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Abstract: In this study, we investigated a novel asymptotic stabilization control method for a
fractional-order HIV-1 infection model. First, we constructed a mathematical model of the fractional-
order HIV-1 infection using the state-space equations of Caputo fractional calculus. Subsequently, a
new control strategy was designed for the fractional-order HIV-1 infection model, and the correspond-
ing asymptotic stabilization criterion was proposed by combining a novel vector Lyapunov function
with the M-matrix method. Additionally, we incorporated a time delay, which was generated by the
interaction between different variables in the actual system, into the fractional-order HIV-1 infection
model, forming a system with a time delay. Based on the vector Lyapunov function associated with
the M-matrix measure and Razumikhin interpretation, a control strategy was developed for the
fractional-order HIV-1 infection model with a time delay. Finally, we show the results of two nu-
merical simulations of the fractional-order HIV-1 infection model, with and without time delay, to
illustrate the accuracy, usefulness, and universality of the proposed measure in our paper.

Keywords: HIV-1; fractional-order infection model; virus dynamics; stabilization control

1. Introduction

AIDS is known as “Super Cancer” and the “Plague of the Century” [1–3]; according to
the new AIDS data released by the WHO Global Health Watch, there have been 78 million
HIV patients and there are currently 39 million HIV patients around the world. The
culprit of this tragedy is HIV-1 [4–6]. When the virus develops to a certain extent, it
destroys the body’s immune system. The initial infection period can develop into AIDS
after about 10 to 15 years. HIV-1 can be mixed with blood in a variety of ways, such as a
blood transfusion, the sharing of contaminated needles, unprotected sexual intercourse,
childbirth, and breastfeeding. After HIV-1 infection, CD4+ T lymphocytes in the body
become the primary molecule of infection. Long-term infection of HIV-1 will cause the
failure of the CD4+ T cell bank, then affect the immune response of the body, and finally
form acquired immunodeficiency syndrome [7,8]. The establishment of a dynamic model
of HIV-1 infection based on HIV-1 can effectively inhibit the spread of infectious diseases
and lay a foundation for an in-depth understanding of the virus content in the human
body and its evolution over time [9,10]. The study of this dynamic characteristic is of
great significance for the further understanding of AIDS and the development of AIDS
prevention and a control scheme [11–13].

The modeling of physical systems is a hot topic in current research. For example,
some studies investigated the identification of parameters of an anomalous diffusion
model based on measurements or modeling of heat distribution in porous aluminum using
fractional differential equations [14,15]. Up to now, this has been a very effective way
to use mathematical models to describe the dynamic process of virus infection [16,17].
A reasonable mathematical model combined with the HIV-1 infection mechanism can
provide a theoretical basis for studying the dynamic changes of HIV-1 in vivo, which can
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help people to understand the pathogenesis and transmission pattern of HIV-1, and thus,
theoretically develop drugs and antiviral treatment programs to better prevent and control
the transmission of HIV-1 [18,19]. Mathematical modeling and analysis of viral kinetics with
humoral immunity can help to design therapeutic strategies and provide insights into the
evaluation of antiviral drug therapies, and it is believed that only a deeper understanding
of the immune responses can lead to the development of a safe and effective HIV-1 vaccine.
In [20], the researchers pointed out that humoral immunity plays an important role in
overall human immunity and studied the kinetics of the viral model with cellular and
humoral immune responses. Furthermore, [21–24] referred to the immune mechanism
used against the disease as cellular immunity, and the immune mechanism of antibody
cells that attack the virus was called humoral immunity. Many researchers believe that
antibody cells play a vital role in the immune response against the virus. However, in most
viral infections, the immune response is primarily mediated by non-specific and rapidly
acting cytotoxic T cells (CTLs). These cells, along with specific immune components, such
as cytotoxic T lymphocytes and antibody cells, target the virus and trigger an immune
response in the body. This immune response plays a crucial role in eliminating the virus
and inhibiting the progression of the disease. At present, the research on HIV-1 is mainly
focused on its pathogenic mechanism, and the analysis of its pathogenic mechanism is
of great significance for an in-depth understanding of its pathogenic mechanism and the
development of effective anti-HIV-1 drugs.

