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Abstract: The execution of quantum algorithms requires two key considerations. On the one hand,
it should meet the connectivity constraint requirements of quantum circuit mapping for quantum
architectures, and on the other hand, it needs to consider reducing the probability of errors in
the execution of quantum circuits as much as possible. This paper proposes a novel optimization
technique based on template matching that to satisfy both requirements. The template matching
optimization method can significantly reduce the number of gates in a quantum circuit and further
enhance its practicality. It stands as advanced optimization technology available today. Our method
optimizes quantum logic circuits mapped onto quantum architecture by initially selecting their linear
substructure. We then zone the circuit according to the gate dependency graph and optimize each
block through template matching. Finally, we reorganize the circuit to obtain the optimized version
as the final result. Our proposed method is amenable to various quantum architectures. To evaluate
its efficacy, we conduct a comparative analysis with the t|ket〉 and Qiskit compiler using a set of
benchmark test circuits. Specifically, compare to the t|ket〉 compiler method, the highest average
optimization rate of our method can reach 25.75%. Compare with the Qiskit compiler method,
the highest average optimization rate can reach 32.72%. Overall, our approach has significant
optimization advantages.

Keywords: quantum circuit optimization; template matching; linear substructure

MSC: 81P68

1. Introduction

Noisy Intermediate-Scale Quantum (NISQ) computers [1] have the potential to increase
computational power for certain problem classes, with tens to hundreds of qubits. However,
limitations exist concerning the number of qubits and decoherence [2], which degrades the
quantum information stored in the qubits over time. These challenges restrict the number
of quantum gates that can be applied to quantum circuits, and limit the complexity of
computations that can be executed on quantum devices. Consequently, it is imperative to
optimize quantum circuits executed on NISQ devices. A key method to optimization is
to minimize the number of quantum gates by replacing or eliminating some gates in the
circuit. In the long run, optimizing quantum circuits not only improves running time for
quantum algorithms but also plays an essential role in ensuring high-quality operation of
quantum devices in the near future.

Currently, most quantum circuit optimization methods assume that the circuit will
be executed on a general-purpose quantum computer, regardless of the connectivity of
the actual hardware structure. Examples of circuit optimization methods can be found
in sources such as [3–6], which do not take into account the connectivity constraints of
quantum computer. In order for a quantum logic circuit to operate on a quantum device,
circuit mapping needs to be performed by inserting SWAP gates to enable any number of
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quantum gates in the presence of connection constraints. However, circuit mapping often
results in excessive extra gates and increased circuit depth. Although efficient mapping
methods [7–11] have been developed to generate physical quantum circuits that require as
few gates as possible, there is still space for further optimization of mapping circuits. In
order to avoid changing the connection constraints that the circuit has already satisfied,
some optimization methods, such as the t|ket〉 compiler method [12], simplify the mapping
circuit only by eliminating adjacent reverse gates, so this optimization effect is minimal.

As quantum computing continues to advance at a rapid pace, it becomes increasingly
critical to develop more efficient methods for optimizing quantum circuits. To address
this challenge, a novel quantum circuit optimization method is proposed in this paper,
which takes into account the practical constraints of quantum architecture connections. By
doing so, this method minimizes the number of quantum gates used while ensuring that
the quantum architecture connections are correctly accounted for, resulting in a significant
improvement in the overall performance of mapped quantum circuit.

In this paper, we extend the template matching optimization method described in
the reference [3]. We introduce the concept of linear templates and utilize them for the
purpose of matching optimization. Our goal is to optimize the mapped quantum circuit
while maintaining its connectivity constraints. To achieve this goal, we propose several
methods including linear substructure selection, quantum circuit zoning, zoning circuit
optimization and reorganization. These techniques enable us to further optimize quantum
circuits and enhance the performance of circuit operations on quantum devices.

Before optimization, existing templates are refactored by adding SWAP gates or replac-
ing Bridge gates to fit the connectivity constraints of the linear topology. The optimization
comprises four primary steps: (1) the identification of linear substructures based on the
number of Controlled-NOT(CNOT) gates between qubits that are mapped to the quantum
topology; (2) the zoning of circuits according to the selected linear substructures and based
on the gate dependency graph; (3) the optimization of each quantum circuit zoning using
block-by-block template matching optimization techniques; (4) reorganization of optimized
circuits based on the original zoning rules to generate new circuits equivalent to the original
but with reduced gates. To optimize all qubits in the quantum topology, the above steps
are repeated several times.

