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Abstract: Detecting small targets and handling target occlusion and overlap are critical challenges in
weld defect detection. In this paper, we propose the S-YOLO model, a novel weld defect detection
method based on the YOLOv8-nano model and several mathematical techniques, specifically tailored
to address these issues. Our approach includes several key contributions. Firstly, we introduce omni-
dimensional dynamic convolution, which is sensitive to small targets, for improved feature extraction.
Secondly, the NAM attention mechanism enhances feature representation in the region of interest.
NAM computes the channel-wise and spatial-wise attention weights by matrix multiplications and
element-wise operations, and then applies them to the feature maps. Additionally, we replace the
SPPF module with a context augmentation module to improve feature map resolution and quality.
To minimize information loss, we utilize Carafe upsampling instead of the conventional upsampling
operations. Furthermore, we use a loss function that combines IoU, binary cross-entropy, and focal
loss to improve bounding box regression and object classification. We use stochastic gradient descent
(SGD) with momentum and weight decay to update the parameters of our model. Through rigorous
experimental validation, our S-YOLO model demonstrates outstanding accuracy and efficiency in
weld defect detection. It effectively tackles the challenges of small target detection, target occlusion,
and target overlap. Notably, the proposed model achieves an impressive 8.9% improvement in mean
Average Precision (mAP) compared to the native model.

Keywords: defect detection; S-YOLO model; mathematical techniques; binary cross-entropy; stochastic
gradient descent

MSC: 68T45

1. Introduction

Welding automation technology and weld defect detection technology are two key
technologies in the modernization of the manufacturing industry. They can realize the
standardization, automation and intelligence of welding process, improve production
efficiency and quality, reduce cost, and adapt to the needs of large-scale production. At
present, the commonly used detection methods in weld defect detection tasks are non-
destructive testing and image processing. Non-destructive testing methods use physical
signals to detect the internal structure of welds, but they have limitations such as expensive
equipment, complex operation, and high environmental requirements. Image processing
methods use image processing and machine learning techniques to extract features and
detect targets from weld surface images, which have lower cost and higher flexibility, but
also have limitations such as sensitivity to parameter and feature selection, instability to
noise and illumination changes, and poor adaptability to new or complex types of defects.
The rapid development of deep learning in recent years brings new opportunities and
challenges for weld defect detection. Deep learning techniques can show powerful feature
learning and classification capabilities by using a large number of samples [1], and can
automatically learn high-level semantic features from images to detect defects.
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Deep learning has found important applications and developments in the detection
field in the 21st century [2]. Using convolutional neural networks and other structures, it
achieves efficient and robust defect detection, which is superior to traditional feature-based
methods. AlexNet is an eight-layer convolutional neural network model [3] which won the
ImageNet image classification competition in 2012 [4], leading the deep learning revolution
in computer vision. R-CNN is a region-based convolutional neural network model [5,6],
which first applied deep learning to object detection in 2014 and significantly improved
performance on the PASCAL VOC dataset, opening a new era of deep learning-based object
detection, but also had drawbacks such as slow speed, complex training, and large memory
consumption. Fast R-CNN improved the training process of R-CNN [7], using fully con-
nected layers instead of support vector machine classifiers and bounding box regressors
and introducing an RoI pooling layer to achieve end-to-end training. Faster R-CNN is an
improved R-CNN model, which uses RPN to generate target candidate regions and shares
convolutional layers with feature extraction network, greatly improving the speed and
accuracy of object detection, laying the foundation for two-stage algorithms. The YOLO
algorithm transforms object detection into a regression problem [8], using a convolutional
neural network to directly predict the category and location of objects, eliminating the
process of generating candidate regions. The YOLO algorithm has advantages such as
fast speed, strong generalization ability, and low background false detection rate, but also
has disadvantages such as spatial constraints, difficulty in expansion, and inaccurate local-
ization. YOLOv1 algorithm pioneered single-stage algorithm, providing a new research
direction for the object detection field.

In recent years, Mask R-CNN, RetinaNet, CornerNet, and more versions of the YOLO
algorithm have promoted the further expansion of deep learning techniques. These meth-
ods have proposed some novel and effective ideas and techniques based on the original
ones, expanding the scope and difficulty of detection tasks. Mask R-CNN [9] adds a
segmentation branch on top of Faster R-CNN to achieve simultaneous object detection
and instance segmentation. RetinaNet addresses the problem of positive–negative sample
imbalance in single-stage detection techniques by proposing a novel loss function—Focal
Loss—which significantly improves the accuracy of single-stage detection techniques. Cor-
nerNet [10] is a method based on the keypoint detection technique that uses two keypoints
to represent the top-left and bottom-right corners of an object, then uses an embedding
vector to represent the association between those two keypoints. The main advantage
of CornerNet is that it does not require predefined Anchor boxes or non-maximum sup-
pression (NMS). The YOLO series of algorithms are efficient and practical single-stage
object detection frameworks that started with YOLOv1 and have gone through multiple
improvements and updates up to YOLOv8 [11–18], covering a variety of the latest network
designs, training strategies, testing techniques, and quantization and optimization meth-
ods, building a series of differently scaled deployment-ready networks to adapt to diverse
use cases and scenarios. Some of these methods have been applied to UAV-based object
detection tasks, such as target object detection [19] and weed detection [20], demonstrating
their effectiveness and robustness in challenging aerial scenarios.

This paper proposes a weld defect detection algorithm based on the S-YOLO model,
which segments and classifies weld images, achieving efficient and accurate weld de-
fect detection and evaluation. The S-YOLO model is improved in many aspects from
YOLOv8-nano, mainly including using ODConv, the NAM attention mechanism, a con-
text augmentation module, CaraFe upsampling, and Wise-IoU techniques to improve the
model’s feature extraction, fusion, and regression capabilities. This paper verifies the effec-
tiveness of the algorithm through experiments and compares it with other object detection
models. The organization of this paper is as follows:

(1) The introduction part expounds the research background and significance of weld
defect detection, reviews the development history and application fields of deep
learning, and focuses on the principles and characteristics of the YOLO series of
algorithms;
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(2) The related work part analyzes the network structure and optimization strategies of
the YOLOv8-nano model, as well as its application effect and existing problems in
weld defect detection tasks;

(3) The S-YOLO model design part explains in detail the improvement ideas and im-
plementation methods of the S-YOLO model, including the improvement of input
image, feature extraction, object detection, loss function, and other aspects, and gives
corresponding theoretical analysis and experimental verification;

(4) The experiment and analysis part shows the experimental results and evaluation
indicators of the S-YOLO model on public datasets, compares and analyzes it with
the YOLOv8-nano model and other related methods, and discusses the advantages
and disadvantages of the S-YOLO model;

(5) The conclusion part summarizes the main work and innovation points of this paper,
and points out the further work to be done next.