Fractional derivatives are a hot topic that has been developed in recent years, and
it is widely used in many disciplines [25–30], such as in mathematics [31,32], computer
engineering [33], financial systems [34], and especially in the biological field [35]. At
present, many mathematical workers and applied scientists are trying to use this model
to simulate biological phenomena in complex network systems [36–40]. Researchers have
found that biological cell membranes have fractional electron conductivity, and thus, it
can be classified as a fractional model. Currently, there were also numerous studies that
focused on studying the fractional-order HIV infection process [41–44], which has become
a research hotspot. In addition, studies showed that a biological model based on fractional
derivatives has better performance than a traditional integer model [45,46]. Therefore,
we focused on a fractional-order HIV-1 infection model. Among the research on general
fractional-order HIV-1 infection models, stabilization control is the most critical issue.
However, since the stability analysis measure for the integer-order system is not able to
be directly put into use in a fractional-order system, stability estimates and stabilization
control for the fractional form pose difficulties during the study of such issues. Moreover,
there have been few significant studies on the puzzle of gradual near-stability estimates
and asymptotic stabilization. Additionally, in an actual HIV-1 infection model, the time
delay is a significant factor. However, the introduction of a time delay greatly increases the
system complexity, and thus, it has rarely been considered in previous research.

In this study, motivated by the challenges mentioned above, we surveyed asymptotic
stabilization control of a fractional-order HIV-1 infection model by applying a novel mea-
sure, that is, a vector Lyapunov function associated with an M-matrix measure. There are
two foremost innovation points regarding this study. On the one hand, we considered
the time delay between different variables of a fractional-order HIV-1 infection model
to construct a model that incorporated a time delay. On the other hand, we applied the
novel measure to design an asymptotically stabilized control strategy for an open-loop
fractional-order HIV-1 infection model. This technique can solve fractional-order cases,
either with or without time delay.
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2. Preliminaries

Definition 1 ([47]). The Caputo fractional-order derivative is defined as follows:

CDα f (t) =
1

Γ(n− α)

t∫
0

(t− τ)n−α−1 f (n)(τ)dτ, (1)

where n ∈ N, α ∈ (n− 1, n), and f (t) is any integrable function; if n = 1, one has

CDα f (t) =
1

Γ(1− α)

t∫
0

(t− τ)−α f (1)(τ)dτ. (2)

Then, we considered the following fractional-order system:

CDαx(t) = f (x(t)), (3)

where α ∈ (0, 1), x(t) ∈ Rn is the state of Equation (3), and f : Rn → Rn satisfies the
condition f (0) = 0 and the local Lipschitz continuity condition.

Definition 2 ([48]). The solution of Equation (3) is called stable if for any ε > 0, there exists
δ = δ(ε) > 0 such that for every ‖x0‖ < δ, x0 = x(t0), and t0 representing the initial time,
we have

‖x(t)‖ < ε, for any t. (4)

The solution of Equation (3) is called asymptotically stable if it is stable and there
exists δ̂ > 0 such that limt→∞x(t, x0) = 0 whenever ‖x0‖ < δ̂.

Lemma 1 ([47]). Let x(·) ∈ Rn be a differentiable vector function. Then, for any time instant
t ≥ t0, the following inequality holds:

1
2

CDα[xT(t)x(t)] ≤ xT(t)CDαx(t), ∀α ∈ (0, 1). (5)

Lemma 2 ([49]). Let x = 0 be an equilibrium point for the fractional-order system (Equation (3)) if
there is a Lyapunov function V(x(t)) and class-κ functions βi(i = 1, 2, 3) satisfying

β1(‖x‖) ≤ V(x(t)) ≤ β2(‖x‖), (6)

CDαV(x(t)) ≤ −β3(‖x‖), (7)

where the fractional-order operator α ∈ (0, 1), then the equilibrium point of a fractional-order
system is asymptotically stable.

Definition 3 ([50]). A realn×n matrix W =
[
wij
]

is an M-matrix if the element wij ≤ 0, for i 6= j
and if all of its principal minor determinants are positive.