2. Preliminaries

In this section, we provide the fundamental definitions and notations related to
quantum circuits.

2.1. Quantum Gate and Quantum Circuit

Quantum computing [13] provides a computing paradigm based on quantum bits.
Quantum bits can not only represent Boolean 0 and Boolean 1, but also represent the
superposition of the two. A quantum bit |ϕ〉 = α|0〉+ β|1〉 such that |α|2 + |β|2 = 1. If
α = 1, then |ϕ〉 represents the classical 0; if β = 1, then |ϕ〉 represents the classical 1.
Quantum gates are used to operate on qubits in quantum computer.

A quantum circuit is a computational model consisting of quantum gates as the basic
elements. These gates are operations selected from a quantum gate library [14], which is a
collection of quantum gates capable of implementing any reversible function. A quantum
logic circuit can be represented as a network structure diagram composed of a cascade of
qubits and quantum gates. The circuit can also be represented by a unitary matrix, which
is calculated as the product of matrices representing individual gates. Each horizontal
line in the circuit diagram represents a qubit, and n parallel horizontal lines represent n
qubits recorded as q0, q1, . . . , qn from the top down. Quantum gates execute sequentially
according to their position in the circuit from left to right, recorded as g0, g1, . . . , gm. A
CNOT circuit is defined as a quantum circuit that is only cascaded by CNOT gates. Figure 1
shows a CNOT circuit with 5 CNOT gates.
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Due to the higher error rate of two-qubit gates [1], including CNOT gates, compared to
single-qubit gates in NISQ devices, and the consideration of the nearest neighbor between
the control and target bits, this paper solely focuses on optimizing CNOT gates for quantum
circuit optimization.

Figure 1. Quantum circuit diagram.

2.2. Quantum Cost

The number of gates in a quantum circuit and the number of physical operations
required to achieve each gate are important factors in measuring computational efficiency
and computational success, hence the name quantum cost [15]. Interference from the exter-
nal environment can lead to the decoherence of quantum systems, so quantum computing
must be completed in a finite coherence time. This requires that the quantum cost of
quantum circuits be minimized, and the circuit with the smallest quantum cost to achieve
a particular function is called an optimal circuit [16–18]. Although finding the optimal
circuit is a QMA (Quantum Merlin Arthur) problem [19], various practical methods for
simplifying quantum circuits (such as [20–22]) have been proposed to reduce the cost of
implementation. If the number of quantum gates is used as the quantum cost standard, a
CNOT gate represents a quantum cost of 1.

2.3. Quantum Topology

The topology of a quantum architecture represents the connectivity between qubits
in a quantum computing device. To ensure that a quantum logic circuit can be exe-
cuted on a quantum computing device, it must satisfy the connectivity constraints of
the quantum topology. There are currently many types of quantum architectures, including
ibmq_montreal, ibm_perth, Rigetti Agave, ibmq_guadalupe, etc. [23]. Figure 2a,b show the
topology of ibm_perth and ibmq_guadalupe, respectively.

(a) (b)

Figure 2. Quantum topology. (a) Ibm_perth. (b) Ibmq_guadalupe.



Axioms 2023, 12, 687 4 of 17

2.4. Quantum Circuit Mapping

When executing a quantum circuit on a quantum computer, the qubits in the logic
circuit need to be mapped to physical qubits on the target quantum architecture. For certain
constraints of quantum architectures, such as superconducting quantum architectures,
when mapping two qubit gates, their control and target qubits must map to physically
connected adjacent qubits. Due to the limited connectivity of physical qubits on current
devices, it is generally considered difficult to find an initial quantum graph satisfying all
double qubit gates in the entire circuit. Therefore, mapping algorithms and optimization
strategies are needed to address this limitation and find the best mapping of physical qubits,
which may involve additional qubit gates to compensate for the lack of connectivity [7–11].
In this paper, the mapping quantum circuit is optimized considering the connectivity
constraint, so a better mapping method is used to obtain the experimental quantum circuit.

We compare IBM Qiskit [24] with the t|ket〉 compiler [12], and for the original quantum
circuit, this experiment uses the general optimization method in the t|ket〉 compiler to opti-
mize the circuit and perform qubit mapping, which can efficiently produce shorter circuit.

