
Citation: Kumar, A.; Pant, S.; Singh,

M.K.; Chaube, S.; Ram, M.; Kumar, A.

Modified Wild Horse Optimizer for

Constrained System Reliability

Optimization. Axioms 2023, 12, 693.

https://doi.org/10.3390/

axioms12070693

Academic Editor: Valery Y. Glizer

Received: 17 April 2023

Revised: 2 July 2023

Accepted: 4 July 2023

Published: 16 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

Modified Wild Horse Optimizer for Constrained System
Reliability Optimization
Anuj Kumar 1 , Sangeeta Pant 2,* , Manoj K. Singh 3, Shshank Chaube 1 , Mangey Ram 4,*
and Akshay Kumar 5

1 Department of Mathematics, University of Petroleum and Energy Studies, Dehradun 248007, India;
anuj4march@gmail.com (A.K.); chaube.shshank@gmail.com (S.C.)

2 School of Engineering and Computing, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
3 School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India;

manojkumar.erg@gmail.com
4 Department of Mathematics, Computer Science and Engineering, Graphic Era Deemed to be University,

Dehradun 248002, India
5 Department of Mathematics, Graphic Era Hill University, Dehradun 248002, India; akshaykr1001@gmail.com
* Correspondence: pant.sangeet@gmail.com (S.P.); mangeyram@geu.ac.in (M.R.);
Tel.: +91-135-2642727 or +91-135-2642729 (ext. 256) (M.R.)

Abstract: The last few decades have witnessed advancements in intelligent metaheuristic approaches
and system reliability optimization. The huge progress in metaheuristic approaches can be viewed
as the main motivator behind further refinement in the system reliability optimization process.
Researchers have intensively studied system reliability optimization problems (SROPs) to obtain the
optimal system design with several constraints in order to optimize the overall system reliability. This
article proposes a modified wild horse optimizer (MWHO) for SROPs and investigates the reliability
allocation of two complex SROPs, namely, complex bridge system (CBS) and life support system
in space capsule (LSSSC), with the help of the same process. The effectiveness of this framework
based on MWHO is demonstrated by comparing the results obtained with the results available in the
literature. The proposed MWHO algorithm shows better efficiency, as it provides superior solutions
to SROPs.

Keywords: reliability optimization; metaheuristics; modified wild horse optimizer; system cost;
system reliability

1. Introduction

The crucial role of reliability optimization in 21st century industry is the reason for the
extensive involvement of various researchers, industry experts and decision makers (DM)
in it. All stakeholders, ranging from automobile industries, transportation systems, and the
military to food industries, have some stake in this concept’s success, as the combination of
reliability and the associated cost of their products has a significant influence on customer
satisfaction. Thus, to remain competitive in today’s world, the basic goal of associated
reliability engineers is to improve the overall reliability of the product and its components,
as well as maintaining production of the product at a competitive cost [1]. Reliability can be
viewed as the probability that a system works uninterrupted for a specific period of time.
Reliability is also defined as the probability that a product, system, or service will perform
its intended function adequately for a specified period of time, or at least operate in a
defined environment without failure [2–4]. This definition encourages system engineers to
develop a reliable and cost-effective product, which, in turn, increases the complexities and
creates a complex system design process and, hence, a complex SROP. Generally, SROPs
can be distinguished into three classes, namely, reliability allocation problems (ReAP),
redundancy allocation problems (RAP) and reliability–redundancy allocation problems
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(RRAP) [5]. In all of these approaches, researchers aim to achieve optimal system reliability
and cost under certain constraints based on available resources.

The computational complexity associated with SROPs has prompted researchers
to solve these problems using the various approaches available in the literature. These
approaches can be broadly categorized into two categories, namely, heuristic approaches
and metaheuristic approaches [6]. Metaheuristic approaches have an edge over heuristics,
as they have a derivative-free mechanism and are quite simple and flexible, even when
dealing with highly complex non-linear optimization problems like SROPs. Metaheuristics
also have a superior ability to avoid local extrema. SROPs have been proven to be NP-
hard in nature, and their computational complexity increases dramatically as the scale of
system configuration increases [7,8]. According to the “No Free Launch (NFL)” theorem [9],
there exist no metaheuristics available that can solve all optimization problems with the
same efficiency. Alternatively, it may be true that, while a particular algorithm offers
better solutions to some optimization problems, it may not offer better solutions for some
other problems, hence its failure to resolve them. Thus, no metaheuristic approach is
perfect. Therefore, NFL-based motivation provokes researchers to develop new algorithms
or upgrade some original metaheuristics to solve a wider range of complex problems
like SROPs.