Lemma 3 ([50]). If W =
[
wij
]

is an M-matrix, there exists a diagonal matrix P = diag{p1, p2, . . . pN}
with elements pi > 0 such that the matrix

C = WT P + PW, (8)

is positive definite.
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For the above biological and virological descriptions, it is very appropriate to use a
fractional-order model to construct the kinetic process of HIV-1 infection, and the specific
fractional-order HIV-1 infection model is shown below [51]:

Dαx(t) = a− bx(t)− cx(t)v(t)− dx(t)y(t),
Dαy(t) = cx(t)v(t) + dx(t)y(t)− ey(t)− hy(t)z(t),
Dαv(t) = ly(t)−mv(t),
Dαz(t) = ny(t)z(t)

p+z(t) − qz(t),

(9)

where x(t), y(t), and v(t) are the densities of uninfected target cells (DUTCs), infected
target cells (ITCs), and the free virus (FV), respectively, at time t. c is the infection rate of
uninfected cells by the virus. a is the constant rate that the uninfected cells are restored,
and the uninfected cells are infected at a rate of cx(t)v(t) + dx(t)y(t) and die at a rate of
bx(t). l is the constant rate of each producing HIV-1 particle, and m is the per capita rate.
The density z(t) represents the concentration of CTL cells, where CTL kills infected cells at
a rate of hy(t)z(t) and perish at a rate of ey(t). CTL cells multiply at a rate of ny(t)z(t)

p+z(t) , and
die at a rate of qz(t).

Lemma 4 ([51]). For the fractional-order HIV-1 infection model (Equation (9)), the state variable is
non-negatively invariant, where the non-negative invariant compact set is given as

Θ =
{
(x, y, v, z) ∈ R4

≥0 : 0 ≤ x, y ≤ a
min{b, e/2, m, q} ,

0 ≤ v ≤ 2la
emin{b, e/2, m, q} , 0 ≤ z ≤ na

hpmin{b, e/2, m, q}

}
.

(10)

3. Main Results

First of all, from the fractional-order HIV-1 infection model (Equation (9)), we assumed
that x∗, y∗, v∗, and z∗ were the equilibrium points of the system. Then, on the basis of [51],
we obtained the following equilibrium points:

E1 = (x∗, y∗, v∗, z∗) = ( a
b , 0, 0, 0),

E2 = (x∗, y∗, v∗, z∗) = ( em
cl+dm , bm

cl+dm [ (cl+dm)a
bem − 1], bl

cl+dm [ (cl+dm)a
bem − 1], 0),

E3 = (x∗, y∗, v∗, z∗) = ( amn
bmn+q(cl+dm)(p+A)

, q
n (p + A), lq

nm (p + A), A),
(11)

where

A =
−(cl + dm)(eq + hpq)−mnbh + mn

√(
(cl+dm)(eq+hpq)

mn + hb
)2
− 4( cl+dm

m ( a2

b −
eq
n )− 1)

2eq(cl + dm)
. (12)

Then, to make the analysis clearer, we moved the equilibrium point to the origin. We
set w1(t) = x(t)− x∗, w2(t) = y(t)− y∗, w3(t) = v(t)− v∗, w4(t) = z(t)− z∗, and thus,
the following equations were obtained:

Dαw1(t) = −bw1(t)− cw1(t)w3(t)− dw1(t)w2(t)− c(w1(t)v∗ + w3(t)x∗)− d(w1(t)y∗ + w2(t)x∗)
= (−b− cv∗ − dy∗)w1(t)− dx∗w2(t)− cx∗w3(t)− cw1(t)w3(t)− dw1(t)w2(t),

Dαw2(t) = −cw1(t)w3(t)− dw1(t)w2(t)− c(w1(t)v∗ + w3(t)x∗)− d(w1(t)y∗ + w2(t)x∗)− ew2(t)
−hw2(t)w4(t)− h(w2(t)z∗ + w4(t)y∗)
= (−cv∗ − dy∗)w1(t)− (e + dx∗ + hz∗)w2(t)− cx∗w3(t)− hy∗w4(t)− cw1(t)w3(t)
−dw1(t)w2(t)− hw2(t)w4(t),

Dαw3(t) = lw2(t)−mw3(t),
Dαw4(t) = n(w2(t)w4(t)+w2(t)z∗+w4(t)y∗+y∗z∗)

p+w4(t)+z∗ − q(w4(t) + z∗)

= −qw4(t) +
nz∗w2(t)+(ny∗−qz∗)w4(t)+nw2(t)w4(t)

w4(t)+p+z∗ ,

(13)
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3.1. Stabilization Control of the Fractional-Order HIV-1 Infection Model

Then, we converted the fractional-order HIV-1 infection model (Equation (13)) into a
matrix form as follows:

Dαwi(t) = fi(w(t)) + gi(w(t)), i = 1, 2, 3, 4. (14)

where wi(t) is the i-th state of the system and is a differentiable vector, the function fi(x(t))
represents the linear part:

f1(w(t)) = (−b− cv∗ − dy∗)w1(t)− dx∗w2(t)− cx∗w3(t),
f2(w(t)) = −(e + dx∗ + hz∗)w2(t) + (−cv∗ − dy∗)w1(t)− cx∗w3(t)− hy∗w4(t),
f3(w(t)) = lw2(t)−mw3(t),
f4(w(t)) = −qw4(t),

