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Abstract: The study of the maximum and minimal characteristics of graphs is the focus of the
significant field of mathematics known as extreme graph theory. Finding the biggest or smallest
graphs that meet specified criteria is the main goal of this discipline. There are several applications of
extremal graph theory in various fields, including computer science, physics, and chemistry. Some
of the important applications include: Computer networking, social networking, chemistry and
physics as well. Recently, in 2021 exponential multiplicative Zagreb indices were introduced. In
generalization, we introduce the generalized form of exponential multiplicative Zagreb indices for
α ∈ R+ \ {1}. Furthermore, to see the behaviour of generalized first and second exponential Zagreb
indices for α ∈ R+ \ {1}, we used a transformation method. In term of the two newly developed
generalized exponential multiplicative Zagreb indices, we will investigate the extremal bicyclic,
uni-cyclic and trees graphs. Four graph transformations are used and some bounds are presented in
terms of generalized exponential multiplicative Zagreb indices.

Keywords: extremal graphs; first and second generalized exponential multiplicative Zagreb indices;
unified approach; graph transformations

1. Introduction

Let G be a simple and connected graph and V(G) and E(G) be the vertex set and the
edge set of G, respectively. The number of elements of V(G) and E(G) is known as the order
and size of G. The number of edges which are incident to vertex v in G is called the degree
of the vertex v and it is denoted by dG(v). The set of adjacent vertices of a vertex v in G is
known as the neighborhood of the vertex v in G and it is denoted by NG(v). If dG(v) = 1,
then v is called a pendant vertex. Consider Q as a subset of V(G), such that G−Q is a new
graph constructed by deleting the vertices of Q from V(G) in G together with their incident
edges. Cn, Sn, and Pn characterize the star, cycle, and path graphs of order n, respectively.
If every vertex on a path is of degree two or more, then it is known as an internal path,
otherwise it is known as a pendant path. When n + 1, n, n− 1 are the size of a graph of
order n, respectively, they are called bicyclic, unicyclic, and tree graphs [1–5]. The study of
the maximum and minimal characteristics of graphs is the focus of the significant field of
mathematics known as extreme graph theory. Finding the largest or smallest graphs that
meet specified criteria is the main goal of this discipline. There are several applications of
extremal graph theory in various fields, including computer science, physics, and chemistry.
Some of the important applications include: Extremal graph theory has several uses in
computer science, particularly in the creation and evaluation of algorithms. One well-
known problem in extremal graph theory is the maximum clique problem, which asks for
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the largest complete subgraph in a graph. Social Networks: Extremal graph theory may
be used to examine the structure of social networks. Social networks can be modeled as
graphs. For instance, research on graph density and the maximum number of edges in a
graph might shed light on how social networks are connected [6–8]. In chemistry: Extremal
graph theory is used to comprehend the structure of molecules. Molecular graphs can be
modeled as graphs. A graph’s maximum number of edges, for instance, can be used to
forecast a molecule’s stability [9–11]. In physics: Extremal graph theory may be used to
examine the structure of physical systems that are commonly represented using graphs.
For instance, it is possible to forecast the critical temperature of a physical system using the
maximum number of edges in a graph [12–14].

As a result, extremal graph theory is a crucial branch of mathematics with several
applications. Insights into the structure of complex systems may be gained via the study of
maximum and minimum features of graphs, which can then be used to create and analyse
algorithms, forecast the stability of molecules, and comprehend the interconnection of
social networks.

A mathematical tool used for the modeling of biological, toxicological, pharmacologic,
physicochemical, and some relevant properties of chemical compounds, this tool is formally
known as a topological index or molecular structure descriptor, which is formally a branch
of theoretical chemistry [15]. There exist several types of descriptors, but the main medium
is a degree or distance of vertices or edges. After the introduction of the Zagreb index, many
other versions of the Zagreb index were introduced, such as the multiplicative version of
the Zagreb index which was introduced by [16,17]. The multiplicative Zagreb indices are
defined as

∏
1
(G) = ∏

v∈V(G)

d2
G(v).

∏
2
(G) = ∏

vu∈E(G)

[dG(v)× dG(u)] = ∏
z∈V(G)

[
dG(z)

dG(z)
]
.