2.5. Quantum Circuit Templates

Definition 1. If a quantum logic circuit T consists of a series of unitary quantum gates Ui satisfying
the gate unitary matrix multiplication U|T|· · ·U1 = 1 (where |T| is the number of gates in the
template), then the circuit T is called the template [25]. Figure 3 shows a CNOT gate template.

Figure 3. Circuit template example.

Template matching optimization: It is assumed that the gate sequence
Ua · · ·Ub(1 ≤ a ≤ b ≤ |T|) is found in the circuit C, which matches a set of gate se-
quences in the template T. According to Definition 1, a series of gates in the template
satisfy U|T| · · ·U1 = 1, and each gate Ui has an inverse gate U†

i , then the gate sequence
Ua · · ·Ub can be equivalently expressed as U†

a−1 · · ·U†
1 U†
|T| · · ·Ub+1. If the quantum cost of

U†
a−1 · · ·U†

1 U†
|T| · · ·Ub+1 gate sequence is lower than that of Ua · · ·Ub, then we can reduce

the number of quantum gates in circuit C by substitution. That is to say, in order to reduce
more quantum gates, the longer the matching gate sequence Ua · · ·Ub, the better [3].

The template library contains all the different templates, and the templates used in
this article are mainly referenced in Qiskit [24].

2.6. Gate Dependency Graph

The gate dependency graph [26] is a representation of quantum circuits. First, the
vertices in the graph correspond to the individual gates in the circuit. The graph has an
edge i→ j from vertex i to vertex j if by repeatedly interchanging commuting gates in the
circuit, one can bring gate i immediately to the left of gate j, but gates i and j themselves do
not commute. In other words, in the commuted circuit gate j immediately follows gate i,
but one cannot change the order of gates i and j [3]. The quantum gate g0 in Figure 4a, g1,
g2 can be exchanged with each other to obtain the quantum circuit as shown in Figure 4b,
and the quantum circuit of (a) and (b) is equivalent. From this, a gate dependency graph
representation can be obtained as shown in Figure 4c.
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(a) (b) (c)

Figure 4. Different equivalent representations of quantum circuits. (a) Example of a quantum circuits.
(b) The circuit is modified by interchanging the order of commuting gates. (c) Gate dependency graph.

3. Selection of Linear Substructure

When mapping quantum logic circuits to quantum architectures, it is important to
consider the connectivity constraints of the quantum architectures. There are many types
of quantum architectures, but not all of the existing templates may be suitable for meeting
the connectivity requirements of quantum architectures. If an existing template is used
for matching optimization directly, the resulting optimized circuit may not satisfy the
connectivity constraints of the quantum architectures. Therefore, it is essential to carefully
consider the specific architecture and connectivity constraints of the target architecture
when mapping quantum circuits to quantum architectures.

For example, Figure 5a is a known quantum logic circuit, it conforms to the connectivity
constraint of the linear architecture. Figure 5b is a known template. If the quantum gates
g′1, g′2, g′3, g′4 are matched with the gates g3, g4, g5, g6 in the circuit of Figure 5a, the matching
gates g3, g4, g5, g6 in the circuit are replaced with the gate g′5 in the template, and the circuit
is optimized as shown in Figure 5c. It can be seen that there is a non-nearest neighbor gate
g3 in the optimized circuit Figure 5c, which does not conform to the connectivity constraint
of the linear architecture.

To address the aforementioned issue and find a solution that can be applied to all
architectures, it is necessary to identify a common substructure that exists in all architectures.
By ensuring that the template satisfies the connectivity of this substructure, it is possible to
optimize the circuit without altering the connectivity constraints of the circuit. In this way,
the resulting optimized circuit will be compatible with the connectivity requirements of
the target quantum architecture, without compromising the functionality of the original
circuit. It is therefore crucial to identify and leverage common substructures when mapping
quantum circuits to quantum architectures.

Figure 5. Template matching optimization. (a) Proximity quantum circuits. (b) Template circuit.
(c) Template matching optimized circuit.
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Definition 2. A quantum linear topological structure is a type of quantum network topology where
the qubits are arranged in a linear chain or one-dimensional array, and the connections between
them are limited to nearest-neighbor interactions.