2. Preliminary
2.1. YOLOv8-Nano Model

This paper aims to design and implement a more efficient weld defect detection
algorithm to improve the automatic detection capability of welding quality and promote the
development of welding inspection integration production. To this end, this paper selects
the YOLOv8 algorithm’s nano model [16] as the original model, which is a regression-based
object detection method that can quickly and accurately predict the location and category
of objects in images and support multiple visual tasks. When selecting the YOLOv8-nano
model, this paper considered the requirements of the weld defect detection task for accuracy,
robustness, and generalization: accuracy requires the model to accurately locate, identify,
and classify defects in weld images, providing a basis for quality control and defect repair;
robustness requires the model to maintain stable detection performance under different
welding environments and conditions without being affected by interference factors and
change factors; generalization requires the model to generalize to different weld image
datasets, avoiding overfitting or underfitting problems, while improving the model’s
universality and portability. The YOLOv8-nano model is the lightest model in the YOLOv8
algorithm, being the one which can effectively identify and locate various defects (such
as cracks, pores, slag inclusion, etc.) produced during the welding process. Its network
structure mainly consists of the following parts:

(1) Backbone: Backbone is the part that extracts image features. YOLOv8 uses a new
backbone network, which consists of multiple C2f modules [16]. The C2f module
has a structure similar to CSPNet [21], which enriches the model’s gradient flow and
feature expression ability using more skip connections and additional Split operations.
The output of Backbone has three scales, corresponding to P3, P4, and P5 feature
maps;

(2) Neck: Neck is the part that fuses features of different scales. YOLOv8 uses an SPPF
module [16]. The SPPF module is an improved version of the SPP module, which
performs spatial pyramid pooling in a serial and parallel way, increasing the receptive
field and multi-scale information of feature maps. The output of Neck also has three
scales, corresponding to P3, P4, and P5 feature maps;

(3) Head: Head is the part that predicts object category and location. YOLOv8 adopts
decoupled head and Anchor-Free strategy. Decoupled head is used to predict clas-
sification and regression separately, reducing parameter amount and computation
amount, avoiding interference between classification and regression. Anchor-Free
strategy does not use predefined Anchor boxes to match targets, but rather to predict
target center point, width, height, angle, and other information on each pixel point,
simplifying the training process and improving the detection effect. The output of
Head has two branches: one is the classification branch, which outputs the probability
of each pixel point belonging to each category; the other is the regression branch,
which outputs the target box parameters corresponding to each pixel point.
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2.2. Problems with YOLOv8-Nano Model for Weld Defect Detection

The YOLOv8 algorithm’s native network structure shows excellent performance on
multiple visual tasks, including image classification, object detection, and instance seg-
mentation. However, for the weld defect detection task specifically, this algorithm has the
following problems:

(1) The YOLOv8 algorithm adopts the C2f module to enhance channel dependency
between feature maps. The C2f module is a channel attention mechanism module that
can allocate weights according to correlation between different channels. However,
the C2f module only considers dependency on the channel dimension and does not
consider dependency on the spatial dimension. Considering the high requirement of
the weld defect detection task for spatial information, it needs more comprehensive
and balanced consideration of dependency on the channel dimension and the spatial
dimension;

(2) The YOLOv8 algorithm adopts the SPPF module to fuse feature maps of different
scales. The SPPF module is a spatial pyramid pooling module that can extract multi-
scale features and enlarge the receptive field. However, the SPPF module also causes
semantic differences and spatial offset between feature maps, which affects feature
fusion effect. Considering the high requirement of the weld defect detection task for
feature fusion, it needs a more effective and adaptive feature fusion method;

(3) The YOLOv8 algorithm adopts an upsampling layer to upsample low-resolution
feature maps to high-resolution ones. This can enhance spatial information of feature
maps but also cause blurring and distortion of feature maps, thus damaging detail
information and boundary information. Considering the high requirement of the
weld defect detection task for details, it needs a more accurate upsampling method
with higher fidelity;

(4) The YOLOv8 algorithm adopts CIoU as its loss function to optimize target box re-
gression. CIoU is an improved version of the IoU loss function, which can compre-
hensively consider overlap area, center distance, aspect ratio, and other factors to
measure similarity between target boxes. However, the CIoU loss function does not
consider possible differences in angle between target boxes, which affects target box
localization accuracy. Considering the high requirement of the weld defect detection
task for target box angle, it needs a more flexible and robust way to consider similarity
between target box angles;

(5) The YOLOv8 algorithm uses fixed size and shape convolution kernels, without intro-
ducing any mechanism to enlarge receptive field, which results in a small receptive
field and inability to capture more complex targets.

Therefore, this paper optimized the YOLOv8-nano model according to these problems
and proposed the S-YOLO model for small target weld defect detection.

3. S-YOLO Model Design

This paper proposes an improved YOLOv8 model, called the S-YOLO model, to meet
the difficulty of small target detection posed by the weld defect detection task. Small targets
only occupy a few pixels in the image and YOLOv8’s network structure performs multiple
downsampling tasks on the input image, resulting in reduced resolution of deep feature
maps and inability to effectively extract detail features from small targets. To solve this
problem, the S-YOLO model makes corresponding structural improvements on the basis of
the original model. This section analyzes the structure and improvement of the S-YOLO
model in detail. The structure diagram of the S-YOLO model is shown in Figure 1, which
includes the input and output of the model, as well as the main components of the model.

3.1. Replacement of the Convolution Module

In YOLOv8’s native network structure, convolution layers using standard convolution
have the following limitations:
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(1) Standard convolution can only learn fixed convolution kernels, lacking adaptive
adjustment ability for convolution kernel weights, which reduces the convolution
layer’s generalization ability and adaptability under different input conditions;

(2) Standard convolution mainly relies on matrix multiplication as operation mode, which
results in a large number of parameters and amount of computation, especially in the
fully connected layer, which increases the model’s storage and inference overhead;

(3) Standard convolution cannot fully utilize spatial information and channel information
of input features, because they use the same weights for each position and each
channel, which makes the model ignore some meaningful local features or global
features.

To solve the above existing limitation problems, this paper adopted a novel convo-
lution structure, namely, omni-dimensional dynamic convolution (ODConv). ODConv
adopts a multi-dimensional attention mechanism [22], which can parallelly allocate dy-
namic attention weights for the convolution kernel on the four dimensions of kernel space
(namely, spatial size of each convolution kernel, input channel number, output channel
number, and convolution kernel number). By embedding ODConv into YOLOv8’s network
structure, this paper achieves significant improvement of model performance.

Figure 1. S-YOLO model structure diagram.

ODConv is a dynamic convolution operation that can adaptively adjust convolution
kernel weights according to the content of the input feature map. The idea of ODConv is to
use an attention mechanism to generate the weight vector for each position and multiply
it with shared convolution kernel to obtain the dynamic convolution kernel. ODConv
enhances expression ability and adaptability of the convolution layer and improves model
performance in scenarios such as small target detection and multi-scale change. Dynamic
convolution is different from conventional convolution in that it performs weighted combi-
nation of multiple convolution kernels to achieve input relevance. Dynamic convolution’s
mathematical expression is as follows:

y =
n

∑
i=1

wi · x ∗ ki (1)

In the above equation, y is the output feature map, x is the input feature map, ki is the
i-th convolution kernel, wi is the attention weight of the i-th convolution kernel, ∗ is the
convolution operation and n is the number of convolution kernels.

Dynamic convolution’s formula consists of two basic elements: convolution kernel
and attention function used to calculate attention weight. For n convolution kernels, the
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constituted kernel space contains four dimensions: spatial kernel size, input channel num-
ber, output channel number, and n. However, CondConv [23] and DyConv [24] only use
one attention scalar to calculate the output convolution kernel’s attention weight, while
ignoring the spatial dimension, input channel dimension, and output channel dimension
of the convolution kernel. CondConv is a type of convolution that learns specialized
convolutional kernels for each example by parameterizing the kernels as a linear com-
bination of n experts [23]. DyConv is a type of convolution that dynamically integrates
multiple parallel kernels into one dynamic kernel based on the input [24]. It can be seen that
CondConv’s and DyConv’s exploration of kernel space is rough. In addition, compared
with conventional convolution, dynamic convolution requires n times more convolution
kernel parameters (for example, if CondConv n = 8, then DyConv n = 4). If dynamic
convolution is used too much, it will significantly increase model size. When removing
attention mechanism from CondConv/DyConv, their performance improvement is less
than 1%. According to these data, it can be concluded that attention mechanism plays a
vital role in dynamic convolution: it determines how convolution kernels are generated
and how weights are allocated. By improving the attention mechanism’s structure and
parameters, a better balance between model accuracy and size can be achieved. ODConv
can fully utilize multiple dimensions of kernel space including kernel size, kernel number,
and kernel depth, thus making it superior to existing methods such as CondConv and
DyConv in terms of model accuracy and size.