It is becoming a trend to introduce new variants of the existing notions. For topological
graph indices, the situation is no different. Recently, the exponential multiplicative Zagreb
indices were introduced by [18], in 2021.

E ∏
1
(G) = ∏

v∈V(G)

e[d
2
G(v)].

E ∏
2
(G) = ∏

vu∈E(G)

[
e[dG(v)×dG(u)]

]
= ∏

z∈V(G)

[
e
[
dG(z)

dG(z)
]]

. (1)

In [19], some exact formulations and bounds were presented in terms of topological
indices, particularly the first Zagreb index, few inequalities for Zagreb index were computed
in [20], some other results on the topological indices were found in [21–23]. Neighborhood
first Zagreb index was introduced and its some properties were discussed in [24]. Steric
effects in drug design by topological indices was discussed in [25]. The completed survey
on Zagreb Indexes 30 years after its introduction was compiled by [20,26]. For more results
on the Zagreb index, see [27–29]. A handbook of this mathematical tool can be found in [30],
upper bounds of Zagreb indices in [31], and a discussion on the general Zagreb index in
terms of unicyclic graphs is detailed in [32]. For some computational work of topological
indices, see [33–37].
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2. Contribution and Main Results

We introduce the generalization of exponential multiplicative Zagreb indices for
α ∈ R+ \ {1}, and formulated as:

E
α

∏
1
(G) = ∏

v∈V(G)

e[d
α
G(v)] = ∏

v∈V(G)

e[dG(v)]
α

.

E
α

∏
2
(G) = ∏

vu∈E(G)

[
e[dG(v)×dG(u)]

α
]
= ∏

z∈V(G)

[
e
[
dG(z)

αdG(z)
]]

, (2)

where E ∏α
1(G) is a generalized first exponential multiplicative Zagreb index. The E ∏α

2(G)
is a generalized second exponential multiplicative Zagreb index, and dG(z) is the degree
of the vertex. For more detailed information on Zagreb indices and multiplicative Zagreb
indices [38–41].

2.1. Main Results

In this section, we will investigate the first and second exponential multiplicative
Zagreb indices which increase or decrease under some lemmas and graph transformations.
After this, we will acquire our main proofs by using graph transformations.

Lemma 1. For χ ≥ 2, and α > 1 f (χ) = (χ + 1)α(χ+1) − (χ)α(χ) − 4α + 1α. The f (χ) is
increasing function.

Proof. Since, f ′(x) = α(χ + 1)α(χ+1)[1 + ln(χ + 1)] − α(χ)α(χ)[1 + ln(χ)] > 0, result is
hold.

Transformation 2. Suppose λ∗ to be a simple and finite connected graph and η = k1k2, . . . , kt−1kt
and ζ = l1l2, . . . , ls−1ls be the two paths of length t and s, respectively. Assumed that u to be a vertex
in λ∗, then λ∗1 and λ∗2 are two graphs obtain from λ∗ such that λ∗1 = λ∗+ {uk1, k1k2, . . . , kt−1kt}+
{ul1, l1l2, . . . , ls−1ls}, and λ∗2 = λ∗ + {uk1, . . . , kt−1kt}+ {ktl1, . . . , ls−1ls}, respectively. The
graphs λ∗1 and λ∗2 are shown in Figure 1.

ls

u
u

k1
k2 kt l1 lsls-1

k1

k2

kt

kt-1

l1
l2

ls-1

λ*1 λ*2

Figure 1. Depiction of transformation 2.

Lemma 3. Consider that the two graphs λ∗1 and λ∗2 are defined in the above transformation. For
α > 1, we have

(i) EΠα
1(λ
∗
1) > EΠα

1(λ
∗
2)

(ii) EΠα
2(λ
∗
1) > EΠα

2(λ
∗
2)
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Proof. Let dλ∗(u) = p ≥ 1. Consider that dλ∗1
(u) = p + 2 and dλ∗2

(u) = p + 1. Then, from
the formulation of the first general exponential multiplicative Zagreb indices, we have

EΠα
1(λ
∗
2)

EΠα
1(λ
∗
1)

=
e(p+1)α

e2α

e(p+2)α
e1α

< 1.