Quantum linear topology is generally a part of the topology of quantum computing
system, that is, quantum linear topology is a substructure of the topology of quantum
computing system. As shown in Figure 2 ibm_perth (Q0, Q1, Q2) and (Q0, Q1, Q2, Q3, Q5)
in Figure 2 ibmq_guadalupe are the linear topology of this quantum topology.

Definition 3. A template is called a linear template if it satisfies the connectivity constraint of
quantum linear topology.

For templates in a given template library, templates in the library that do not satisfy
the linear topology can be reconstructed to generate a new template library. Template
reconstruction method is mainly: first, find the template in the non-neighbor CNOT gate;
then, by inserting the SWAP gate or introducing the Bridge gate, the non-neighboring
CNOT gate is neighbored to satisfy the topological connectivity. Finally, a new template
conforming to the connectivity constraint of linear topology is obtained. Such reconstructed
templates can perform template matching optimization on all circuits that satisfy linear
topological connectivity.

Indeed, the ubiquity of linear structures in all topologies makes them a useful basis for
optimizing the mapping of quantum circuits to various quantum topologies. By utilizing
linear templates, we can develop techniques that are applicable across different topologies,
rather than designing solutions specific to each individual topology.

Therefore, selecting the appropriate linear substructure in the quantum topology is
a crucial step in achieving optimal results in quantum circuit optimization. By identify-
ing and leveraging linear substructures in quantum topologies, we can greatly improve
the effectiveness of quantum circuit optimization techniques, resulting in more efficient
quantum computations.

Topological Linear Substructure Selection

When optimizing a quantum circuit by template matching, the number of qubits and
quantum gates of the optimized quantum circuit should not be less than the number of
qubits and quantum gates of the smallest template circuit in the template library.

As the number of qubits in a quantum circuit increases, the number of quantum gates
in the circuit also increases. For a quantum circuit that contains more gates, the types and
numbers of template circuits that can be matched in the template library also increase, thus
allowing for better optimization.

This is because more complex quantum circuits generally require more gates to be
implemented, and more gates mean that the quantum system can perform more operations
and transformations. Therefore, quantum circuits with more gates are better suited to
express complex operations, leading to better performance.

In addition, more complex quantum circuits can enable a greater variety of operations
and logic operations, resulting in more types and numbers of template circuits that can
be matched. This will facilitate a more comprehensive and detailed optimization of the
quantum circuit, thus improving system reliability and implementation efficiency.

Therefore, when selecting a linear substructure, it is advisable to choose a substructure
with as many qubits as possible, and ensure that the corresponding quantum logic circuit
contains as many quantum gates as possible.

Suppose l qubits are selected in the topology, expressed as the set S = Qs1, . . . , Qsl ,
then there are k qubits adjacent (connected) to the qubits in S, expressed as T = Qt1, . . . , Qtk,
k ≥ 0, Qti /∈ S, i ∈ 1 · · · k. If k ≥ 2, the number of quantum gates between the logic circuit
qubit pairs (qi1, qj1) and (qi2, qj2) corresponding to different adjacent qubit pairs (Qti1, Qsj1)
and (Qti2, Qsj2) composed of qubits in T and S may be different.
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As shown in Figure 6, when we select the (Q0, Q1, Q3, Q5, Q6) qubits on the linear
substructure in the topology, there are also two qubits, Q2 andQ4, adjacent to (connected) to
Q1 and Q5, respectively. From the corresponding quantum logic circuit in Figure 7, we can
see that there are CNOT gates g4 and g7 between q1q2 and q4q5 qubits, respectively., which
are not within the upper gate of the qubit we selected. Their presence affects the number of
qubits and gates of the quantum circuit when the template matching optimization.

Definition 4. The barrier gate is a two-qubit gate with its control qubit and target qubit respectively
located on the selected qubit and other qubits.

Barrier gate g7 prevents the merger of its successor gate g8 with its predecessor gate
g0. When optimization, because of this barrier, the gates on the selected linear substructure
cannot be directly optimized together. When there are more such barrier gates, the entire
circuit is zoned into more local circuits, which reduces the number of qubits and gates on
the quantum local circuit to be optimized. Therefore, if there are fewer barrier gates in a
quantum circuit, more optimization can be performed through template matching using
quantum local circuits containing more gates.

Figure 6. Linear substructure selection (selected qubits are highlighted with red circles).

Figure 7. Example of a quantum circuit.