Recently, works based on various recent metaheuristic approaches have been presented
by many authors, as is reported in Table 1, which discusses approaches used specifically
for SROPs.

Table 1. Literature review of the studies that have used metaheuristic approaches for SROPs.

Literature Reviewed SROP Type Optimization Technique Used

Modibbo et al. [10] ReAP Simulation algorithm (SA)

Ouzineb et al. [11] RAP Tabu search (TS)

Beji et al. [12] RAP Hybrid particle swarm optimizer (HPSO)

Kumar et al. [13] ReAP Gray wolf optimizer (GWO)

Hsieh and You [14] RRAP Artificial immune search algorithm (AISA)

Wu et al. [15] RRAP Improved PSO (IPSO)

Zou et al. [16] RRAP PSO and harmony search algorithm (HSA)

Hsieh and Yeah [17] RAP Bee colony algorithm (BCA)

Lins and Droguett [18] RAP Genetic algorithm (GA)

Wang and Li [19] RRAP HAS

Wang and Li [20] RAP HPSO and local search algorithm (LSA)

Pourdarvish and Ramezani [21] RAP Memetic algorithm (MA)

Valian and Valian [22] RRAP Cuckoo search algorithm (CSA)

Valian et al. [23] RAP Improved CSA (ICSA)

Afonso et al. [24] RRAP Modified imperialist competitive
algorithm (MICA)

Ardakan and Hamadani [25] RAP GA

Yeh [26] RAP Orthogonal simplified swarm
optimization (OSSO)

Kumar et al. [27] ReAP CSA and GWO

Huang [28] RRAP Particle-based SSO
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Table 1. Cont.

Literature Reviewed SROP Type Optimization Technique Used

He et al. [29] RRAP Novel artificial fish swarm
optimization (NAFSO)

Ardakan et al. [30] RRAP Non-sorting GA II (NSGA II)

Zhuang and Li [31] RAP Stochastic order technique (SOT)

Garg [32] RRAP CSA

Mellal and Zio [33] RAP Penalty-guided stochastic fractal search
algorithm (PSFSA)

Abouei et al. [34] RRAP Modified GA (MGA)

Gholinezhad and Hamadani [35] RAP GA

Kim & Kim [36] RAP Continuous-time Markov chain
technique (CMCT)

Kim [37] RAP Matrix-analytic technique (MAT)

Garg [38] ReAP GSA (gravitational search algorithm)- GA

Al-Azzoni and Iqbal [39] ReAP GA and ACO

Kumar et al. [40] ReAP GWO

Negi et al. [41] ReAP Hybrid GWO (HGWO)

Hence, based on the discussion, it can be concluded that SROPs are a hot topic for
researchers and scientists due to their association with high computational complexity. In
this article, the authors propose a framework based on the modified version of very recent
metaheuristic named wild horse optimizer, which mimics the social and herding behaviour
of wild horses in their natural habitat, for the solution of SROPs.

The rest of the article is organized as follows: Section 2 describes the modified wild
horse optimization (MWHO) algorithm. Section 3 elaborates on the mathematical formula-
tion of SROPs i.e., formulation of complex bridge system (CBS) and life support system in
space capsule (LSSSC). Section 4 illustrates the results obtained by the MWHO algorithm
for SROPs discussed in Section 3. Finally, the conclusions and future scope are drawn
in Section 5.

2. Modified Wild Horse Optimization (MWHO) Algorithm

Naruei and Keynia [42] developed a wild horse optimizer (WHO) which mathemati-
cally mimics the social life behaviour of wild horses and is able to effectively handle various
recently developed complex test problems like CEC2017 and CEC 2019, on which several
metaheuristics perform poorly. Wild horses live in a groups and follow their leader, the
stallion horse. Foals and mares follow the stallion in their day-to-day activities like grazing,
breeding, pursuing, etc. We modified the original WHO for SROPs application (Figure 1).
Here, the major difference is in the optimizing reliability parameters in the form of vectors
and matrices. We discuss here, the major steps associated with MWHO for SROPs.
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Figure 1. Flow chart of MWHO.

