s)(q(s)en(s —T) + oy (s))ds,

2T

fort € (kt, (k+1)7],e;(t) can be expressed by

en(t)
= r(t, k1) 1_[ (1+ By) H r(ut, (p—1)71) /OTr(T,s)(q(s)eh(S —T) 4 dy(s))ds
d=1 u=2
k k T
(k0 [T+ B) Tl (6= 1)7) [ res)ats)en(s —7) + ()
d=2 u=3 T
+ [P
kT
+r(t, k) (1+ By) /( 1y ) @)en(s =)+ 64(5))ds

t
+ ; r(t,s)(q(s)en(s —T) + 8y (s))ds
T
For ease of notation, we assume thatn = pk+1,(1=1,2,...,p)and t = t, + vh = tpkr1 +
oh € (kt, (k+1)7],v € (0,1]. Obviously, there exists a constant R such that

k+1

[Tr(pe, (p—1)7)
u=1

<R

From the above analysis, we have the following inequality:
e (1) RR/ |r(t,s)(q(s)en(s —T) + dy(s))|ds, (29)
where fo r(t,s)(q(s)en(s — T) + 9y (s))|ds can be expressed as
/| r(t,s)(q(s)en(s —T) + 9y(s))|ds
= ;} h/o |r(t, t; +sh)(q(t; +sh)ey(t; +sh — T) + 6,(t; + sh))|ds
iz
+ h/ov (£, tn + 5H) (4(b + sh)en(tn + s — T) + 84 (n + sh))|ds

n—1 1 v
— Zh/o <pn(ti+sh)ds+h/o by + sh)ds.
i=0
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Now, using an interpolatory m-point quadrature formula with collocation parameters {c;}
to approximate fol ¢n(t; + sh)ds, we have

/01 Pn(t; + sh)ds = ]f% bin (ti + cjh) + EL(v) = Ej(0), (30)
where v € (0,1](I < n) and Ef, indicates quadrature errors. So, we have
e s)@ents = 0 + 6165l
= Z hE! (v +h/ ¢n(ty + sh)ds. (31)

By the orthogonality condition (22) and the Peano theorem, it is obvious that quadrature
errors satisfy

EV (o) < @t oe o1)i<n -1, (32)
where Q; are constants. According to (29), (31) and (32), we can obtain
len(t)]

n—1 . _ v
<RR'Y_ hE!,(v) + RRh / (b + sh)ds
i=0 0

n—1 X _ v
RY hEi(0) + RRh/ 17 (t, b + Sh) Sy (tn + sh) |ds
i=0 0

%
+RRA / 17 (£t + sH)q(tn + sh)en(ty + sh — T)|ds
0

n—1
R Z ]’lQl‘herl + RRhl’oH(Sh ||oo + RRh70170COMm+1hm,
i=0

where ry = max fo r(t,s)|ds, 7o = rrtlalx\q(t)|. By (27), we have
€

i=0

n—1
|€h(t)| < RRQ ( Z h) pmtl + RRVoDle+1hm+l + RRh7070COMm+1hm

< (RRQT + RRroDy My 41 + RRrofgCoMyy 41 ) ™!
= Czhm+1.

Here, Q := max{Q; : 0 < i < n — 1}. The estimation (24) follows from (26). The proof is
completed. O

Theorem 4. Assume that the solution of (1) lies in C"*(I)(1 < k < m) and the m distinct
collocation parameters {c;} are selected such that the general orthogonality condition (33) holds,
with Ji # 0,

1 m
Jo ::/ SUH(S_Ci)dS:01020/1/"/’(_1‘ (33)
0 g

Then, for all meshes I, := {t, t1,...} with h € (0,h), the collocation solution uy, with the above
collocation parameters {c;} satisfies

max{|y(t) —up(t)|: t € I} < C4hm+k, (34)
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where Cy is a constant and independent of h.
Proof. When v = 0, (31) is changed into

/\ (t,5)(q(s)en(s — T) + Oy (s ]ds—ZhEl (35)

Due to the general orthogonality condition (33) and the Peano theorem for quadrature, we
can obtain

B (0)] < @ hi<n -1, (36)

Then, on meshes I, by (31), we have
len () RR/ [r(t,s)(q(s)en(s —T) + dp(s))|ds

) _n—-l1
R 2 hEL(0) < RR Y hQin™**
i=0 i=0 (37)
n—1
< RRQ ( Yy h) Wtk < RRQTH™HE
i=0
1= Cyh™ .