To satisfy template matching conditions and maximize the number of qubits and
quantum gates, it’s important to consider the number of quantum gates between adjacent
qubits in the corresponding quantum logic circuit. In order to select the maximum number
of quantum gates in the quantum logic circuit and minimize the number of barrier gates,
the following qubit selection rules are applied in the topology.

In the quantum topology, for a selected qubit Qi, if there are more than m adjacent
qubits Qj1, . . . , Qjm, m ≥ 2 with Qi, then in the quantum logic circuit corresponding to
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(q′i, q′j1), . . . , (q′i, q′jm), the two qubits with the highest number of gates between the two
qubits are preferred. A weight α is given below, with the larger the α the better the result.

Weight α =
Na

Nb
(1)

where Na is the number of quantum gates on the chosen qubit; Nb is the number of
barrier gates.

For qubit requirements, we use the outermost qubit in the topology as the starting point
(as shown in Figure 2 ibm_perth Q0, Q2, Q4, Q6), and then select subsequent qubits based
on the number of gates between qubits. This allows us to select as many qubits as possible
while ensuring the fewest number of barrier gates. This is illustrated in Algorithm 1.

Take the ibm_perth topology in Figure 2 and the quantum circuit in Figure 7 as
examples. Firstly, according to the number of gates between every two qubits, the outermost
Q0, Q1 two qubits of the topology are selected; Then, for the successor qubits of the qubit
Q1, Q2 and Q3, because there are more qubits on the corresponding quantum logic circuit
between Q1, Q3, the qubit Q3 is selected; then, the Q5, Q6 are selected sequentially; finally,
the linear substructure shown in the red qubit in Figure 6 is obtained.

The specific first round linear substructure selection algorithm is described as follows:

Algorithm 1: The first round of linear substructure selection algorithm
Input : Topology G(V, E), the number of gates between qubits
Output : The selected substructure qubits
1. Initialize a list W to store qubits
2. for v ∈ V do
3. for e ∈ E do
4. if vi have the least adjacent connection nodes then
5. for vj ∈ vi connection points do
6. if eij has maximum weight then
7. Add vivj to to the list of W
8. else if no adjacent nodes can be selected then
9. break
10. end if
11. end for
12. end for
13. return W

4. Circuit Zoning Optimization and Reorganization
4.1. Circuit Zoning

After selecting the linear substructure, the circuit cannot be optimized directly due
to the presence of other qubits that are coupled to those on the chosen substructure. The
quantum gates between these qubits, also known as barrier gates, limit the number of
qubits that can be included in the selected substructure. This effect is discussed in more
detail in Section 3.

As shown in Figure 8, the circuit is zoned into two parts by the barrier gate g7, a
quantum circuit consisting of a gate (g0, g1, g2, g3, g5, g6) and the other is a quantum circuit
consisting of a gate (g8, g9, g10, g11, g12, g13, g14). Therefore, before optimizing the circuit, it
is necessary to zone the gates in the circuit through the gate dependency graph according
to the limitations of the quantum gate. Then, the template matching optimization method
is used to optimize the circuits of the zoning one by one.
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Figure 8. Gate dependence graph of quantum circuit (Figure 7).

The zoning of the circuit is mainly based on the gate dependency graph. The specific
steps are as follows:

Step 1: Determine whether the first quantum gate on the quantum logic circuit cor-
responding to the selected qubit is a barrier gate. If it is not a barrier gate, take the first
gate as the starting point and proceed to the second step. If it is a barrier gate, start with a
successor gate that is not a barrier gate and proceed to the second step.

Step 2: Determine whether the successor gate of the starting point has a barrier gate.
If it does, then the barrier gate and all the gates that are subsequently affected are not
within the bounds of the zoning. If the other successor gates are not barrier gates, zone
them together.

Step 3: Continue to determine whether the gate behind it has a barrier gate according
to step 2. Repeat this process until the last zoned gate is followed only by barrier gates, and
then the circuit zoning of the first part ends.

Step 4: Begin with the undivided quantum gate that is not a barrier gate and continue
the zoning through steps 2 and 3.

Step 5: Repeat step 4 until the last gate on the quantum circuit is reached and the
zoning is complete.

Using Figure 8 as an example, we start by selecting gate g0 as the starting point on the
qubit. The successor gate g1 is not a barrier gate, so both g0 and g1 are zoned together. The
successor gates g2 and g3 are also zoned together.