In order to achieve ODConv’s four types of attention values, we drew on the idea
of CondConv and DyConv and used SE-style attention modules to dynamically generate
different types of convolution kernels. Specifically, we first needed to perform global
average pooling (GAP) on the input feature map X ∈ RC×H×W to obtain a feature vector of
length C, z ∈ RC, and then needed to use a fully connected layer (FC) and four different
branches to generate four types of attention values, corresponding to spatial, channel,
depth, and angle dimensions. As shown in Figure 2, the structure of these four branches is
as follows:

(1) Spatial branch: This branch is used to generate spatial attention values, i.e., weights,
for each position. It maps the feature vector to a vector of length HW, s ∈ RHW , and
then normalizes it using the Softmax activation function. Spatial attention values can
be used to adjust the importance of different positions, thereby enhancing the feature
expression of regions of interest.

s = Softmax(Wsz + bs); (2)

(2) Channel branch: This branch is used to generate channel attention values, i.e., weights
for each channel. It maps the feature vector to a vector of length C, c ∈ RC, and then
normalizes it by the sigmoid activation function. Channel attention values can be
used to adjust the contribution of different channels, thereby enhancing the feature
expression of semantic relevance.

c = sigmoid(Wcz + bc); (3)

(3) Depth branch: This branch is used to generate depth attention values, i.e., weights
for each convolution kernel group. It maps the feature vector to a vector of length K,
d ∈ RK, and then normalizes it using the Softmax activation function. Depth attention
values can be used to select the most suitable convolution kernel group for the current
input, thereby enhancing the feature expression of diversity and adaptability.

d = Softmax(Wdz + bd); (4)

(4) Angle branch: This branch is used to generate angle attention values, i.e., weights
for each convolution kernel rotation angle. It maps the feature vector to a vector of
length R, θ ∈ RR, and then normalizes it using the Softmax activation function. Angle
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attention values can be used to select the most suitable convolution kernel rotation
angle for the current input direction, thereby enhancing the feature expression of
rotation invariance and orientation sensitivity.

θ = Softmax(Wθz + bθ). (5)

Figure 2. ODConv structure diagram.

Figure 2 depicts the forward propagation process of ODConv, which produces the
output feature map based on the input feature map and the convolution kernel parameters.
Each node in the calculation diagram corresponds to a variable or operation in the formula,
and each edge corresponds to an operator or assignment in the formula. The input feature
graph X is located at the top-left corner of the diagram, while the output feature graph Y is
at the bottom-right corner. Various intermediate variables and operations are shown in the
middle. The calculation diagram consists of three parts:

(1) The first part generates four types of attention values: spatial attention value s, channel
attention value c, depth attention value d, and angular attention value θ. This part
corresponds to Equations (2)–(5), where each attention value is computed by applying
a fully-connected layer and an activation function to the input feature vector z;

(2) The second part is to generate the dynamic convolution kernel W∗, where each dy-
namic convolution kernel is obtained by applying depth and angle attention weighting
to the convolution kernel parameters W;

(3) The third part is to generate the output feature map Y, where each output feature map
is obtained by spatially and channel-attention weighting the input feature map X and
then convolving it with the dynamic convolution kernel W∗.

By such design, we can achieve ODConv’s four types of attention values and dynam-
ically generate different types of convolution kernels according to them. ODConv uses
attention mechanism on four scales (input channel, output channel, kernel space, and
kernel number) to adjust the convolution kernel’s weight and shape. Therefore, it can be
described as follows:

y =
n

∑
i=1

wi · x ∗ ki (6)

In the above equation,
wi = αiβiγiδi (7)

αi is input channel attention weight:

αi =
exp( fα(x):,i)

∑Cin
j=1 exp( fα(x):,j)

(8)

fα is a fully connected layer:

fα(x) = Wαx + bα (9)
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βi is output channel attention weight:

βi =
exp( fβ(x):,i)

∑Cout
j=1 exp( fβ(x):,j)

(10)

fβ is a fully connected layer:

fβ(x) = Wβx + bβ (11)

γi is kernel space attention weight:

γi =
exp( fγ(x):,i)

∑K2

j=1 exp( fγ(x):,j)
(12)

fγ is a fully connected layer:

fγ(x) = Wγx + bγ (13)

δi is kernel number attention weight:

δi =
exp( fδ(x):,i)

∑n
j=1 exp( fδ(x):,j)

(14)

fδ is a fully connected layer:

fδ(x) = Wδx + bδ (15)

and ki is the i-th static convolution kernel.
Based on the property that ODConv can be combined with other optimization tech-

niques, as shown in Figure 3, this paper replaced all standard convolution operations in
YOLOv8’s network structure with ODConv operations to enhance the network’s dynamics
and adaptability. The specific steps and implementation details were as follows:

(1) In the backbone network, we replaced all convolution layers after the first one, the C2f
module and all Conv in the SPPF module with ODConv, but keeping other parameters
unchanged;

(2) In Head, we replaced Conv in each detection layer with ODConv, keeping other
parameters unchanged;

(3) We trained using the same dataset, evaluation metrics, and experimental environment,
and compared and analyzed with the original YOLOv8 model.

Figure 3. ODconv replacement module diagram.

Compared with the YOLOv8-nano model, the optimized model—after replacing
standard convolution with ODconv—has reduced number of parameters and amount of
computation and has improved mAP, recall rate, and precision rate. This shows that the
ODconv module has a significant improvement effect on weld defect detection performance.
ODconv module’s advantages are mainly reflected in three aspects: first, it reduces model
complexity and improves model efficiency and deployability; second, it enhances the
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model’s detection accuracy and reliability; third, it increases the model’s scale adaptability
and robustness. In summary, the ODconv module is an effective improvement method that
can improve weld defect detection performance.

3.2. Introduction of the NAM Attention Mechanism

This paper introduces a normalization-based attention module (Normalization-based
Attention Module, NAM) to address the YOLOv8 model’s shortcomings in the weld
defect detection task, to enhance the model’s feature extraction and classification ability.
NAM uses a scaling factor in batch normalization as the channel and spatial attention
weight [25], which can adaptively adjust the model’s degree of attention to weld defect
features, thereby improving detection accuracy and robustness. At same time, NAM uses
sparse regularization to suppress insignificant features, reduce computation overhead, and
maintain the model’s efficiency. It can solve the following problems existing in the YOLOv8
model:

(1) YOLOv8 relies on large-scale annotated data to train the model, while weld defect
samples in industrial scenarios are often scarce and difficult to collect, which limits
the model’s generalization ability and adaptability;

(2) YOLOv8 adopts an Anchor-free detector which directly regresses the target’s position
and size. Such a design reduces the number of model parameters, but may also lead
to unstable detection results, especially for irregularly shaped and differently sized
weld defects;

(3) YOLOv8’s backbone network uses the cross-stage partial connection method to bal-
ance network depth and width and improve feature extraction efficiency. However,
this method may also cause insufficient information flow between feature maps,
affecting capture of weld defect details.

The NAM attention mechanism is a neural network module based on a self-attention
mechanism which can adaptively adjust weights of different positions in the feature map,
thereby enhancing the expression ability of regions of interest. A self-attention mechanism
is a method of calculating the relationship between each element and other elements in
the input sequence; it can capture any long-distance dependency relationships in the
input sequence, and can calculate these in parallel. The self-attention mechanism can be
expressed as

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V (16)

In the above equation [26], Q, K, and V, respectively, represent query (Query), key
(Key), and value (Value), and matrix dk represents key vector dimensions. A self-attention
mechanism can be regarded as a weighted average operation based on dot-product similar-
ity, which performs a dot-product operation on a query matrix and a key matrix, normalizes
the result into a probability distribution, and then performs a weighted average operation
on this probability distribution as weight and value matrix to obtain the output matrix.

The NAM attention mechanism applies a self-attention mechanism to a convolutional
neural network and uses a simple and effective integral form to represent attention weight.
The NAM attention mechanism can be expressed as

NAM(X) =
n

∑
i=1

exp( f (Xi))

∑n
j=1 exp( f (Xj))

Xi (17)

In the above equation, X represents the input feature map and Xi represents the
feature vector at the i-th position, and f represents a learnable function such as a fully
connected layer or convolution layer. The NAM attention mechanism can be regarded as
a weighted average operation based on an exponential function which maps the feature
vector at each position in the input feature map to a scalar by a function, exponentiates
it to a positive number, normalizes it into a probability distribution, and then performs a
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weighted average operation on this probability distribution as weight and input feature
map to obtain the output feature map.