2.1. Initialization, Group Construction and Stallion Selection

Initially, the population of horses is divided into several groups. Let M denote the set
of horses in the population. H is the number of subsets with each subset representing a
group. The algorithm assigns a leader, i.e., a stallion, to every group. Hence, there are H
stallions in the algorithm. The remaining (M−H) population consists of foals and mares
are further distributed among these H groups. Each stallion, foal and mare represent a
matrix of size p× q, where p is an upper bound in the number of the components in each
of the q subsystems. The elements of the matrix represent the reliability of the components
in each of the subsystems.

2.2. Grazing Behaviour of a Wild Horse

The majority of time is spent by foals and mares grazing in their group with a stallion
at the centre of the grazing region [42]. Equation (1) simulates this grazing behaviour of
wild horses.

Yq
p,H = 2Zcos (2πRAN× Z)×

(
Stallionq − Yq

p,H

)
+Stallionq (1)

where Yq
p,H denotes the current position of the qth subset member in the pth subset.

Stallionq is the state variable associated with the stallion in subset q. Z is computed
using Equation (2), which represents the adaptive nature of wild horses. RAN represents a
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random number following uniform distribution in the range [−2, 2]. Finally, Yq
p,H gives the

updated values of the state variables associated with the subset member during grazing.
The term 2Zcos (2πRAN× Z)×

(
Stallionq − Yq

p,H

)
in Equation (1) is a scaling of the vector,(

Stallionq − Yq
p,H

)
, which determines the direction distance between the stallion and the

member. Adding Stallionq to this term i.e., the right side of the equation, represents the
repositioning of the member along the vector joining the position of the stallion and the
member. In other words, Equation (1) provides the new position of the member depending
on the sign of the cosine term away from or towards the stallion, and thus the equation
also determines the force between the stallion and the member. If the force is positive, the
stallion pulls the member towards itself; if not, it repels the member away. The variables in
Equation (1) are matrices of size p× q and the reliability of each of the components in the
subsystem are updated according to Equation (1).

Q =
→
S 1 < TDR; IDX = (Q == 0); Z = S2ΘIDX +

→
S 3Θ(v IDX) (2)

Here, Q denotes a matrix with elements either 0 or 1. The elements in the matrices
→
S 1 and

→
S 3 follow uniform distribution in the range [0, 1]. S2 is, again, a random number

following uniform distribution in the range [0, 1]. The indices of the random matrix
→
S 1

masked with IDX following the positions where Q is zero in Equation (2) (The operator ==
in the equation is a logical operator aligned with the == operator in MATLAB or Python
programming language). The operator v; represents the negation i.e., if x = 0 (FALSE)
then ~x will return 1 (TRUE). The operator Θ represents elementwise multiplication; in the
expression S2ΘIDX, both S2 and IDX are numbers; therefore, the elementwise multiplication
reduces to normal multiplication between two numbers. In the expression Z = S2ΘIDX +
→
S 3Θ(v IDX), the operands of the operator + are a number on the left and a matrix on
the right. The number on the left operand transforms itself into a matrix of the same
size as the right operand, and all the elements of the matrix as the left operand. TDR
represents a dynamic parameter lying between [0, 1], which updates itself in accordance
with Equation (3) during the execution process of the algorithm.

TDR = 1− iter
(

1
itermax

)
(3)

where iter denotes an iteration counter with itermax as the upper bound on the number

of iterations. As discussed earlier, in the expression
→
S 1 < TDR, the right operand (TDR)

transforms itself into a matrix of the same size as
→
S 1 and the operator < acts as elementwise

comparison operator. The position of the member is updated by using Equation (1), which
is modulated by Equation (2) in conjunction with Equation (3). The value of TDR reduces as
the iteration progresses, which leads to a reduction in the number of 1s in Q (Equation (2)),
which further leads to a increase in the number of 1s in IDX. The increase in 1s in IDX
bounds the variations among elements of Z, leading all the members to move at the same
scale towards itermax iterations. Therefore, the optimization algorithm does not behave
abnormally and does not deviate from convergence in the last few iterations.