(15)

and g∗i (x(t)) describes the nonlinear part:

g1(w(t)) = −cw1(t)w3(t)− dw1(t)w2(t),
g2(w(t)) = g1(w(t))− hw2(t)w4(t),
g3(w(t)) = 0,
g4(w(t)) = nz∗w2(t)+(ny∗−qz∗)w4(t)+nw2(t)w4(t)

w4(t)+p+z∗ ,

(16)

A series of controllers were added to the system as follows:

Dαxi(t) = f ∗i (xi(t)) + g∗i (x(t)) + ui(t), i = 1, 2, 3, 4. (17)

where

u1(t) = −k1w1(t) + cw1(t)w3(t) + dw1(t)w2(t),
u2(t) = −k2w2(t) + u1(t) + hw2(t)w4(t),
u3(t) = −k3w3(t),
u4(t) = −k4w4(t)

+
(ny∗−qz∗)w2

4(t)+(p+z∗−1)(nz∗w2(t)+ny∗w4(t)−qz∗w4(t))+(nz∗−n)w2(t)w4(t)
w4(t)+p+z∗ ,

(18)

and k1, k2, k3, and k4 represent the control gain, then the system can be rewritten to give

Dαw1(t) = (−b− cv∗ − dy∗ − k1)w1(t)− dx∗w2(t)− cx∗w3(t),
Dαw2(t) = (−cv∗ − dy∗)w1(t)− (e + dx∗ + hz∗ + k2)w2(t)− cx∗w3(t)− hy∗w4(t),
Dαw3(t) = lw2(t)− (m + k3)w3(t),
Dαw4(t) = −(q + ny∗ − qz∗ + k4)w4(t) + nz∗w2(t),

(19)

Then, we have

Dαwi(t) = f ∗i (w(t)) + g∗i (w(t)), i = 1, 2, 3, 4. (20)

where f ∗i (w(t)) = βiwi(t) and g∗i (w(t)) =
4
∑

j=1,j 6=i
ηijwj(t).

Theorem 1. If the following inequality holds and the following matrix W is an M-matrix, then the
fractional-order HIV-1 infection model (Equation (13)) is asymptotically stable:

0 <
(cl + dm)a

emb
≤ 1, (21)
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Ξ =


v11 v12 · · · v1j
v21 v22 · · · v2j

...
...

. . .
...

vi1 vi2 · · · vij


i×j

, vij =

{
µ∗i , if i = j,
−η∗ij, otherwise,

(22)

Proof of Theorem 1. According to (Equation (11)), we have that the equilibrium point of
the fractional-order HIV-1 infection model is E1 = (x∗, y∗, v∗, z∗) = ( a

b , 0, 0, 0).

Then, we choose the following vector Lyapunov function of the system:

V(x(t)) =
4

∑
i=1

δiVi(xi(t)), (23)

where
x(t) = [x1(t), x2(t), x3(t), x4(t)]

T ,
Vi(xi(t)) = 1

2 x2
i (t),

(24)

Then, the following inequality can be derived:

β1i(‖xi(t)‖) ≤ Vi(xi(t)) ≤ β2i(‖xi(t)‖), (25)

where β1i(‖xi(t)‖) and β2i(‖xi(t)‖) can be selected as the following forms:

β1i(‖xi(t)‖) =
1
4
‖xi(t)‖‖xi(t)‖, β2i(‖xi(t)‖) = 2‖xi(t)‖‖xi(t)‖, (26)

From (Equations (24)–(26)), we have

β1(‖x(t)‖) ≤ V(x(t)) ≤ β2(‖x(t)‖), (27)

where

β1(‖x(t)‖) =
4

∑
i=1

δiβ1i(‖xi(t)‖), β2(‖x(t)‖) =
4

∑
i=1

δiβ2i(‖xi(t)‖), (28)

Then, taking the fractional derivative of the sub-Lyapunov function and according to
Lemma 4, we have

DαV(w(t)) = Dα
4
∑

i=1
δiVi(wi(t))

= Dα
(

1
2 δ1w2

1(t) +
1
2 δ2w2

2(t) +
1
2 δ3w2

3(t) +
1
2 δ4w2

4(t)
)