For model design, this paper adopted the method of adding the NAM attention
mechanism to the C2f module to enhance information flow between different channels in
the feature map. Specific implementation details are as follows:

(1) Insert the NAM attention mechanism before the last convolution layer in the C2f
module, i.e., perform the NAM attention transformation on the feature map output
using a convolution layer, and then use the transformed feature map as the convolu-
tion layer’s input. This allows the convolution layer to receive more useful channel
information and improve the feature map’s expression ability and distinction;

(2) Set the NAM attention mechanism’s parameter to regmax = 4, i.e., divide each chan-
nel into four sub-regions and perform a self-attention calculation on each sub-region.
This can reduce computation amount and memory consumption while maintaining
sufficient receptive field. Use the Softmax function and a convolution layer to imple-
ment a self-attention calculation, and use a residual connection and normalization
layer to stabilize the training process.

This paper determined, through experimental comparison, that the C2f module in
the third layer of the backbone network is the best position to addthe NAM attention
mechanism, based on the following reasons:

(1) The third layer of the backbone network provides rich and abstract semantic infor-
mation suitable for the target detection task. The NAM attention mechanism can
utilize the semantic relationship between channels to enhance feature map’s semantic
information and improve target detection accuracy and robustness;

(2) The C2f module is a module with multi-hop layer connection and branch structure
which can enhance information flow between different scales and positions in the
feature map in a suitable way for the multi-scale target detection task. Adding the
NAM attention mechanism in this module can utilize the spatial relationship between
different channels to enhance the feature map’s spatial information and improve
target detection sensitivity and stability;

(3) The NAM attention mechanism can further enhance information flow between chan-
nels in the C2f module, improving feature expression ability and target detection
performance. The NAM attention mechanism can adaptively adjust weights between
channels to highlight useful channel information, suppress useless channel informa-
tion, and improve the feature map’s diversity and efficiency.

3.3. Replacement of the SPPF Module

The SPPF module is an improvement of spatial pyramid pooling which is used to fuse
multi-scale features; it is located at the last layer of the YOLOv8-nano model’s backbone
network. It can concatenate features of the same feature map at different scales together
to achieve multi-scale feature fusion, improving the feature map’s expression ability and
diversity. However, the SPPF module also has the following shortcomings:

(1) It only captures fixed-scale features and cannot adapt to differently sized targets;
(2) Pooling operation reduces feature map spatial resolution, losing detailed information;
(3) The parameter amount is large, increasing computation amount and memory occu-

pancy.

The context augmentation module (CAM) is a module for extracting and fusing con-
text information of different scales, which can effectively utilize information on spatial
and channel dimensions, improve feature expression ability and distinction, and enhance
context information of the feature pyramid network. The context augmentation module
consists of a spatial attention module and a channel attention module, which are used
to extract context information on spatial and channel dimensions, respectively, and fuse
them into the original feature map. In addition, it uses multiple dilated convolutions with
different dilation rates, which are 1, 3, and 5, to obtain context information from different
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receptive fields and integrate them into the feature pyramid, enriching the semantic in-
formation of the feature map, while introducing only a small number of parameters and
amount of computation. The context augmentation module is applied to the highest layer of
the feature pyramid network to obtain more background information, which is conducive
to the detection of tiny defects. The structure of the context augmentation module is shown
in Figure 4, where the kernel size of the dilated convolution layer is 3× 3, and does not
change the size of the feature map.

Figure 4. Context augmentation module structure diagram.

Three different feature fusion methods are considered in the context augmentation
module, which correspond to subfigures (a), (b), and (c) in Figure 5. The purpose of
these methods is to combine features of different receptive fields to improve detection
performance.

(a) (b) (c)

Figure 5. Feature fusion schematic: (a) Weighted Fusion; (b) Adaptive Fusion; (c) Concatenation Fu-
sion.

This paper compares three different feature fusion methods: (a) weighted addition
method, (b) spatial adaptive method, and (c) cascade addition method. The difference
between these methods lies in how they combine features of different receptive fields on
spatial and channel dimensions. Specifically, assuming that the size of the input feature
is (bs, C, H, W), where bs is the batch size, C is the number of channels, and H and W are
the height and width, the operations of the three methods are as follows: (a) weighted
addition method—directly perform element-wise addition on the input features, resulting
in an output feature with a size of (bs, C, H, W); (b) spatial adaptive method—apply a 1 × 1
convolution layer to the input features to compress the number of channels, use a k× k
convolution layer to predict the upsampling kernel for each position (which are different
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for each position), and then use Softmax normalization; the spatial weight matrix with a
size of (bs, 3, H, W) is multiplied by the input features aligned by channel to obtain an
output feature with a size of (bs, C, H, W); (c) cascade addition method—concatenate the
input features on the channel dimension to obtain an output feature with a size of (bs, 3C,
H, W).

The purpose of replacing the original SPPF module with the context augmentation
module in this paper was to improve the information utilization rate of feature maps on
spatial and channel dimensions, thereby enhancing weld defect detection performance.
The SPPF module only utilizes spatial dimension information and ignores channel dimen-
sion information, resulting in poor feature representation and robustness. The context
augmentation module can effectively integrate spatial and channel dimension information
to enhance feature expression ability and distinction. Compared with the SPPF module,
the context augmentation module has the following advantages:

(1) The context augmentation module can improve the detection effect for difficult-to-
detect targets such as small targets, dense targets, occluded targets, etc. The SPPF
module uses fixed-size pooling operations which may ignore or lose weld defects that
vary greatly, or are small, occluded, or overlapped in scale. The context augmentation
module can adaptively select features of different scales and positions and dynamically
fuse them to adapt to weld defects of different sizes and shapes;

(2) The context augmentation module can improve generalization ability for diversified
datasets with different categories, different scenes, different lighting, etc. The SPPF
module uses a max pooling operation, which may ignore or confuse weld defects that
vary greatly or are small in category, scene, or lighting. The context augmentation
module can enhance features of regions of interest by attention mechanism, suppress
features of irrelevant regions, improve feature interpretability and accuracy, and adapt
to diversified datasets with different categories, different scenes, different lighting,
etc.;

(3) The context augmentation module can improve recognition ability for weld defect po-
sition, shape, size, and other detail information. The SPPF module uses concatenation
operation, which may cause channel information conflict and confusion, reducing
feature diversity and efficiency. The context augmentation module can select more
useful channel information by an attention mechanism and fuse it into an original
feature map, extracting more fine and meaningful features.

The specific steps of replacing the original SPPF module with the context augmentation
module, as performed in this paper, are as follows:

(1) Find the position of the SPPF module in the backbone network of the YOLOv8-nano
model, which is after the last convolution layer, and delete it;

(2) Add the context augmentation module to the backbone network of the YOLOv8-nano
model, which is inserted after the last convolution layer;

(3) Train with three different feature fusion methods, which arethe weighted addition
method, spatial adaptive method, and cascade addition method, and compare them
with the original YOLOv8-nano model.

3.4. Introduction of the Carafe Operator

The Upsample operation used by YOLOv8-nano is a traditional interpolation method,
which only utilizes spatial information from the input feature map and ignores semantic
information. In weld defect detection, this leads to information loss or blur, small receptive
field, and low performance. Therefore, this paper introduced the Carafe operator [27],
which is a lightweight general upsampling operator that can predict and reorganize upsam-
pling kernels according to input feature map content, thereby improving the upsampling
effect. The workflow of Carafe is as follows:

(1) Upsampling kernel prediction: For the input feature map, first use a 1× 1 convolution
to compress channel number, then use a k× k convolution to predict the upsampling
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kernel for each position (which are different for each position), and then use Softmax
normalization;

(2) Feature reorganization: For each position in the output feature map, map back to
the input feature map, take out a k × k area centered on it, and calculate the dot-
product with the predicted upsampling kernel at that point to obtain the output value.
Different channels at the same position share the same upsampling kernel.