2.3. Breeding Behaviour of a Horse

Wild horses have developed a mechanism so that fathers cannot mate with their
daughters or siblings, as the foals split from the group before reaching puberty. Equation (4)
represents this behavior depending upon a Crossover operator [42].

Yi
Gk

= Crossover
(

Yj
Gp

, YZ
Gq

)
; k 6= p 6= q, i = j = end, Crossover = Mea (4)
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where Yi
Gk

denotes the state space of the ith horse in the kth group who splits from the
subset and leaves its place for a horse with parents who parted from groups p and q in
addition to having reached puberty. Yi

Gp
is the state space of the jth foal from the subset p,

which leaves the group after reaching the puberty, mates with the horse Z with the state
space YZ

Gq
, which then splits from group q. In Equation (4), the state of the vacated ith

horse in the kth group is updated with the mean value of the position of the jth foal from
the subset p and horse Z from subset q. In addition, Equation (4) also suggest that the
crossover takes place between elements from two distinct groups.

2.4. Leadership Behaviour

The leadership and competitive behaviour of stallions when moving towards water
sources is represented by Equation (5) [42].

SGp =

2Zcos (2πRAN× Z)×
(

WH− SGp

)
+ WH, if S3 > 0.5 (5a)

2Zcos (2πRAN× Z)×
(

WH− SGp

)
−WH, if S3 ≤ 0.5 (5b)

where SGp , WH and SGp denote the next position in state space of the leader in the pth
group, the state of the water hole and the current state of the leading element of the pth
subset, respectively. Equation (5a,b) behave in a similar way to Equation (2); however,
here, the role of the stallion is taken by the global optimal and the role of the members is
swapped for the stallions. Therefore, the global optimal position searched by the algorithm
does not change abruptly from the convergence.

2.5. Leader Selection and Exchange

Finally, the leader is chosen based on their fitness or cost (Equation (6)) [42]. The
leader’s position, along with the relevant member, will be modified by using Equation (6).

SGp =

YGp , ifcos t
(

YGp

)
< cos t

(
SGp

)
SGp , ifcos t

(
YGp

)
> cos t

(
SGp

) (6)

The original WHO algorithm [42] can be applied across a wide range of optimization
problems. However, to apply the WHO for SROPs, certain modifications must be made.
These include the change of one variable Yq

p,G to matrix Yq
p,G of size p× q. We discuss

here two classes of modifications, which are further required to use the proposed MWHO
efficiently for SROPs. The first class of modification pertains to the application of constraints,
which is not considered in the original WHO algorithm [42]. However, as the SROPs in
question involve constraints (i.e., the constraints of overall system reliability (RSys.) and
components reliabilities (Rk)), conditional steps are introduced to the WHO algorithm to
accommodate these constraints. During the update process, these conditions are assessed
against the constraints, and only if the constraints are met, the new positions of the horses
are updated. The second class of modifications relates to the initialization process in
MWHO algorithms.

While the horse population is initialized with random values, these values may not
adhere to the constraints, causing the horses to diverge or converge at a slow rate. To
address this, each horse is compelled to start in the feasible region by iterating over
multiple generations until a feasible solution is attained. This step is repeated for each
member of the population. Figure 2 provides the pseudo-code for MWHO.
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3. Problem Description

To check the applicability and efficiency of the MWHO, two SROPs and one engineer-
ing optimization problem (EOP) are considered here. The block diagram of the SROPs and
EOP considered is depicted in Figures 3–5.
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3.1. Statement of the Optimization Problems

A general constraint optimization problem, which is non-linear in nature, can be
defined as

Optimize g
(→

x
)

,
→
x = (x1, x2, . . . , xn) ∈ Rn

Where f j

(→
x
)
≤ 0 f or j = 1, 2, 3, . . . , p and

hj

(→
x
)
= 0 f or j = p + 1, . . . , m
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A typical implementation consists of three fundamental elements: a collection of
variables, a fitness function for optimization (either maximizing or minimizing), and a set
of constraints that define the permissible range of values for the variables. The objective is
to determine the optimal values for the variables that optimize the fitness (cost) function
while adhering to the given constraints.