The successor gate of the g3 gate is g4g5g6, where g4 is a barrier gate without a
successor gate. However, g5 and g6 are not barrier gates, so they are zoned together. Since
g5 has no successor gate, the zoning is interrupted.

The successor gate of g6 is only the barrier gate g7, so the first part of the zoning ends
here. The zoned gates produce the quantum circuit shown in Figure 9.

The second part of the zoning starts with the successor gate g8 of the g7 gate. As g8 is
not a barrier gate, it is zoned. The successor gates do not barrier the zoning, and we obtain
the quantum circuit shown in Figure 10 using the zoned gates. At this point, all gates in the
circuit are zoned. This is illustrated in Algorithm 2.

The specific zoning algorithm is described as follows:
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Algorithm 2: Circuit zoning
Input : Gate dependency graph
Output : Zoning circuits
1. Initialize a list C to store gates
2. for i ∈ 0, 1, . . . , n do
3. if j ∈ min gates on selected qubit then
4. Add gj to the list of C
5. if one successor gate of gj ∈ block gates then
6. continue
7. else if one successor gate of gj ∈ gates on selected qubit then
8. Add the successor gate gj+a to the list of C
9. else if the only successor gate of gj ∈ block gates then
10. break
11. end if
12. if one successor gate of gi ∈ block gates then
13. continue
14. else if one successor gate of gi ∈ gates on selected qubit then
15. Add the successor gate gi+a to the list of C
16. else if the only successor gate of gi ∈ block gates then
17. break
18. end if
19. end if
20. end for
21. return C

Figure 9. The first part of the quantum circuit.

Figure 10. The second part of the quantum circuit.

4.2. Circuit Optimization and Reorganization

After zoning the quantum circuit into local circuits using zoning, a set of local quantum
circuits are obtained, which are all composed of nearest neighbor interactions since the
selected qubits are arranged linearly. We then use the stencil matching optimization
technique for circuit optimization, utilizing a linear template shown in Figures 11 and 12.

The template library used is derived from IBM Qiskit compiler. The non-nearest
neighbor template circuits in the library have been modified into linear templates in order
to match the topology of the selected qubit.
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This paper adopts the template matching algorithm described in [4]. The main idea is
as follows: first, all possible initial matches between a gate in the circuit C and a gate in
the template T are explored, and the qubits are assigned. Then, while preserving the initial
match, the optimal match is maximized. Finally, the matched gates in circuit C are replaced
by the inverse of the unmatched gate group in template T.

Figure 11. The first template circuit.

Figure 12. The second template circuit.

As shown in Figure 9, the circuit is first scanned and compared with the template in
Figure 11. The first gate g0 in the circuit matches the first gate g′0 in the template. The qubits
q0, q1, and q2 in the template correspond to qubits q0, q1, and q3 in the circuit, respectively.

As the scanning continues, the successor gate g1 of the gate g0 in the circuit matches
the successor gate g′1 of the gate g′0. Further scanning reveals that gates g2, g3, and g5 of the
circuit match gates g′2, g′3, and g′4 of the template in succession.

However, the successor gate g6 of gate g5 in the circuit does not match the successor
gate g′5 of gate g′4 in the template, and the matching process is halted. Considering that the
number of matched gates is greater than half of the number of gates in the template, replace
g0, g1, g2, g3, and g5 in the circuit with the remaining gate g′7, g′6, g′5 in the template circuit.

The optimized circuit shown in Figure 13 has two fewer quantum gates than the circuit
shown in Figure 9.

Similarly, the quantum circuit in Figure 10 is matched and optimized by the template of
Figure 12 to obtain the quantum circuit as shown in Figure 14, reducing two quantum gates.

After block-by-block optimization, the optimized circuit must also be reorganized.
The reorganization step involves incorporating an empty quantum circuit within the circuit
according to the zoning of the circuit in the fourth part. Then, the quantum gate of each
part is included into the circuit according to its qubit information.

Figure 13. The first part optimizes the post-quantum circuit.
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Figure 14. The second part optimizes the post-quantum circuit.