Carafe has significant advantages over the original Upsample operation. First, Carafe
can guide generation of the upsampling kernel according to semantic information of the
input feature map, thereby adapting to features of different content and scales, while Up-
sample is a fixed upsampling method that only determines the upsampling kernel according
to pixel distance without utilizing semantic information of the feature map. Second, Carafe
can increase receptive field by adjusting k× k convolution, using surrounding information
for upsampling to improve upsampling quality, while Upsample has small receptive field
(nearest neighbor 1× 1, bilinear 2× 2) and cannot fully utilize surrounding information.
Finally, Carafe only introduces a small number of parameters and amount of computation,
maintaining lightweight characteristics, while Upsample introduces additional parameters
and computation, especially when using deconvolution.

In this paper, we replace the Upsample operation in each layer of the top-down part
in YOLOv8 with the Carafe operation; keep other parts unchanged; train with the same
dataset, evaluation metric, and experimental environment; and compare and analyze with
the original YOLOv8-nano model. Specific steps and implementation details are as follows:

(1) In the Head, we replace the Upsample operation in the first upsampling layer with
the Carafe operation for training, and compare and analyze with the original YOLOv8
model.

(2) In the Head, we keep the Upsample operation in the first upsampling layer unchanged,
replace the Upsample operation in the second upsampling layer with the Carafe
operation for training, and compare and analyze with this YOLOv8-nano model.

(3) In the Head, we replace the Upsample operation in each layer of the top-down part
with the Carafe operation for training, and compare and analyze with this YOLOv8
model.

3.5. Optimize Loss Function

This paper studies multi-class weld defect detection, which has a class imbalance
problem. Using YOLOv8-nano model’s CIoU loss function, it is easy to cause the model to
bias towards multi-sample categories and ignore few-sample categories, affecting detection
ability. To solve this problem, this paper chose the Wise-IoU loss function, introduced a
category weight coefficient, adjusted target category importance, and balanced the detection
effect.

CIoU Loss is a regression error measure used for object detection [28]. It integrates
IoU, center distance, and aspect ratio of prediction box and real box, making the model pay
more attention to mismatched samples and reducing the loss weight of close samples. CIoU
Loss is an improvement of GIoU Loss and DIoU Loss, adding consideration of center point
distance and aspect ratio difference. CIoU Loss can improve target detection performance
of different scales and shapes, and reduce sensitivity to hyperparameter selection. CIoU
Loss’s formula is as follows:

LIoU = 1− IOU +
ρ(b, b∗)2

c2 + αv (18)

In the above equation, IOU is intersection over union, ρ(b, b∗) is Euclidean distance
between center points of prediction box and real box, c is diagonal length of smallest closed
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rectangle containing prediction box and real box, α is the balance coefficient, and v is the
aspect ratio penalty term. α’s and v’s calculation methods are as follows:

α =
v

(1− IOU) + v
(19)

v =
4

π2 (arctan(
w
h
)− arctan(

w∗

h∗
))2 (20)

In the above equation, (w, h) and (w∗, h∗) are prediction box’s and real box’s width
and height, respectively.

In the target detection task, the loss function’s design has a decisive role in model
performance. An appropriate loss function can enhance boundary box’s fitting accuracy
and robustness. However, most existing loss functions are based on an assumption: all
samples in training data are high-quality. This assumption ignores the adverse impact
of low-quality samples on model performance. To solve this problem, some researchers
proposed loss functions based on IoU (intersection over union) to measure overlap degree
between prediction box and target box. However, these loss functions have their own
limitations and defects. For example, IoU loss [29] cannot provide gradient information
when prediction box and target box do not overlap; GIoU loss [29] produces the wrong
gradient direction when prediction box contains target box; DIoU loss [30] does not consider
whether boundary box’s aspect ratio is consistent; CIoU loss [30] still penalizes distance and
aspect ratio difference too much when prediction box and target box overlap a lot; EIoU loss‘
[31] assigns too high of a weight to the distance penalty term and uses momentum sliding
average value as the unstable normalization factor; and SIoU loss [32] introduces additional
penalty terms such as boundary box center line, coordinate axis angle boundary box shape
difference, etc. These loss functions do not consider Anchor box’s quality problem, i.e., if
low-quality Anchor boxes are excessively regressed, this reduces the model’s localization
ability. To overcome these problems, some scholars proposed a loss function based on
IoU called Wise-IoU (WIoU) [33]. WIoU uses outlierness to evaluate Anchor box’s quality
and adjusts gradient gain dynamically according to outlierness. In this way, WIoU can
adaptively select medium-quality Anchor boxes and effectively improve the detector’s
overall performance.

WIoU loss function’s definition is as follows:

LwIoU =
1
N

N

∑
i=1

gi(1− IoUi) (21)

In the above equation, N is Anchor box’s number, IoUi is IoU value between i-th
Anchor box and target box, gi is i-th Anchor box’s corresponding gradient gain, defined as

gi =
e−

oi
σ

∑N
j=1 e−

oj
σ

(22)

In the above equation, oi is i-th Anchor box’s outlierness and σ is a hyperparameter
used to control the gradient gain distribution’s sharpness. Outlierness is an indicator that
reflects Anchor box’s quality, defined as

oi =
di
ci

(23)

In the above equation, di is the length of the center point connection line between
i-th Anchor box and target box, and ci is the diagonal length of the smallest bounding box
containing two boundary boxes. Smaller outlierness means higher Anchor box quality.

Wise-IoU and CIoU are both loss functions based on IoU. Their main difference is
that Wise-IoU introduces a dynamic non-monotonic focusing coefficient which evaluates
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Anchor box’s quality by outlierness, adjusts gradient gain of different quality Anchor boxes,
and makes the model focus on ordinary quality Anchor boxes. Outlierness is an indicator
that integrates IoU and distance measurement; smaller outlierness means higher Anchor
box quality. Wise-IoU’s focusing coefficient changes non-monotonically with outlierness;
when outlierness is within a certain range, the focusing coefficient is larger, while, when
outlierness exceeds this range, the focusing coefficient is smaller. This can reduce the
gradient generated by high-quality Anchor boxes and low-quality Anchor boxes, and
increase the gradient generated by ordinary-quality Anchor boxes.

As shown in Figure 6, Wise-IoU can replace CIoU in YOLOv8 to achieve better detec-
tion performance, which can better handle low-quality examples in the training data, avoid
over-penalizing or fitting these examples, and improve the model’s generalization ability
and localization accuracy. At the same time, Wise-IoU can better utilize the contextual
information of different scales and receptive fields, and allocate reasonable gradient gains
through a dynamic non-monotonic focusing mechanism, improving the model’s regression
ability for ordinary quality Anchor boxes. Wise-IoU does not introduce additional geomet-
ric metrics or computational complexity, but only multiplies a focusing coefficient by the
IoU loss, so it can better adapt to different hardware platforms and deployment scenarios.

Figure 6. Effect of different loss functions on model training.

4. Experimental Verification and Analysis
4.1. Dataset

The detection target of this paper was weld defects, and, for the convenience of data
processing, this paper set the format of weld defect images used to make the dataset as the
PASCALVOC2007 format.

4.1.1. Weld Defect Image Augmentation

The deep learning-based weld detection algorithm is a task that uses deep neural
networks to identify and locate welding defects, which requires a dataset of normal and
abnormal weld images, along with their defect feature images. However, insufficient
annotation of datasets is a difficult problem, which leads to the following:

(1) The network learns defect features and rules insufficiently, resulting in low detection
performance and accuracy;

(2) The dataset is unbalanced, with a disproportionate ratio of normal and abnormal
weld images, resulting in low detection sensitivity and recall;

(3) The dataset is not representative, unable to cover the diversity and complexity of weld
defects, resulting in low detection robustness and adaptability.