In SROP1 and SROP2, the objective is to minimize the associated system cost (CSys.),
subject to the constraints of overall system reliability (RSys.) and component reliabilities
(Rk). In EOP, the objective again is to minimize the total cost (CSys.) consisting of material,
forming and welding of a cylindrical vessel subjected to various constraints formed by
the decision variables, namely, thickness of the shell (TS), thickness of the head (Th), inner
radius (R), length of the cylindrical section without considering the head (L).

3.2. SROP 1: Complex Bridge System (CBS)

Solving a system that has a redundant unit and is not in a pure series configuration
poses significant difficulty. The complex bridge system problem, depicted in Figure 3, is a
prime example. This system consists of five components, each possessing a component reli-
ability value of Rk(k = 1......5). The complex bridge system is composed of two subsystems:
the first subsystem involves components 1 and 4 connected in series, while the second
subsystem comprises components 2 and 5 in series. These two subsystems are connected in
a parallel configuration, with component 3 inserted in between. Figure 3 depicts the block
diagram of CBS.

RSys. = R1R4 + R2R5 + R2R3R4 + R1R3R5 + 2R1R2R3R4R5 − R1R2R4R5
−R1R2R3R4 − R2R3R4R5 − R1R2R3R5 − R1R3R4R5

(7)

CSys. = ∑5
k=1 ck exp

[
dk

(1− Rk)

]
(8)

The mathematical formulation of SROP 1, with the objective of minimizing overall
system cost with nonlinear constraint, is given below [13]:

MinimizeCSys.

subjected to
0 ≤ Rk ≤ 1, k = 1, 2, 3, 4, 5

0.99 ≤ Rsys. ≤ 1,

ck = 1 and dk = 0.0003, for k = 1, 2, 3, 4, 5

3.3. SROP 2: Life Support System in Space Capsule (LSSSC)

The creation and analysis of physical habitat for space exploration is crucial to shield
the astronaut from the harshness of space. Additionally, the LSSSC must be regener-
ative, providing essential elements for human survival. Figure 4 illustrates the block
diagram of the LSSSC, which consists of four components, each with a reliability value of
Rk(k = 1......4). The system requires a single path for successful operation and contains
two redundant subsystems, with each subsystem comprising components 1 and 4. Both
redundant subsystems are in a series with component 2, forming two identical paths in
a series-parallel arrangement. Component 3 serves as a third path and backup for the
pair. Component 1 is backed up by a parallel component 4, and two identical paths are
created, each having component 2 in a series with the stage consisting of components 1 and
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4. These two paths operate in parallel, so that if one of them functions correctly, the output
is guaranteed.

RSys. = 1− R3[(1− R1)(1− R4)]
2 − (1− R3)[1− R2{1− (1− R1)(1− R4)}]2 (9)

CSys. = 2I1Rα1
1 + 2I2Rα2

2 + I3Rα3
3 + 2I4Rα4

4 (10)

where, I1 = 100, I2 = 100, I3 = 200, I4 = 150 and αk = 0.6, k = 1, 2, 3, 4.
The mathematical formulation of SROP 2, with the objective of minimizing overall

system cost with nonlinear constraint, is given below [13]:

MinimizeCSys.

subjected to
0.5 ≤ Rk ≤ 1 k = 1, 2, 3, 4

0.9 ≤ RSys. ≤ 1

where Rk is the kth component’s reliability.

3.4. Engineering Optimization Problem (EOP): Pressure Vessel Design (PVD)

The objective of this EOP, named PVD, is to minimize the total cost (CSys.) consisting
of material, forming and welding of a cylindrical vessel, as presented in Figure 5. Both
ends of the vessel are capped, and the head has a hemispherical shape. This EOP consists
of four decision variables, namely, thickness of the shell (TS), thickness of the head (Th),
inner radius (R) and length of the cylindrical section without considering the head (L) [38].