The quantum circuit in Figure 8 is zoned into three parts based on the gate dependency
graph. Besides the two optimized local circuits, there are two barrier gates in the middle,
as shown in Figure 15. When reorganizing the circuit, the optimized circuit in the first part
(Figure 13) is sequentially transferred to an empty quantum circuit according to the qubit
and gate order in the original circuit. The two barrier gates are then added accordingly.
The quantum gate in the optimized circuit of the second part (Figure 14) is added next.
Finally, the resulting circuit shown in Figure 16 is obtained, which reduces the total number
of quantum gates by four.

Figure 15. Circuit zoning. The circuit is zoned into three sections, namely 1, 2, and 3, as highlighted
in the figure.

This concludes the first round of quantum circuit optimization. To reduce as many
quantum gates as possible for the entire quantum circuit, two or more rounds of circuit
optimization are required. Compared with the first round of optimization, the overall
steps of the subsequent rounds of optimization are unchanged, except for the addition of a
selection condition in the linear substructure selection stage. That is, based on the qubits
on the linear substructure that have been selected in the 1 ∼ i(i > 1) round, the selection
of the linear substructure in the i + 1 round should give priority to the qubits that have
not been selected in the previous i round. Until the qubits on the j(1 ≤ j) round topology
are selected when the linear substructure is selected, then this round of optimization is the
last round of optimization of the last round of the current circuit. This ensures that the
selection of linear substructures is not repeated for each round and allows each qubit on
the topology to be optimized.
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Figure 16. The optimized quantum circuit.

Based on Figure 16, the second round of optimization process builds on the circuit
after the first round of optimization. Firstly, the selection of linear substructures prioritizes
the unselected qubits, excluding the two qubits already selected Q2 and Q4, as shown in
Figure 17. Then, since the number of quantum gates between the qubits on the quantum
logic circuit corresponding to Q2Q1 and Q4Q5 is the same, one of the two qubits, Q2 or Q4,
is randomly chosen as the starting point.

Figure 17. The second round of linear substructure selection. The red circle represents the
qubit selected in the first round, while the blue circle represents the newly selected qubit in the
second round.

In the selection process, Q2 is chosen, and Q0, Q3 are selected as the successor qubits
of Q1. Because there are more quantum gates between Q1 and Q3, Q3 is selected as the next
qubit. Then, Q5 is selected, and although there are more quantum gates between Q5 and
Q6, Q4 is preferred as it is an unselected qubit for the subsequent qubits Q4 and Q6 of Q5.

Therefore, in this way, the second round selects a linear substructure composed
of Q2, Q1, Q3, Q5, Q4 qubits, covering all the qubits on the entire topology. After the
second round of circuit zoning optimization and reorganization, the entire quantum circuit
optimization is successfully completed.

As from the reference [27], the linear substructure of a quantum topology can be
expressed as an r-noncommutative graph on finite rings. Therefore, Algorithm 3 is suited
for determining the optimal path for any given quantum topology that is represented by
r-noncommutative graph on finite rings.

The specific other rounds of linear substructure selection algorithms are described
as follows:
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Algorithm 3: The second round of linear substructure selection algorithm
Input : Topology G(V, E), qubits have been selected
Output : The selected substructure qubits
1. Initialize a list W1 to store qubits
2. for v ∈ V do
3. for e ∈ E do
4. if vi have the least adjacent connection nodes then
5. for vj ∈ vi connection points do
6. if eij has maximum weight or vj not selected then
7. Add vivj to to the list of W1
8. else if no adjacent nodes can be selected then
9. break
10. end if
11. end for
12. end for
13. return W1

5. Experimental Results and Analysis

In this experiment, the proposed optimization algorithms were implemented in Python
language to verify their feasibility and advantages. To test their efficacy, a set of benchmark
circuits, covering multiple qubits with varying quantum architectures, was utilized. The
experimental results of this paper were compared with those obtained from the t|ket〉
compiler and Qiskit optimization in a previous study.

Table 1 employs a linear quantum architecture, while Table 2 employs an ibm_perth
quantum architecture. Additionally, Table 3 employs the ibmq_guadalupe quantum archi-
tecture for experimentation. The “Circuit name” in the table is the name of the circuit, “n”
is the number of qubits of the quantum circuit, “Original CNOTs” is the number of CNOT
gates in the initial circuit, “Mapped CNOTs” is the number of CNOT gates optimized and
mapped by the compiler after t|ket〉. “Tket [12]” represents the number of CNOT gates
optimized by the t|ket〉 compiler. “Topt CNOTs” indicates the number of CNOT gates
optimized by the method proposed in this article, taking into account the constraints of the
quantum architecture connections based on the circuit derived from the “Mapped CNOTs”
circuit. “Qiskit [24]” denotes the number of CNOT gates optimized by the Qiskit compiler,
and “%” indicates the optimization rate of the proposed method compared to the t|ket〉 or
Qiskit compiler.