≤ w1(t)δ1Dαw1(t) + w2(t)δ2Dαw2(t) + w3(t)δ3Dαw3(t) + w4(t)δ4Dαw4(t)
≤ w1(t)δ1(−b− cv∗ − dy∗ − k1)w1(t)− w2(t)δ2(e + dx∗ + hz∗ + k2)w2(t)
−w3(t)δ3(m + k3)w3(t)− w4(t)δ4(q + ny∗ − qz∗ + k4)w4(t) + |w1(t)||δ1dx∗||w2(t)|
+|w1(t)||δ1cx∗||w3(t)|+ |w2(t)||δ2(−cv∗ − dy∗)||w1(t)|+ |w2(t)||δ2cx∗||w3(t)|
+|w2(t)||δ2hy∗||w4(t)|+ |w3(t)||δ3l||w2(t)|+ |w4(t)||δ4nz∗||w2(t)|

= −
4
∑

i=1
δiµ
∗
i β3i(|wi(t)|) +

4
∑

i=1
δiβ

1/2
3i (|wi(t)|)

N
∑

j=1,j 6=i
η∗ijβ

1/2
3j (

∣∣wj(t)
∣∣),

(29)

Then, it can be converted into the following form:

DαV(w(t)) ≤ −
4
∑

i=1
δiµ
∗
i β3i(|wi(t)|) +

4
∑

i=1
δiβ

1/2
3i (|wi(t)|)

N
∑

j=1,j 6=i
η∗ijβ

1/2
3j (

∣∣wj(t)
∣∣)

= −γT
3 (w(t))Ξγ3(w(t))

= −β3(w(t)),

(30)
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where
γ(‖x(t)‖) =

[
β1/2

31 (‖x1‖), β1/2
32 (‖x2‖), . . . , β1/2

3N (‖xN‖)
]T

, (31)

β3(‖x(t)‖) = γT(‖x(t)‖)Ξγ(‖x(t)‖). (32)

According to Lemma 2, we can obtain that the controlled fractional-order HIV-1
infection model (Equation (14)) is asymptotically stable, which completes the proof. �

3.2. Stabilization Control of the Fractional-Order HIV-1 Infection Model with a Time Delay

The fractional-order HIV-1 infection model must inevitably be affected by a time delay
in practical situations, and the generation of such a time delay is most likely to occur in the
process of the interaction between different variables. To make the modeling more realistic,
we added a time delay τ to the parts of the state-space equations where the different
variables interact. The revised mathematical model is shown below:

Dαwi(t) = aiwi(t) +
4

∑
j=1,j 6=i

bijwj(t− τ) + gi(w(t− τ)). (33)

where

g1(w(t)) = −cw1(t)w3(t− τ)− dw1(t)w2(t− τ),
g2(w(t)) = −cw1(t− τ)w3(t− τ)− dw1(t− τ)w2(t)− hw2(t)w4(t− τ),
g3(w(t)) = 0,
g4(w(t)) = nz∗w2(t−τ)+(ny∗−qz∗)w4(t)+nw2(t−τ)w4(t)

w4(t)+p+z∗ ,

(34)

A controller was added to the system (Equation (33)) as follows:

Dαxi(t) = aiwi(t) +
4

∑
j=1,j 6=i

bijwj(t− τ) + gi(w(t− τ)) + ui(t), i = 1, 2, 3, 4. (35)

where

u1(t) = −k1w1(t)− ϕ3cw1(t)w3(t)− ϕ2dw1(t)w2(t),
u2(t) = −k2w2(t)− ϕ1 ϕ3cw1(t)w3(t)− ϕ1dw1(t)w2(t)− ϕ4hw2(t)w4(t),
u3(t) = −k3w3(t),
u4(t) = −k4w4(t)

+
(ny∗−qz∗)w2

4(t)+(p+z∗−1)(nz∗ϕ2w2(t)+ny∗w4(t)−qz∗w4(t))+(nz∗−nϕ2)w2(t)w4(t)
w4(t)+p+z∗ ,

(36)

Assumption 1. According to the Razumikhin interpretation [47], we considered that there is a
continuous non-decreasing function ζ j(u) > u, j = 1, 2, 3, 4, for u > 0 such that∣∣xj(t− τ)

∣∣ < ζ j
(∣∣xj(t)

∣∣), (37)

Theorem 2. Assume that the controlled fractional-order HIV-1 infection model satisfies Assump-
tion 1 and Equation (21). In addition, the following matrix W is an M-matrix. Then, the controlled
fractional-order HIV-1 infection model with a time delay (Equation (35)) is asymptotically stable.