To solve this problem, a possible method is to use cross-modal data transfer to make
weld defect datasets. Cross-modal data transfer [34–36] has two types of methods: feature-
based and image-based. This paper uses feature-based cross-modal data transfer to make
weld defect datasets, with the following steps:
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(1) Collect or obtain weld images with or without annotations from different imaging
modalities;

(2) Extract representative and discriminative features from the images;
(3) Align or transform features to make them similar or consistent in a common feature

space;
(4) Train classifiers or segmenters to detect weld defects.

In order to preserve defect feature information and unify resolution, this paper used a
region-of-interest segmentation method. This method is a region-based image segmentation
method that divides an image into several regions with similar features and extracts the
regions of interest. The regions of interest are usually parts of an image that contain target
objects or information, such as the location and shape of weld defects. This paper performed
region of interest segmentation on weld defect images to highlight defect features and
eliminate background interference.

This paper constructed a weld defect detection dataset using two sources of image
data: a weld defect image dataset from a factory (4652 images of different types of weld
defects, unbalanced in quantity) and the Northeastern University steel strip surface defect
image dataset (1800 images of six types of steel strip surface defects, namely, rolled-in scale,
patches, crazing, pitted surface, inclusion, and scratches, with a resolution of 200× 200).
This paper considered that the defect types in the two datasets were similar and general,
and constructed a more complete dataset by processing and augmenting them. This paper
performed the following steps on the two datasets:

(1) In view of the problem of low quality of ultrasonic images of weld defects, this
paper proposed an image enhancement method based on the multi-scale retinex
algorithm. This method first uses an anisotropic diffusion algorithm to denoise, then
uses histogram equalization processing to improve contrast, and, finally, applies
the multi-scale retinex algorithm to boththe original image and equalized image,
obtaining enhancement results by weighted fusion. This method effectively improves
the quality of ultrasonic images of weld defects, providing reliable data support for
subsequent detection and identification;

(2) In order to unify the image size and format of the two datasets, this paper set the
resolution to 200× 200. For weld defect images from the factory, since they have high
resolution and uneven distribution of defect areas, direct scaling would result in loss
or distortion of defect information. Therefore, this paper adopted a cropping method
based on region of interest (ROI). Specifically, this paper used the ROI function in the
openCV library, which selects ROI by clicking on the image with mouse and returning
coordinates. Then, according to the coordinates, it crops out 200× 200 sub-images
containing defect information. This not only meets the requirement of uniform size,
but also retains the original defect features;

(3) In order to increase the number and diversity of dataset samples, this paper per-
formed data augmentation on the two datasets. This paper used data augmentation
methods such as horizontal flipping, vertical flipping, rotation, translation, random
cropping, etc. These methods increase the variation and noise of the dataset without
changing the defect type and feature, thereby improving the model’s generalization
ability and robustness. Through data augmentation, this paper, finally, obtained a
dataset containing 20,800 images, with each image category containing more than
3000 samples, as shown in Figure 7.
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Figure 7. Distribution of dataset labels and target boxes.

4.1.2. Welding Defect Dataset Production

In this paper, we chose the AnyLabeling tool, based on Segment Anything as shown
in Figure 8, for annotation work. Segment Anything is an image segmentation method that
can segment any object in an image according to different input prompts (such as points,
boxes, text, etc.), and can generalize to unfamiliar objects and images in a zero-shot manner
without additional training. The basic principle of Segment Anything is to use a neural
network model to encode the input prompts and images into a feature vector, and then
generate a segmentation mask through a decoder.

Figure 8. Labeling process with AnyLabeling.

In order to evaluate the impact of the annotation method and data augmentation
method used in this paper on the defect detection model performance, we used the original
annotated dataset as the control group, and compared it with the dataset annotated by
the method proposed in this paper as the experimental group. The dataset used in this
paper was in VOC2007 format, which consisted of three folders: ImageSets folder which
stores txt files for dividing the training set, validation set and test set; JPEGImages folder
which stores all image data; Aand nnotations folder which stores all XML annotation files
of images. The dataset is divided into training set, validation set, and test set according
to the ratio of 8:1:1. In order to construct a dataset suitable for the method proposed in
this paper and enhance the generalization ability of the model, we performed various
data augmentation operations on the training set, including flipping, scaling, cropping,
color transformation, etc. The experimental results show that the model trained with the
supplemented dataset achieved 97.3% accuracy, 95.6% recall, and 94% F1 value on the test
set, which were 2.3%, 3.1%, and 2.5% higher than those of the control group, respectively,
demonstrating a significant improvement in the model’s defect detection ability.
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4.2. Experimental Environment and Scheme Design

In order to ensure the training effect and stability of the model, we chose suitable
hardware and software configuration as the experimental environment. The specific
environment information is shown in Table 1.

Table 1. Experimental environment configuration table.

Category Contents

Experimental operating systems Ubuntu 20.04 LTS
Image processing platforms Windows10 ×64 system
Deep learning frameworks PyTorch 1.10.0

CUDA CUDA 11.3
cuDNN cuDNN 8.2.1

Anaconda Anaconda4.7.6
Processor Intel® Core™ i7-9700K CPU @ 3.60 GHz

GPU NVIDIA GeForce RTX 3080 Ti GPU

Image acquisition equipment Olympus OmniScan ×3 64 phased-array
ultrasonic flaw detector

Before training, we divided the VOC format dataset into training set, validation set,
and test set, according to the ratio of 8:1:1, where each image size was 200× 200 pixels. The
training set was used for model training and parameter updating, the validation set was
used for model tuning and hyperparameter selection, and the test set was used for model
evaluation and performance comparison. In order to train the model, we used stochastic
gradient descent (SGD) as the optimizer and set the training batch size to 128, initial
learning rate to 0.01, and model iteration number to 300. In order to prevent overfitting,
we added a momentum term and weight decay term in the optimizer, which were set
to 0.9 and 0.0005, respectively. In order to adapt to the learning rate change during the
training process, we useda cosine annealing strategy as the learning rate decay strategy to
dynamically adjust learning rate according to training rounds. These parameter settings
aimed to ensure model convergence and generalization.

4.3. Evaluation Metrics

In this paper, we mainly used two metrics commonly used for evaluating object
detection model performance: mean average precision (mAP) and frames per second (FPS),
to comprehensively evaluate and analyze the model performance. In addition, we also
introduced factors, such as parameter quantity, from a side perspective to analyze algorithm
effect.

FPS is the number of pictures that the object detection model can process per second;
it reflects model detection speed. A higher FPS means that the model is faster. The FPS
calculation method is

FPS =
1

Ttotal
=

1
Tpre + Tdet + Tpost

(24)

In the above equation, Ttotal is total processing time; Tpre is preprocessing time; Tdet is
detection time; and Tpost is post-processing time.

Mean average precision mAP is an indicator that measures object detection model
performance; it is the average value of average precision (AP) of all categories. AP is
the average value of precision corresponding to different recall rates (recall). The mAP
derivation formula is as follows:

Precision P:
P =

TP
TP + FP

(25)

The Precision (P) formula indicates, among samples predicted as positive examples,
the proportion which are true positive examples. TP is the number of true positive examples,
indicating the number of samples that are predicted as positive examples and are actually
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positive examples. FP is the number of false positive examples, indicating the number of
samples that are predicted as positive examples but are actually negative examples. TP +
FP is the number of all samples predicted as positive examples. Thus, P = TP/(TP + FP) is
the proportion of true positive examples out of the total number of examples predicted as
positive examples.

Recall rate R:
R =

TP
TP + FN

(26)

The Recall rate (R) formula indicates, among original samples of positive examples,
the proportion which are correctly predicted. TP is the number of true positive examples,
indicating the number of samples that are predicted as positive examples and are actually
positive examples. FN is the number of false negative examples, indicating the number
of samples that are predicted as negative examples but are actually positive examples.
TP + FN is the number of all true positive examples. Thus, R = TP/(TP + FN) is the
proportion of correctly predicted positive examples out of the total number of predicted
positive examples.