The mathematical formulation of this EOP is as follows:

MinimizeCSys. = 0.6224TsRL + 1.7781ThR2 + 3.1661T2
s L + 19.84T2

s R (11)

subjected to
−Ts + 0.0193R ≤ 0

−R + 0.0193R ≤ 0

−πR2L− 4
3

πR3 + 1, 296, 000 ≤ 0

L− 240 ≤ 0

Variable range 0 ≤ Ts, Th ≤ 99 10 ≤ R, L ≤ 200

4. Results and Discussion

To evaluate the performance of the MWHO algorithm on SROPs, the proposed MWHO
algorithm was implemented on the two SROPs describe in Section 3 using GNU Octave
version 6.4.0 on a personal computer with the following performance: 11th Gen Intel Core
I5-1135G7, 2.4 GHz * 8 and 16 GB of RAM. To obtain the best working combination of
parameters for MWHO, a trial-and-error methodology was used.

The proposed algorithm was applied to these SROPs with the following parameters:
For SROP 1: number of stallions, 40; crossover percentage, 20; number of iterations, 1000;
and for SROP 2: number of stallions, 40; crossover percentage, 20; number of iterations, 500;
and for EOP (PVD): number of stallions, 40; crossover percentage, 20; number of iterations,
100. The MWHO algorithm was executed independently for ten runs for each SROP and
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EOP (PVD). The best, worst, mean and standard deviation values for each run obtained by
MWHO algorithm are reported in Tables 2–4.

Figure 6 depicts the convergence curve obtained by MWHO in 10 different runs for
SROP1 and SROP2.
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(a) SROP1 (b) SROP2.

As shown in Figure 6, the system cost converges towards optimal value approximately
after 600 iterations across the 10 runs in SROP1 (Figure 6a). On the other hand, the
system cost converges towards optimal value approximately after 460 iterations in SROP2
(Figure 6b). Figures 7 and 8 present the convergence curve of the best run for SROP 1 and
SROP 2. For EOP (PVD), system cost converges towards optimal value after approximately
25 iterations (Figure 9a). It is also observed that the initial values taken by the optimization
algorithm have little effect on the convergence towards the optimal points. However, some
initial values can lead to reaching the optimal point faster than some other initial values of
the parameters. As shown in Figures 7, 8 and 9b, the best run, defined as the run providing
minimum cost, converges towards the optimal point faster than most of the runs. We do
not conclude that faster convergence means the best solution, as in Figure 6a, run #9 shows
a lower system cost compared to the best run (run #3). However, a faster convergence does
have an advantage, as the search particles can descend towards the optimal point faster
and save computational time.
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Table 2. Results of ten MWHO runs for SROP 1.

Parameter CSys. R1 R2 R3 R4 R5 Rsys. Minimum
(Best)

Maximum
(Worst) Mean Standard

Deviation

Run1 5.0199282842 0.9360195664 0.9337034472 0.7981921280 0.9371237883 0.9320169548 0.9900000000 5.0199282842 5.0309085098 5.0201892919 0.0013487858
Run 2 5.0199280124 0.9355263294 0.9334803358 0.7822209813 0.9343527087 0.9371561818 0.9900000000 5.0199280124 5.0230545661 5.0200296731 0.0003101977
Run 3 5.0199184060 0.9349331779 0.9348248186 0.7913341473 0.9353969594 0.9344941166 0.9900000000 5.0199184060 5.0231438177 5.0200024039 0.0003699874
Run 4 5.0199242231 0.9340927010 0.9339336516 0.7986320543 0.9343808422 0.9365264065 0.9900000000 5.0199242231 5.0274058684 5.0202714576 0.0008451419
Run 5 5.0199278748 0.9340675052 0.9347335655 0.8031105659 0.9327614533 0.9368741416 0.9900000000 5.0199278748 5.0269632952 5.0200872892 0.0009139384
Run 6 5.0199261851 0.9327023268 0.9363847777 0.7910815478 0.9334170090 0.9370704737 0.9900000000 5.0199261851 5.0256903672 5.0213169039 0.0023479312
Run 7 5.0199270145 0.9345176482 0.9339328057 0.7935430577 0.9333222283 0.9376149951 0.9900000000 5.0199270145 5.0275383672 5.0200320369 0.0007645991
Run 8 5.0199260865 0.9336921006 0.9370912052 0.7980113819 0.9331846134 0.9349835171 0.9900000000 5.0199260865 5.0281582787 5.0202224804 0.0008470497
Run 9 5.0199261773 0.9367178093 0.9337026258 0.7966995010 0.9361658666 0.9324564062 0.9900000000 5.0199261773 5.0294137197 5.0203531091 0.0014706063
Run 10 5.0199194160 0.9351343121 0.9349204035 0.7930024286 0.9356598048 0.9337626176 0.9900000000 5.0199194160 5.0306942338 5.0204067134 0.0013594992

Table 3. Results of ten MWHO runs for SROP 2.