Let f (χ) = (χ)(α) − (χ + 1)(α) + 2α − 1, and f ′(χ) = α(χ)α−1 − α(χ + 1)α−1 < 0. Thus,
f (χ) is a decreasing function, when χ ≥ 2 and α > 1. Hence, (i) is true. Similarly, by using
the formulation of the second general exponential multiplicative Zagreb indices and apply
by Lemma 3, we have

EΠα
2(λ
∗
1)

EΠα
2(λ
∗
2)

=
e(p+2)α(p+2)

e1α

e(p+1)α(p+1)
e4α

> 1

Hence, (ii) is true.

Transformation 4. Assuming K∗ to be a non-trivial and connected graph, consider that vu and
uvj are the edges of the graph K∗, For 1 ≤ j ≤ d, such that dK∗(v) ≥ 2 and dK∗(vj) = 1 for each j.
We get a new graph K∗1 from K∗ by removing the edges uvj and adding the edges vvd for 1 ≤ j ≤ d.
The construction of K∗1 from graph K∗ is shown in Figure 2.

v

u

v1

v2

vd

v

vd

v1

K*
K*1

u

v2

Figure 2. Depiction of transformation 4.

Lemma 5. Consider K∗ and K∗1 tp be two graphs described in the transformation 4. We have

(i) EΠα
1(K

∗) < EΠα
1(K

∗
1)

(ii) EΠα
2(K

∗
1) > EΠα

2(K
∗).

Proof. Consider that the dk∗(v) = w + 1 ≥ 2, then dK∗1
(v) = w + d + 1, where w, d ≥ 1.

By applying the formulation of first general exponential multiplicative Zagreb index. For
α > 1, we have

EΠα
1(K

∗)

EΠα
1(K

∗
1)

=
e(w+1)α

e(d+1)α

e(w+d+1)α
e1α

< 1.

Let f (κ, ξ) = (κ)α + (ξ)α− (κ + ξ− 1)α− 1α, and fκ(κ, ξ) = α(κ)α−1− α(κ + ξ− 1)α−1 < 0,
and also fξ(κ, ξ) = α(ξ)α−1 − α(κ + ξ − 1)α−1 < 0. Thus, f (κ, ξ) is a decreasing function,
when {κ ≥ 2, ξ ≥ 2, α > 1}. Implying that, EΠα

1(K
∗) < EΠα

1(K
∗
1).

Now, according to the second general exponential multiplicative Zagreb index, also
noted that w, l ≥ 1. Then, we have

EΠα
2(K

∗)

EΠα
2(K

∗
1)

=
e(w+1)α(w+1)

e(d+1)α(d+1)

e(w+d+1)α(w+d+1) e1α
< 1.

Let f (κ, ξ) = (κ + 1)α(κ+1) + (ξ + 1)α(ξ+1) − (κ + ξ + 1)α(κ+ξ+1) − 1α, and fκ(κ, ξ) = α(κ +
1)α(κ+1)[ln(κ + 1) + 1]− α(κ + ξ + 1)α(κ+ξ+1)[ln(κ + ξ + 1) + 1] < 0. Moreover, fξ(κ, ξ) =
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α(ξ + 1)α(ξ+1)[ln(ξ + 1) + 1]− α(κ + ξ + 1)α(κ+ξ+1)[ln(κ + ξ + 1) + 1] < 0. Thus f (κ, ξ) is
decreasing function, when {κ ≥ 1, ξ ≥ 1, α > 1}. Implying that, EΠα

2(K
∗
1) > EΠα

2(K
∗), this

completes the proof.

Transformation 6. Let K1 be a non-trivial and connected graph where w1, w2 are two vertices of
K1. Suppose that w1yi, w2lj, such that 1 ≤ i ≤ t and 1 ≤ j ≤ s are the edges of K1 and dK1(yi)=
1 = dK1(lJ). Now we have derived two new graphs K2 and K3 from K1, respectively. Such that
K2 = K1 − w2lj + w1lj for 1 ≤ j ≤ s, K3 = K1 − w1yi + w2yi for 1 ≤ i ≤ t. The graphs K2 and
K3 are shown in Figure 3.

w1

y1

yi

l1

lj

w2

K1 K2

w1

y1 yi

l1

lj
w2

w1

y1

yi

l1

lj

w2

K3

w1
y1

yi

l1

lj

w2

K1

Figure 3. Depiction of transformation 6.