The proof is completed. [

5. Numerical Experiments

In the last section, two examples are given to illustrate the conclusions. Consider
two IDDE:s as follows:

y(t)=-2y(t) +y(t-1), t#ktel,
Ay = 02(—1)ky, t=k (38)

y(t) =1, te[-1,0],

y(t) = =2ty(t) +ty(t—1), t#ktel,
Ay = —0.2y, t=k, (39)

y(t) =1, t e [-1,0].

In Figure 1, the image of the 2-Lobatto IIIA collocation solution with p = 2 for (38) is drawn.
In Figure 2, we use the same method to draw the image for (39).

Tables 1 and 2 illustrate the ratios of the absolute errors between p = 8 and p = 16
at non-impulsive nodes and impulsive nodes using four different collocation methods for
(38). Tables 3 and 4 illustrate the ratios of the absolute errors between p = 8 and p = 16
at non-impulsive nodes and impulsive nodes using four different collocation methods for
(39). We can obtain that the convergence orders of the 2-Lobatto IIIA, 2-Radau IIA , 2-Gauss
methods and 3-Gauss methods are 2, 3,4 and 6, respectively. The ratios indicate that our
numerical process can preserve the convergence order of collocation methods for IDDEs.
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Table 1. The absolute error of 2-Lobatto IIIA and 2-Gauss methods for (38).

2-Lobatto IITA 2-Gauss
P t=05 t=1 t=05 t=1
2 1.7240 x 102 1.2168 x 102 2.7472 x 10~% 2.0228 x 10~%
4 3.9397 x 1073 2.8676 x 1073 1.4879 x 1075 1.0948 x 10~
8 9.3972 x 10~% 7.0782 x 10~4 1.0017 x 10~ 7.3700 x 10~7
16 2.3991 x 10~* 1.7640 x 10~ 6.2500 x 108 4.6000 x 108
Ratio 3.9170 4.0125 16.0272 16.0217
Table 2. The absolute error of 2-Radau ITA and 3-Gauss methods for (38).
2-Radau ITA 3-Gauss
P t=05 t=1 t=05 t=1
2 2.1397 x 1073 1.5676 x 1073 1.8968 x 106 1.3955 x 106
4 2.3972 x 10~* 1.6764 x 1074 2.8791 x 10~8 21183 x 10~8
8 3.7523 x 107> 2.7605 x 107> 4.4659 x 10~10 3.2858 x 10710
16 4.8319 x 10~° 3.5550 x 10~° 6.9650 x 10712 5.1240 x 10712
Ratio 7.7657 7.7651 64.1195 64.1261
Table 3. The absolute error of 2-Lobatto IIIA and 2-Gauss methods for (39).
2-Lobatto IITA 2-Gauss
P t=05 t=1 t=05 t=1
2 1.0600 x 102 1.6060 x 102 1.6962 x 10~4 2.6848 x 10~*
4 2.7996 x 1073 3.8603 x 1073 1.0462 x 10~ 1.5195 x 10~
8 6.9520 x 10~4 9.6125 x 10~4 6.5040 x 10~7 9.2360 x 10~7
16 1.7417 x 10™* 2.3971 x 10~* 4.0600 x 10~8 5.7300 x 10~8
Ratio 3.9915 4.0101 16.0197 16.1187
Table 4. The absolute error of 2-Radau IIA and 3-Gauss methods for (39).
2-Radau ITIA 3-Gauss
P t=05 t=1 t=05 t=1
2 1.4042 x 1073 1.5269 x 103 3.1785 x 10~7 4.0601 x 10~°
4 1.9795 x 10~* 21244 x 10~* 8.6487 x 10~ 6.6899 x 10~8
8 2.5980 x 107> 2.8380 x 107> 1.4918 x 1010 1.0551 x 10~°
16 3.3200 x 10~ 3.6800 x 10~° 2.3850 x 10~12 1.6521 x 10~ 11
Ratio 7.8253 7.7120 62.5489 63.8865

e

Figure 1. Two-stage Lobatto IIIA for (38).
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Figure 2. Two-stage Lobatto IIIA for (39).
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