Parameter CSys. R1 R2 R3 R4 Rsys. Minimum
(Best)

Maximum
(Worst) Mean Standard

Deviation

Run 1 641.8235682227 0.5000000000 0.8389200456 0.5000000000 0.5000000548 0.9000000000 641.8235682227 671.0551405545 644.2835421315 5.5640172063
Run 2 641.8235623261 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 641.8235623261 671.9281071267 642.1114292308 1.8683118611
Run 3 641.8235623261 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 641.8235623261 681.5619277020 645.2677115347 6.3491794550
Run 4 641.8235623263 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 641.8235623263 667.5127214183 645.5943686963 2.2888766297
Run 5 641.8235623262 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 641.8235623262 681.9891680944 648.0256628239 3.4253433355
Run 6 641.8354495645 0.5004169091 0.8384997756 0.5000000000 0.5000000000 0.9000000000 641.8354495645 673.3826280527 642.1138823691 2.5553654839
Run 7 641.8789866199 0.5019360000 0.8369721277 0.5000000000 0.5000000000 0.9000000000 641.8789866199 689.9675908673 648.2237515217 4.1702652678
Run 8 641.8235623262 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 641.8235623262 689.8633502043 647.1428418598 4.5464971105
Run 9 641.8235624518 0.5000000000 0.8389201018 0.5000000000 0.5000000000 0.9000000003 641.8235624518 687.8662298184 650.8092023998 5.4946777022
Run 10 641.8449422722 0.5007491730 0.8381651189 0.5000000000 0.5000000000 0.9000000000 641.8449422722 657.8461365447 652.7289293272 7.3862098280
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Table 4. Results of ten MWHO runs for the EOP (PVD).

Parameter CSys. TS Th R L Minimum
(Best)

Maximum
(Worst) Mean Standard

Deviation

Run 1 5885.332774 0.778168641 0.384649163 40.31961872 200 5885.332774 188,242.5454 6005.540996 2557.519377
Run 2 5923.354381 0.799805064 0.395344057 41.44067687 184.9614972 5923.354381 213,759.7422 6033.154867 3775.860149
Run 3 6003.185713 0.841774819 0.416089729 43.61527557 158.7055172 6003.185713 554,447.4169 6185.216133 6475.883025
Run 4 5885.332774 0.778168641 0.384649163 40.31961872 200 5885.332774 601,327.7629 6124.196893 9227.022274
Run 5 5885.332774 0.778168641 0.384649163 40.31961872 200 5885.332774 171,610.9702 6031.333811 2601.655011
Run 6 5887.683154 0.77954125 0.385327644 40.39073833 199.0123263 5887.683154 84,546.53112 5972.584245 2096.40849
Run 7 5955.328956 0.817134416 0.403909965 42.33857078 173.6836087 5955.328956 119,618.6572 6021.663479 1934.093259
Run 8 5885.332774 0.778168641 0.384649163 40.31961872 200 5885.332774 204,567.4258 6013.034189 3430.863708
Run 9 5900.162061 0.786749181 0.388890528 40.76420625 193.9022357 5900.162061 344,169.3199 6096.501464 4300.237632

Run 10 5885.332774 0.778168641 0.384649163 40.31961872 200 5885.332774 131,447.596 5991.645744 3183.610924
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Tables 2–4 provide the statistical results of MWHO for SROP1, SROP2 and EOP (PVD),
respectively. They reflect the minimum (best), maximum (worst), mean and standard
deviation of the system cost for each run in fixed iterations. Based on the convergence
curves (Figures 6–9) and statistical results presented in Tables 2–4, Run 3 has been identified
as the best run for SROP1, Run 2 has been identified as the best run for SROP2, while Run
1 has been identified as the best run for EOP (PVD). Run 3 for SROP1 has a minimum
system cost of 5.0199184060, with a mean cost of 5.0200024039 and a standard deviation
of 0.0003699874, whereas Run 2 for SROP2 has a minimum system cost of 641.8235623261,
with a mean cost of 642.1114292308 and a standard deviation of 1.8683118611. Run 1 for
EOP (PVD) has a minimum system cost of 5885.332774, with a mean cost of 6005.540996
and a standard deviation of 2557.519377.