AP value:

AP =
n

∑
k=1

P(k)∆R(k) (27)

The AP value formula indicates the average value of precision corresponding to
different recall rates. P(k) is the value of precision corresponding to the k-th recall rate;
R(k) is the k-th recall rate. ∆R(k) indicates the difference between the k-th recall rate and
the (k − 1)-th recall rate. AP value is the sum of all different recall rates multiplied by the
corresponding difference, which is equivalent to calculating the area under the PR curve.

Average AP value:

mAP =
1
m

m

∑
i=1

APi (28)

In the above equation, m is the number of categories and APi is the AP value of the
i-th category. The average AP value formula indicates that, for prediction results from
multiple categories, the AP value of each category is calculated and then the average is
taken. Since APi is the AP value of the i-th category and m is the number of categories,
average AP value is the sum of all category AP values divided by the number of categories.

FPS is an indicator that measures model speed; it has a certain balance and trade-
off relationship with model accuracy indicators (such as mAP). Therefore, we need to
comprehensively consider FPS and mAP, analyze model advantages and disadvantages in
terms of speed and accuracy, and select the most suitable model.

4.4. Experimental Results Analysis

In the industrial application scenario of this paper, we needed to detect and evalu-
ate welding defects. The experiment in this paper was trained on a dataset containing
20,800 welding images, which included 6 common types of defects (scratches, oxide skin,
indentations, iron oxide skin, edge defects, other defects). We conducted performance
evaluations on the S-YOLO model through five groups of experiments, where the first
group was a comparative experiment on the impact of different convolutions on model
performance; the second group was a comparative experiment on the impact of different
attention mechanisms on model performance; the third group was a performance com-
parison experiment on different fusion methods of the context augmentation module; the
fourth group was an ablation experiment on improvement strategies in the S-YOLO model;
and the fifth group was a comprehensive analysis of model performance by comparing
S-YOLO with current mainstream object detection models.

In order to verify the proposed welding defect detection algorithm and its effectiveness,
we monitored the change curves of three loss functions during the training process, as
shown in Figure 9. In Figure 9a, Box Loss represents the mean value of the loss function for
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bounding box regression, which uses Wise-IoU as the bounding box loss function, which
can dynamically allocate gradient gain according to the overlap degree between Anchor
boxes and target boxes and improve the accuracy of bounding box regression. In Figure 9b,
Classification Loss represents the mean value of the loss function for target classification,
which reflects the classifier’s ability to recognize target categories. In Figure 9c, Distribution
Focal Loss represents the distributional focal loss, which is a loss function for addressing
the class imbalance problem in object detection, which can reduce the contribution of
simple samples to the loss value and make the model better learn difficult samples. As can
be seen from Figure 9, in the first 20 rounds, the three loss values decreased significantly,
indicating that the model had a large learning progress in the initial stage; between 20 and
120 rounds, Box Loss showed an upward trend, while Classification Loss and Distribution
Focal Loss decreased steadily, which was due to the model encountering difficult-to-fit
bounding boxes at this stage; between 120 and 290 rounds, Box Loss gradually decreased,
while Classification Loss and Distribution Focal Loss decreased at a slower rate, which
may be due to the model gradually adapting to the data distribution at this stage; after
290 rounds, the data augmentation strategy was turned off, and all three loss values
decreased significantly, indicating that the data augmentation strategy could effectively
improve the model’s generalization ability. No obvious overfitting phenomenon was found
in the whole training process.

(a) (b) (c)

Figure 9. Loss curve: (a) Box Loss; (b) Classification Loss; (c) Distribution Focal Loss.

4.4.1. The Impact of Different Convolutions on Model Performance

In order to verify the effect of replacing conventional convolution with ODConv,
we replaced all standard convolution operations in the YOLOv8-nano model with Cond-
Conv [23], DyConv [37], and ODConv on the basis of the YOLOv8-nano model, keep-
ing other parameters unchanged, and obtained three optimized models: YOLOv8-nano-
CondConv, YOLOv8-nano-DyConv, and YOLOv8-nano-ODConv. Then, we used the same
dataset, evaluation metrics and experimental environment for training and testing, and
compared and analyzed with the original YOLOv8-nano model.

As can be seen from Table 2, compared with the YOLOv8-nano model, the optimized
model using ODConv also had an improvement in FPS, which indicates that ODConv can
speed up model inference speed and improve model detection efficiency. Among them, the
YOLOv8-nano-ODConv model had the highest FPS, reaching 69.9, which was 3.2 higher
than YOLOv8-nano model. This shows that the ODConv module can effectively reduce
model computation and inference time, and achieve a balance between model accuracy
and speed.
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Table 2. Comparison results of different convolutions on model performance.

Models mAP@50(%) FLOPs(G) FPS

YOLOv8-nano 88.4 8.9 66.7
YOLOv8-nano-CondConv 89.9 9.0 63.7

YOLOv8-nano-DyConv 90.6 8.9 65.6
YOLOv8-nano-ODConv 90.5 7.8 69.9

4.4.2. The Impact of Different Attention Mechanisms on Model Performance

In order to verify the effect of introducing the NAM attention mechanism, we in-
troduced SE, CBAM, BiFormer, and NAM attention mechanisms at the same position
in the YOLOv8-nano model on the basis of the YOLOv8-nano model, keeping other pa-
rameters unchanged, and obtained four optimized models: YOLOv8-nano-SE, YOLOv8-
nano-CBAM, YOLOv8-nano-BiFormer, and YOLOv8-nano-NAM. Then, we used the same
dataset, evaluation metrics, and experimental environment for training and testing, and
compared and analyzed with the original YOLOv8-nano model.

As can be seen from Table 3, the models using attention mechanisms were better
than the baseline model in mAP@50, indicating that attention mechanisms can effectively
improve the expressiveness and discriminability of feature maps, and enhance the per-
formance of the welding defect detection task. Among them, YOLOv8-nano-BiFormer
achieved the highest mAP@50 of 92.1%, which was 3.7% higher than the baseline model,
indicating that BiFormer can better utilize the information in spatial and channel dimen-
sions, and improve the semantic and diversity of features. In addition, the models using
attention mechanisms were worse than the baseline model in FLOPs and FPS, indicating
that attention mechanisms increase the number of model parameters and computation, and
affect model efficiency and speed. Among them, YOLOv8-nano-BiFormer had the highest
FLOPs, of 10.2 G, which was 1.3G higher than the baseline model, and had the lowest FPS
of 61.6, which was 5.1 lower than the baseline model. This indicates that BiFormer can
improve detection accuracy, but also pays a large price in the training process; because it
needs to occupy a large amount of memory for calculation, its training time is far greater
than other attention mechanisms. The NAM attention introduced in this paper achieves
91.0% in mAP@50, second only to the YOLOv8-nano-BiFormer, but has only 9.0G in FLOPs,
which is 1.2G lower than the YOLOv8-nano-BiFormer, and achieves 65.8 in FPS, which is
4.2 higher than YOLOv8-nano-BiFormer, indicating that YOLOv8-nano-NAM can ensure
detection accuracy while also maintaining high efficiency and speed.

Table 3. The effect of different attention mechanisms on the performance of the YOLOv8-nano model.

Models mAP@50(%) FLOPs(G) FPS

YOLOv8-nano 88.4 8.9 66.7
YOLOv8-nano-SE 83.5 9.6 64.0

YOLOv8-nano-CBAM 84.0 9.8 63.5
YOLOv8-nano-BiFormer 92.1 10.2 61.6

YOLOv8-nano-NAM 91.0 9.0 65.8

4.4.3. Performance Comparison of Different Fusion Methods in the Context
Augmentation Module

In order to verify the effect of using the spatial adaptive method in the context augmen-
tation module in this paper, we selected the weighted addition method, spatial adaptive
method, and cascade addition method as the context augmentation modules applied to
the YOLOv8-nano model in this paper, keeping other parameters unchanged. Then, we
used the same dataset, evaluation metrics, and experimental environment for training and
testing, and conducted comparative experiments and analysis.