Lemma 7. Consider three graphs are K1, K2 and K3, as shown in Transformation 6. We have

(i). either EΠα
1(K1) < EΠα

1(K2)

or EΠα
1(K1) < EΠα

1(K3),

(ii). either EΠα
2(K1) < EΠα

2(K2)

or EΠα
2(K1) < EΠα

2(K3).

Proof. Assume that the degrees of vertices w1 and w2 are dK1(w1) = p + t and dK1(w2) =
q + s. Then, we have

EΠα
1(K1)

EΠα
1(K2)

=
e(p+t)α

e(q+s)α

e(p+t+s)α e(q)α ,

=e(p+t)α+(q+s)α−(p+t+s)α−(q)α
,

Note that, p > t, q ≥ 1, s ≥ 1, q > p, and α > 1. Then, EΠα
1(K1) < EΠα

1(K2).
Similarly,
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EΠα
1(K1)

EΠα
1(K3)

=
e(q+s)α

e(p+t)α

e(q+t+s)α e(p)α ,

=e(p+t)α+(q+s)α−(t+q+s)α−(p)α
< 1, i f t > p

In the following, we will prove (ii). Assume that f (z) = (z)αz, and h(z) = ln( f (z)) −
ln( f (r))− ln( f (z− r + 1)), where z > r > 1. Then, h′(z) = α

[
ln
( z

z−r+1
)]

> 0, since α > 1.
Hence h(z) is an increasing function, for z > 0. Moreover, h′(r) < h(z), that is equal to

f (z) > f (r) f (z− r + 1). Suppose that, g1 =
EΠα

2(K1)
EΠα

2(K2)
, and

EΠα
2(K1)

EΠα
2(K2)

=
e(p+t)α(p+t)

e(q+s)α(q+s)

e(p+t+s)α(p+t+s) e(q)q ,

g1 =
e(p+t)α(p+t)

e(q+s)α(q+s)

e(p+t+s)α(p+t+s) e(q)αq ≤ 1,

e(p+q)α(p+q)
e(t+s)α(t+s) ≤e(p+q+s)α(p+q+s)+(t)αt

. (3)

Now g2 =
EΠα

2(K1)
EΠα

2(K3)
, and

EΠα
2(K1)

EΠα
2(K3)

=
e(p+q)α(p+q)

e(t+s)α(t+s)

e(t+q+s)α(t+q+s) e(p)αp ,

g2 =
e(p+q)α(p+q)

e(t+s)α(t+s)

e(t+q+s)α(t+q+s) e(p)αp ≤ 1.

From Equation (3), we will get

g2 ≤e(p+q+s)α(p+q+s)+(t)α(t)−(t+q+s)α(t+q+s)−(p)α(p)
,

g2 <e(p+q+s)α(p+q+s)+(t)α(t)−(t+q+s)α(t+q+s)−(p)α(p)
< 1.

Which implies that EΠα
2(K1) < EΠα

2(K2)or
EΠα

2(K1) < EΠα
2(K3).

Transformation 8. Consider that a leaves path Q = y1y2, . . . , yq−1yq is attached to y1 in graph
H1 and u1 and u2 are two neighbors of y1 except of y2. We obtain a new graph H2 = H1 −
y1u2 + yqu2, from graph H1. Moreover, the depiction shown in the Figure 4

u1 u2 u1 u2
y1

yq

yq-1

y2

y1 yqyq-1

H1 H2

Figure 4. Depiction of transformation 8.
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Lemma 9. Let H1 and H2 be two graphs, which are described in the transformation 8. Then, for
Πα

1 , also α > 1 we have

(i). EΠα
1(H1) > EΠα

1(H2),

(ii). EΠα
2(H1) > EΠα

2(H2).

Proof. By using the formulation of first and second exponential multiplicative Zagreb
indices, we have

EΠα
1(H1)

EΠα
1(H2)

=
e(3)

α
e(1)

α

e(2)α e(2)α > 1.

EΠα
2(H1)

EΠα
2(H2)

=
e(3)

3α
e(1)

1α

e(2)2α e(2)2α > 1

both inequalities are true. Hence complete the proof of Lemma 9.