Ξ =


v11 v12 · · · v1j
v21 v22 · · · v2j

...
...

. . .
...

vi1 vi2 · · · vij


i×j

, vij =

{
µi, if i = j,
−ηij, otherwise,

(38)
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Proof of Theorem 2. Choosing the same vector Lyapunov function of the system:

V(x(t)) =
4

∑
i=1

δiVi(xi(t)), (39)

we can also obtain the following inequality:

β1(‖x(t)‖) ≤ V(x(t)) ≤ β2(‖x(t)‖), (40)

According to the conditions in Assumption 1 and (Equation (37)), we selected the
function ζ j(β1/2

3j (‖xj(t)‖)) to be

ζi(β1/2
3j (‖xj(t)‖)) = ϕj‖xj(t)‖, (41)

where ϕj, j = 1, 2, 3, 4, satisfies ϕj > 1. Then, taking the fractional derivative of the sub-
Lyapunov function and according to Lemma 4, we have

DαV(x(t))DαV(w(t)) = Dα
4
∑

i=1
piVi(wi(t))

= Dα
(

1
2 δ1w2

1(t) +
1
2 δ2w2

2(t) +
1
2 δ3w2

3(t) +
1
2 δ4w2

4(t)
)

≤ w1(t)δ1Dαw1(t) + w2(t)δ2Dαw2(t) + w3(t)δ3Dαw3(t) + w4(t)δ4Dαw4(t)
= w1(t)δ1(−b− cv∗ − dy∗ − k1)w1(t)− w1(t)δ1dx∗w2(t− τ)− w1(t)δ1cx∗w3(t− τ)+
w2(t)δ2(−cv∗ − dy∗)w1(t− τ)− w2(t)δ2(e + dx∗ + hz∗ + k2)w2(t)− w2(t)δ2cx∗w3(t− τ)
−w2(t)δ2hy∗w4(t− τ) + w3(t)δ3lw2(t− τ)− w3(t)δ3(m + k3)w3(t)
−w4(t)δ4(q + ny∗ − qz∗ + k4)w4(t) + w4(t)δ4nz∗w2(t− τ)− w1(t)cw1(t)w3(t− τ)
−w1(t)dw1(t)w2(t− τ)− w2(t)cw1(t− τ)w3(t− τ)− w2(t)dw1(t− τ)w2(t)

−w2(t)hw2(t)w4(t− τ) + w4(t)
nz∗w2(t−τ)+(ny∗−qz∗)w4(t)+nw2(t−τ)w4(t)

w4(t)+p+z∗

−w1(t)ϕ3w1(t)w3(t)− w1(t)ϕ2w1(t)w2(t)− w2(t)ϕ1 ϕ3w1(t)w3(t)
−w2(t)ϕ1w1(t)w2(t)− w2(t)ϕ4w2(t)w4(t)

+w4(t)
(ny∗−qz∗)w2

4(t)+(p+z∗−1)(nz∗ϕ2w2(t)+ny∗w4(t)−qz∗w4(t))+(nz∗−nϕ2)w2(t)w4(t)
w4(t)+p+z∗ ,

(42)

According to (Equations (40)–(42)), this can be converted into the following form:

DαV(x(t))
≤ w1(t)δ1(−b− cv∗ − dy∗ − k1)w1(t) + w1(t)δ1dx∗ϕ2w2(t) + w1(t)δ1cx∗ϕ3w3(t)+
w2(t)|δ2(−cv∗ − dy∗)|ϕ1w1(t)− w2(t)δ2(e + dx∗ + hz∗ + k2)w2(t) + w2(t)δ2cx∗ϕ3w3(t) + w2(t)δ2hy∗ϕ4w4(t)
+w3(t)δ3lϕ2w2(t)− w3(t)δ3(m + k3)w3(t)− w4(t)δ4(q + k4)w4(t)
+w2

1(t)cϕ3w3(t) + w2
1(t)dϕ2w2(t) + w2(t)cϕ1w1(t)ϕ3w3(t) + w2(t)dϕ1w1(t)w2(t) + w2(t)hw2(t)ϕ4w4(t)