Table 1. Experimental comparison results on linear quantum architecture.

Circuit Name n Original
CNOTs

Mapped
CNOTs

Tket
[12]

Qiskit
[24]

Topt
CNots

%

With [12] With [24]

4gt5_75 5 38 63 63 64 38 39.68 40.63
4gt13_90 5 53 64 62 84 45 27.42 46.43
4gt13_91 5 49 64 64 88 48 25.00 45.45

4gt4-v0_78 6 109 180 189 174 131 24.71 30.69
4gt4-v0_79 6 105 163 173 157 113 28.03 34.68
4gt4-v0_80 6 79 151 129 145 131 9.66 −1.55

Average 25.75 32.72
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Table 2. Experimental comparison results on ibm_pert.

Circuit Name n Original
CNOTs

Mapped
CNOTs

Tket
[12]

Qiskit
[24]

Topt
CNots

%

With [12] With [24]

4gt5_75 5 38 49 47 58 33 29.79 43.10
4gt13_90 5 53 57 57 72 43 24.56 40.28

4gt4-v0_80 6 79 131 127 141 85 33.07 39.75
alu_bdd_288 7 38 75 73 66 60 17.81 9.09
majority_239 7 267 429 423 403 358 15.37 11.17

C17_204 7 205 332 330 332 272 17.58 18.07
ham7_104 7 149 212 210 266 155 26.19 41.73
rd53_131 7 200 339 331 338 296 10.57 12.43
rd53_135 7 134 219 219 248 185 15.53 25.40

Average 21.16 26.78

Table 3. Experimental comparison results on ibmq_guadalupe.

Circuit Name n Original
CNOTs

Mapped
CNOTs

Tket
[12]

Qiskit
[24]

Topt
CNots

%

With [12] With [24]

sym9_146 12 148 133 129 211 112 13.18 46.92
cnt3-5_179 16 85 170 170 160 155 8.82 3.13
cnt3-5_180 16 215 361 349 446 321 8.02 28.03

Average 10.01 26.03

The table illustrates the comparison between our proposed method and the t|ket〉
compiler. In experiments conducted on linear quantum architectures, our method achieves
an average reduction of 25.75% in the number of quantum gates through an additional
optimization step. For experiments on the ibm_Perth quantum architectures, the average
reduction in the number of quantum gates is 21.16%, and for ibmq_guadalupe quantum
architectures, it is 10.01%. The maximum optimization effect observed reaches 39.68%,
highlighting the effectiveness of our proposed method.

However, it is important to note that as quantum architectures become more complex,
the overall optimization effect tends to decrease. This observation is also evident when
comparing the results with the Qiskit compiler. This is because choosing a linear substruc-
ture introduces more connection constraints between qubits, leading to the circuit being
partitioned into more local circuits for optimization.

Nonetheless, the proposed method has shown significant optimization effects on
quantum circuits of any scale mapped to any quantum architecture.

6. Conclusions

This paper proposes a new quantum circuit optimization method, namely the quantum
circuit template matching optimization method, that takes into account the connectivity
constraints of actual quantum topologies. By reducing the number of quantum gates in
the circuit, the proposed method successfully satisfies the connectivity constraints and
provides improved optimization results.

The experimental results reveal that the method proposed in this paper exhibits a
remarkable optimization effect when compared to the t|ket〉 and Qiskit compiler meth-
ods, across various IBM architectures. This method proves to be effective for both one-
dimensional and two-dimensional quantum topologies, suggesting its potential to enhance
quantum circuit optimization in general.

In future research efforts, we could further improve the optimization effect by leverag-
ing heuristics and applying more intelligent algorithms. Additionally, exploring more types
of quantum gates for diverse quantum gate libraries could also benefit the optimization
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results. Overall, the proposed method presents a new perspective on quantum circuit opti-
mization with connectivity constraints and exhibits promising potential for wide-ranging
applications in the field of quantum computing.
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