2.2. Extremal Trees and Unicyclic Graphs with Respect to First and Second Exponential
Multiplicative Zagreb Indices

In this part of paper, we present the extremal trees, unicylic graphs by using the above
discussed transformations, for the first and second general exponential multiplicative
Zagreb indices, for α > 1.

Theorem 10. Let T be a tree with order n ≥ 5. Then, for α > 1 we have

(i). EΠα
1(Pn) < EΠα

1(T) < EΠα
1(Sn),

(ii). EΠα
2(Sn) > EΠα

2(T) > EΠα
2(Pn).

Proof. Suppose that two trees T and T∗ have an order n and k, respectively. When T∗

hooked up with a vertex of T. By using the transformation 2, we create a path graph Pk+1
from T∗, during this process Lemma 3 affirms that EΠα

1 and EΠα
2 are minimal for the path

graph. Now, by repeating the Transformation 4, we affixed a tree to a vertex T∗, and we
obtain a new graph Tk+1. By using the Transformation 4 and Lemma 5, provided that the
first and second exponential multiplicative Zagreb indices increase, the Star graph gives
the maximal EΠα

1 and EΠα
2 .

Hence this proof is completed.

Let Cq
n be a unicyclic graph is obtaining by affixing (n − q) leaves to one vertex

of Cq.

Theorem 11. Let G be an unicyclic graphs with order n and girth l ≥ 3. Then for EΠα
1 and EΠα

2 ,
we have

(i). EΠα
1(C

q
n) ≤ EΠα

1(C
3
n),

(ii). EΠα
2(C

q
n) ≤ EΠα

2(C
3
n).

it is hold when G = C3
n.

Proof. Consider that H is a unicyclic graph with order and girth n and q. By repeating the
Transformation 4 and 6, the graph is converted into a unicyclic graph so that every pendant
vertices are neighbors to one vertex of H. Lemma 5 and 7 implies that during this process
of applying the Transformation 4 and 6, EΠα

1 and EΠα
2 increases.
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Now, we will prove (i) and (ii). We need to compare the EΠα
1 and EΠα

2 of (Cq
n)

and (C3
n).

EΠα
1(C

q
n)

EΠα
1(C

3
n)

=
e(n−q+2)(α)+n−q+2α(q−1)

e(n−3)1(α)+(n−1)α+4α
< 1.

Since, f (ξ) = (n− ξ + 2)α + 2α(ξ−1) + 3− ξ − (n− 1)α − 4α is an increasing function, as
f ′(ξ) = −α(n− ξ + 2)α−1 + α(ξ − 1)2α(xi−1)log2− 1 > 0, when n− 1 > ξ > 3.

EΠα
1(C

n−1
n )

EΠα
1(C

3
n)

=
e(3)

(α)+1α+2α(n−2)

e(n−3)1(α)+(n−1)α+4α
> 1.

EΠ2(C
q
n)

EΠ2(C3
n)

=
e(n−q+2)α(n−q+2)+2α(q−1)

e(n−1)α(n−1)+4α+4α
,

=e(n−q+2)α(n−q+2)−(n−1)α(n−1)+2α(q−1)−16α
< 1.

Let f (y) = (n− y + 2)α(n−y+2) − (n− 1)α(n−1) − 16α + 2α(y−1), for y ≥ 3. Then,
f ′(y) = α(n− y + 2)α(n−y+2)[− ln(n− y + 2)− 1] + α2α(y−1). ln 2 < 0. So, it is a decreasing
function. Hence, both (i) and (ii) are true. The proof is completed.

2.3. Extremal Bicyclic Graphs with Respect to First and Second Exponential Multiplicative
Zagreb Indices

In this section, we will present the extremal bicyclic graphs for the first and second
exponential multiplicative Zagreb indices. Let B(n) is the bicyclic graph of order n and the
types of the B(n) graphs listed below in the Figure 5d.

Ck Cm

v

(a) Ck,m

v1

Cm

y1 ya-1

CmCk

v2

(b) Ck,d,m

X Y

u2 uk-1uk-2u1

y1 y2 ya-2 ya-1

zp-1zp-2z2z1

(c) Cd
k,m (d) B∗k

Figure 5. Bicyclic graphs.