+w4(t)
nz∗ϕ2w2(t)+(ny∗−qz∗)w4(t)+nϕ2w2(t)w4(t)

w4(t)+p+z∗ − w1(t)ϕ3w1(t)w3(t)− w1(t)ϕ2w1(t)w2(t)
−w2(t)ϕ1 ϕ3w1(t)w3(t)− w2(t)dϕ1w1(t)w2(t)− w2(t)hϕ4w2(t)w4(t)

+w4(t)
(ny∗−qz∗)w2

4(t)+(p+z∗−1)(nz∗ϕ2w2(t)+ny∗w4(t)−qz∗w4(t))+(nz∗−n)ϕ2w2(t)w4(t)
w4(t)+p+z∗

= w1(t)δ1(−b− cv∗ − dy∗ − k1)w1(t) + w1(t)δ1dx∗ϕ2w2(t) + w1(t)δ1cx∗ϕ3w3(t)+
w2(t)|δ2(−cv∗ − dy∗)|ϕ1w1(t)− w2(t)δ2(e + dx∗ + hz∗ + k2)w2(t) + w2(t)δ2cx∗ϕ3w3(t) + w2(t)δ2hy∗ϕ4w4(t)
+w3(t)δ3lϕ2w2(t)− w3(t)δ3(m + k3)w3(t)− w4(t)δ4(q + ny∗ − qz∗ + k4)w4(t) + w4(t)δ4nz∗ϕ2w2(t)

= −
4
∑

i=1
δiµiβ3i(wi(t)) +

4
∑

i=1
δiβ

1/2
3i (wi(t))

N
∑

j=1,j 6=i
ηijβ

1/2
3j
(
wj(t)

)
,

(43)

Then, it can be converted into the following form:

DαV(w(t)) ≤ −
4
∑

i=1
δiµiβ3i(|wi(t)|) +

4
∑

i=1
δiβ

1/2
3i (|wi(t)|)

N
∑

j=1,j 6=i
ηijβ

1/2
3j (

∣∣wj(t)
∣∣)

= −γT
3 (w(t))Ξγ3(w(t))

= −β3(w(t)),

(44)
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where
γ(‖x(t)‖) =

[
β1/2

31 (‖x1‖), β1/2
32 (‖x2‖), . . . , β1/2

3N (‖xN‖)
]T

, (45)

β3(‖x(t)‖) = γT(‖x(t)‖)Ξγ(‖x(t)‖). (46)

According to Lemma 2, we can obtain that the controlled fractional-order HIV-1
infection model (Equation (35)) is asymptotically stable, which completes the proof. �

4. Numerical Simulation

In this section, we give the results of the numerical simulation of the fractional-order
HIV-1 infection model, which verified the effectiveness and feasibility of the proposed
method through the time responses. According to the setting of the structural parameters
of the fractional-order HIV-1 infection model in the actual situation [51], the structural
parameters of the fractional-order HIV-1 infection model were set to the values shown in
Table 1.

Table 1. The structural parameters of the fractional-order HIV-1 infection model.

Rate of the uninfected cells a 260
Rate parameter of uninfected cell death b 0.2

Infection rate of uninfected cells by the virus c 0.001
Infected rate parameter of uninfected cells d 0.0008

Rate parameter of CTL perishing e 2.5
Rate parameter of CTL killing infected cells h 0.04

Rate of each reproducing HIV-1 particle l 1.5
Per capita rate m 3.2

Rate numerator parameter of CTL cells multiplying n 0.03
Rate denominator parameter of CTL cells multiplying p 0.8

Rate parameter of CTL cell death q 2.7

Then, according to the control strategy in Theorem 1, the control gain could be set to

k1 = 10, k2 = 12, k3 = 3, k4 = 6, (47)

Then, according to (Equation (29)), we had

W =


µ∗1 −η∗12 −η∗13 −η∗14
−η∗21 µ∗2 −η∗23 −η∗24
−η∗31 −η∗32 µ∗3 η∗34
−η∗41 −η∗42 −η∗43 µ∗4

 =


10.2 −1.04 −1.3 0

0 14.5 −1.3 0
0 −1.5 6.4 0
0 0 0 8.7

. (48)

Obviously, it can be determined via a calculation that W is an M-matrix. In order to
verify the effectiveness of the proposed control strategy, the time responses of different
fractional orders are shown in the figures below (Figures 1–10).