Comparison of the best results obtained by MWHO for SROP 1, SROP 2 and EOP
(PVD) with other metaheuristics is presented in Tables 5–7, respectively.

Table 5. Comparison of the best results for SROP 1 obtained using different algorithms.

Parameter CSys. R1 R2 R3 R4 R5 Rsys. FE

MWHO 5.0199184060 0.9349331779 0.9348248186 0.7913341473 0.9353969594 0.9344941166 0.9900000000 40,000
PSO 5.019918 0.935028 0.791948 0.935005 0.934735 0.934821 0.990000 120,000

GWO 5.019900 0.934100 0.936350 0.791370 0.933880 0.935650 0.990028 9000
CSA 5.019980 0.935546 0.788534 0.941231 0.927708 0.934900 0.990000 60,000
ACO 5.019923 0.935073 0.798365 0.935804 0.934223 0.933869 0.990001 80,160
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Table 6. Comparison of the best results for SROP 2 obtained using different algorithms.

Parameter CSys. R1 R2 R3 R4 Rsys. FE

MWHO 641.8235623261 0.5000000000 0.8389201009 0.5000000000 0.5000000000 0.9000000000 20,000
PSO 641.823562 0.838920 0.500000 0.500000 0.500000 0.900000 2040

GWO 641.823600 0.500000 0.838920 0.500000 0.500000 0.900000 50,000
CSA 641.823563 0.838920 0.500000 0.500000 0.500000 0.900000 15,000
ACO 641.823562 0.838920 0.500000 0.500000 0.500000 0.900000 20,100

Table 7. Comparison of the best results for the EOP (PVD) obtained using different algorithms.

Parameter CSys. TS Th R L FE

MWHO 5885.332774 0.778168641 0.384649163 40.31961872 200 4000
PSO 6061.0777 0.812500 0.437500 42.091266 176.746500 -

GWO 6051.5639 0.812500 0.434500 42.089181 176.758731 -
GA 6288.7445 0.812500 0.434500 40.323900 200.000000 -

ACO 6059.0888 0.812500 0.437500 42.103624 176.572656 -

The results for SROP1 obtained by the MWHO algorithm, along with a few other
results, are presented in Table 5. The table demonstrates that the MWHO yields signifi-
cant improvements over solutions obtained using PSO, GWO, CSA and ACO. With only
40,000 function evaluations, MWHO achieved a minimum system cost of 5.0199184060
while maintaining system reliability of 0.9900000000.

The results for SROP2 obtained by the MWHO algorithm, along with a few other
results, are presented in Table 6. The table demonstrates that MWHO provides very
competitive results when compared to solutions obtained using PSO, GWO, CSA and
ACO. With 20,000 function evaluations, MWHO achieved a minimum system cost of
641.8235623261 while maintaining system reliability of 0.9000000000.

The results for EOP (PVD) obtained by the MWHO algorithm, along with a few other
results, are presented in Table 7. The table demonstrates that MWHO yields significant
improvements when compared to solutions obtained using PSO, GWO, GA and ACO. With
only 4000 function evaluations, MWHO achieved a minimum system cost of 5885.332774.

5. Conclusions and Future Scope

The objective of this article was to introduce a solution approach based on MWHO to
deal with SROPs. The proposed MWHO, which is a modified version of WHO, has high
performance on SROPs and can handle them with great ease. In addition, the comparative
analysis with the results available in the literature dealing with the same SROPs shows that
the MWHO algorithm has better efficiency, as it provides either superior or comparable
solutions. For further study, our work will be devoted to the development of a hybrid multi-
objective version of the MWHO algorithm to deal with multi-objective SROPs. Additionally,
analysing the applicability, efficiency and stability of the MWHO on real life engineering
cases such as Failure Mode Effects Analysis [43], Bayesian Network predictive analysis,
and combining MWHO with some MCDM techniques may be expwereed [44,45].
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