As can be seen from Table 4, the YOLOv8 model using the spatial adaptive method
achieved the highest mAP@50 of 90.6%, which was 1.7% higher than the weighted addition
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method and 0.1% lower than the cascade addition method; it achieved the lowest FLOPs
of 10.3G, which was 0.2G higher than the weighted addition method and 2.1G lower than
the cascade addition method; it achieved the highest FPS of 62.9, which was 0.4 higher
than the weighted addition method and 4.3 higher than the cascade addition method. This
indicates that the spatial adaptive method can maintain high detection accuracy while also
maintaining high efficiency and speed.

Table 4. Performance comparison results of three feature fusion methods.

Models mAP@50(%) FLOPs(G) FPS

YOLOv8-nano 88.4 8.9 66.7
Weighted summation method 88.9 10.1 62.5

Spatial adaptive method 90.6 10.3 62.9
Cascade summation 90.7 12.4 58.6

4.4.4. The Impact of Improvement Methods on Model Performance and Efficiency

In order to verify the impact of improvement strategies on model performance and
efficiency, we used the ablation experiment method for analysis, and took the S-YOLO
model with all improvement strategies applied as the baseline model. By gradually re-
moving a certain module or mechanism from the model, we observed its impact on model
performance and judged its role in overall model; experimental results are shown in Table 5.

Table 5. Impact of different improvement strategies on the performance of the S-YOLO model.

Experimental Setup mAP@50(%) FLOPs(G) FPS

Experiment 1 97.3 8.6 67.8
Experiment 2 96.7 8.5 89.6
Experiment 3 94.5 7.1 74.4
Experiment 4 92.4 8.2 71.7
Experiment 5 89.8 8.3 69.8
Experiment 6 88.4 8.9 66.7

Experiment 1: We used the S-YOLO model as the complete improved version, which
was also the baseline model. This model achieved 97.3% mAP@50 on the experimental
dataset, indicating that it has high detection accuracy. The model had a computation of
8.6G FLOPs and a running speed of 67.8 FPS, indicating that it has high efficiency and
speed.

Experiment 2: We replaced the Carafe module in the S-YOLO model with the original
nn.Upsample module to explore the effect of the Carafe module on feature map upsampling.
The mAP@50 of this model decreased by 0.6 percentage points to 96.7%. At the same time,
the FLOPs of this model decreased by 0.1G to 8.5G, and FPS increased by 1.8 to 89.6. The
experimental results show that the Carafe module can effectively improve the resolution
and quality of feature maps, thereby improving detection accuracy, but its impact on
computation and speed is not significant.

Experiment 3: We replaced the context augmentation module in the S-YOLO model
with the SPPF module to explore the effect of the context augmentation module on feature
fusion. The mAP@50 of this model decreased by 2.8 percentage points to 94.5%. At the
same time, the FLOPs of this model decreased by 1.5G to 7.1G and FPS increased by 5.6 to
74.4. The experimental results show that the context augmentation module can effectively
improve the correlation and consistency between features, thereby improving detection
accuracy, but at the cost of increased computation.

Experiment 4: We replaced ODConv in the S-YOLO model back to Conv to explore
the effect of ODConv on feature extraction. The mAP@50 of this model decreased by
4.9 percentage points to 92.4%. At the same time, the FLOPs of this model decreased by
0.4G to 8.2G and FPS increased by 2.9 to 71.7. The experimental results show that ODConv
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can effectively improve the sparsity and diversity of feature maps, thereby improving
detection accuracy, and can also optimize computation and speed to some extent.

Experiment 5: We removed the NAM attention mechanism added in the S-YOLO
model to explore the effect of the NAM attention mechanism on feature selection. The
mAP@50 of this model decreased by 7.5 percentage points to 89.8%. At the same time,
FLOPs decreased by 0.3G to 8.3G and FPS increased by 2.0 to 69.8. The experimental
results show that the NAM attention mechanism can effectively improve saliency and
discriminability of features, thereby improving detection accuracy.

Experiment 6: We replaced Wise-IoU in the S-YOLO model with CIoU to explore the
effect of Wise-IoU on the loss function and optimization process. At this time, the model
was also the prototype structure of YOLOv8-nano. The mAP@50 of this model decreased
by 8.9 percentage points to 88.4%. At the same time, FLOPs increased by 0.3G to 8.9G
and FPS decreased by 1.1 FPS to 66 FPS. The experimental results show that Wise-IoU can
effectively improve robustness and stability of the loss function and optimization process.

The S-YOLO object detection model proposed in this paper surpassed the original
model in both accuracy and speed. Meanwhile, we also explored the effect of each com-
ponent of the S-YOLO model on detection performance, loss function, and optimization
process. The experimental results show that these components can improve resolution,
quality, sparsity, and diversity of feature maps, as well as correlation, consistency, saliency,
and discriminability between features, thereby enhancing small object detection ability.

Figure 10 shows the precision–recall (PR) curve of different defect categories for the
S-YOLO model. The PR curves indicate the trade-off between precision and recall for
different confidence thresholds. A higher area under the curve (AUC) implies a better
performance of the model. Figure 10 reveals that the S-YOLO model achieved high AUC
values for all defect categories, indicating its high accuracy in detecting and classifying
various types of weld defects.

Figure 10. S-YOLO model PR curve.

Figure 11 presents a example of weld image recognition results for the S-YOLO model
and the YOLOv8-nano model. The figure shows the original weld images and the detection
results of the two models. Figure 11 shows that the S-YOLO model can accurately detect
and label all the defects in the weld images, while the YOLOv8-nano model fails to detect
some defects or produces false positives/negatives. This example shows that the S-YOLO
model has a higher accuracy and robustness than the YOLOv8-nano model in recognizing
weld defects.
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(a) (b)

Figure 11. Comparison of prediction results before and after model improvement: (a) YOLOv8-nano
prediction results; (b) S-YOLO forecast results.

4.4.5. Performance Comparison of Different Object Detection Models

In order to evaluate the performance of the S-YOLO algorithm, we compared it with
seven other object detection algorithms, and tested them on two indicators: mAP and FPS.
The final test results are shown in Table 6.

Table 6. Impact of different improvement strategies on the performance of the S-YOLO model.

Algorithms mAP@(%) FPS

S-YOLO for this paper 97.3 67.8
YOLOv7 86.3 59.8
YOLOv6 87.2 53.2
YOLOv5 84 61.8
YOLOv4 82.3 52.6

Faster R-CNN 83.6 51.2
SSD-300 75.3 39.0
SSD-512 78.9 49.6

As can be seen from Table 6, the S-YOLO algorithm proposed in this paper was better
than other algorithms in both mAP and FPS indicators, indicating that it has efficient and
accurate object detection ability. This shows that the S-YOLO algorithm not only retains the
speed advantage of the YOLO series, but also improves the detection accuracy for small
objects. This table shows the excellent performance of the S-YOLO algorithm in object
detection tasks, proving its applicability and effectiveness in experimental scenario.

5. Conclusions

In this paper, we propose an improved model based on the YOLOv8-nano for welding
defect detection tasks, namely, the S-YOLO model. This model optimizes and improves
various aspects based on the original model structure, including optimizing convolution
layer structure, introducing the Carafe operator, replacing the SPPF module, introducing
the NAM attention mechanism, optimizing the loss function, etc., to improve model detec-
tion accuracy and speed. We used the self-made welding defect dataset for experimental
verification and analysis; used mAP, FPS, and other indicators to evaluate algorithm perfor-
mance; and compared with other object detection models. The experimental results show
that the S-YOLO algorithm significantly improves detection accuracy while maintaining
high detection speed, achieving good results.

The next step of the work is to optimize the S-YOLO model for lightweighting, ensur-
ing detection performance while reducing model parameter and computation. This will
further improve efficiency of welding defect detection, realize real-time processing and
output of welding images, synchronize with automated welding processes, and achieve
effective welding inspection integration.
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