In light of the time responses, we were able to draw the conclusion that the controlled
fractional-order HIV-1 infection model could quickly converge and had almost no over-
shoot. This showed that our control strategy was effective and had a fast control rate and
high control accuracy. Then, we conducted control strategy verification experiments on
the controlled fractional-order HIV-1 infection model with a time delay. The structural
parameter values are shown in Table 2.
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Figure 1. Time response of the fractional-order HIV-1 infection model with control when
x(0) = 600, y(0) = 20, v(0) = 80, and z(0) = 5. Each subfigures (a–d) represent the time response of
the system in a different fractional order.
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Figure 3. Time response of the fractional-order HIV-1 infection model with control when
x(0) = 900, y(0) = 50, v(0) = 100, and z(0) = 5.5. Each subfigures (a–d) represent the time re-
sponse of the system in a different fractional order.
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Figure 5. Time response of the fractional-order HIV-1 infection model with control when
x(0) = 600, y(0) = 30, v(0) = 50, and z(0) = 4.5. Each subfigures (a–d) represent the time response
of the system in a different fractional order.
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Figure 7. Time response of the fractional-order HIV-1 infection model with control when
x(0) = 300, y(0) = 20, v(0) = 30, and z(0) = 3.5. Each subfigures (a–d) represent the time response
of the system in a different fractional order.
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Figure 9. Time response of the fractional-order HIV-1 infection model with a time delay when τ = 0.5.
Each subfigures (a,b) represent the time response of the system in a different fractional order.
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Figure 10. Time response of the fractional-order HIV-1 infection model with a time delay when
τ = 1.5. Each subfigures (a,b) represent the time response of the system in a different fractional order.

Table 2. The structural parameters of the fractional-order HIV-1 infection model with a time delay.

Rate of the uninfected cells a 260
Rate parameter of uninfected cell death b 6.2

Infection rate of uninfected cells by the virus c 0.001
Infected rate parameter of uninfected cells d 0.0008

Rate parameter of CTL perishing e 0.5
Rate parameter of CTL killing infected cells h 0.04

Rate of each reproducing HIV-1 particle l 1.5
Per capita rate m 3.2

Rate numerator parameter of CTL cells multiplying n 0.03
Rate denominator parameter of CTL cells multiplying p 0.8

Rate parameter of CTL cell death q 2.7
Time delay of the process of interaction of different variables τ 0.5

According to (Equation (41)) and the control strategy in Theorem 2, ϕj could be
selected as 1.5, and the control gain could be set to

k1 = 15, k2 = 8, k3 = 13, k4 = 6, (49)
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Then, according to (Equation (43)), we had

W =


µ1 −η12 −η13 −η14
−η21 µ2 −η23 −η24
−η31 −η32 µ3 η34
−η41 −η42 −η43 µ4

 =


21.2 −0.05 −0.06 0

0 8.53 −0.06 0
0 −2.25 16.2 0
0 0 0 8.7

. (50)

Obviously, it can be determined via a calculation that W is an M-matrix. Then, for the
purpose of further expounding on the universality of our new control strategy, 50 groups
of initial values were selected arbitrarily. The state curves of the controlled fractional-order
HIV-1 infection model with a time delay are demonstrated below.

From the time responses, the same result could be obtained. Without loss of generality,
another time delay τ = 1.5 was selected randomly, and 50 groups of initial values were also
chosen; the corresponding state curves of the controlled fractional-order HIV-1 infection
model with a time delay are demonstrated below.

From the time responses, the same result could be obtained. To further verify the
robustness of our control strategy, a larger time delay of τ = 10 was set, and the corre-
sponding state curves of the controlled fractional-order HIV-1 infection model with a time
delay are demonstrated below.

The same conclusion could be clearly obtained, as shown from the time responses in
Figure 11.
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τ = 10. Each subfigures (a,b) represent the time response of the system in a different fractional order.

5. Conclusions

In summary, we first applied a combination of a vector Lyapunov function and the M-
matrix measure to a fractional-order HIV-1 infection model. Also, we conducted asymptotic
stabilization control to design two new control strategies for situations with or without
a time delay. At the same time, we proposed a corresponding asymptotic stabilization
criterion. The experimental consequences clearly revealed that our proposed measure
had outstanding effectiveness and universality for fractional-order HIV-1 infection models.
When different initial values and time delays were selected, the controlled system could
always achieve asymptotic stability. This method is helpful for revealing the infection
process of HIV-1 and provides a new theoretical basis for controlling the infection rate of
the virus. However, in this study, we only analyzed the case of a constant delay and did
not consider a fluctuating delay. Therefore, in future work, we will focus on the case with a
variable time lag.
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