EΠα
1(B∗k ) =e2(2)α+3α+(n−1)α+(n−4)1α

,

EΠα
2(B∗k ) =e(n−4) + (27)α + (n− 1)α(n−1) + 2(4)α.

Transformation 12. Let R = ut1, . . . , tcv be an internal path of G1 and dG1(u), dG1(v) ≥ 2.
We obtained a new graph G2 = G1 − {t2t3, . . . , tc−1tc}+ {t1t3, t1t4, . . . , t1tc}, from G1 which is
shown in Figure 6.
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u v u v

t1 t2
tc-1 tc

t2

t3
t4

tc

t1

G1
G2

Figure 6. Depiction of Transformation 12.

Lemma 13. consider that the two graphs G1 and G2 show in Transformation 12. Then, for α > 1
we have

(i). EΠα
1(G1) <EΠα

1(G2),

(ii). EΠ1(G1) <EΠ1(G2).

Proof. From Lemmas 5 and 9, both inequalities are true. Hence complete the proof.

Theorem 14. Let G be a bicyclic graph of order n ≥ 4. For α > 1, we have to define,

(i). EΠα
1(G) < EΠα

1(B∗k ),

(ii). EΠα
2(G) < EΠα

2(B∗k ).

Proof. It is true for n = 4, 5 . Now, we will discuss for n ≥ 6.
(i) : Let K∗ be a bicyclic graph having larger EΠα

1 and EΠα
2 . Suppose that Bk is the main sub-

graph of K∗. Then Bk is either types (a), (b) or (c). By repeating the Transformation 4 and 6.
We can get a new graph K∗, such that some leaves, which are neighbors to one vertex of
subgraph Bk.

Claim: The maximum length of any cycle in K∗ is 4. Contrarily, assume that the length
of cycle in K∗ is 5. If the main subgraph of Bk is one of the type (a) or (b), then applying
the Transformation 12 and Lemma 13, we can obtain a bicyclic graph with greater EΠα

1 and
EΠα

2 . Which is a contradiction.
Now, we assume that graph K∗ is a type of (c), Bk = Cd

q,m with 1 ≤ d ≤ min{q, m}
and q + m > 5 such that q or m is not less than 3, K∗ contains an intrinsic path of length at
least 2 in Bk. Using the 5 and 13, we derive a new bicyclic graph K∗∗ from graph K∗ which
shows EΠα

1(K
∗∗) > EΠα

1(K
∗), and also EΠα

2(K
∗∗) > EΠα

2(K
∗). Which is contradicting.

Now, from claim 1, the length of any cycle in Bk is 3 or 4. Clearly, this shows that
Bk ∈

{
C3,3, C3,d,3, Cd

2,2

}
. We assert that, if d is one in Bk = C3,d,3 then is one of type b,

otherwise Lemmas 5 and 9, confirmed that we can get a new, n-order bicyclic graph having
the larger EΠα

1 and EΠα
2 .

We construct new bicyclic graphs from C3,3, C3,d,3 and Cd
2,2.

(i)—C∗3,3 derived from C3,3 by affixing (n− 5) leaves to a degree two vertex.
(ii)—C∗∗3,3 derived from C3,3 by affixing n-5 leaves to a degree three vertex .
(iii)—C∗3,1,3 derived from C3,1,3 by affixing n-6 leaves to a degree two vertex.
(iv)—C∗∗3,1,3 produced from C3,1,3 by affixing n-6 leaves to a degree three vertex.
(v)—C1∗

2,2 derived from C1
2,2 by affixing n-4 leaves to a degree two vertex.

The values of the above discussed graphs for the EΠα
1 . Then, for α > 1, we have
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EΠα
1(C

∗
3,3) = e3(2)α

.e2(3)α
.e(n−3)α

.e(n−5),

EΠα
1(C

∗
3,3) = e(n−3)α+3(2)α+2(3)α+(n−5).

EΠα
1(C

∗∗
3,3) = e4(2)α

.e(3)
α
.e(n−2)α

.e(n−5),

EΠα
1(C

∗∗
3,3) = e(n−2)α+4(2)α+(3)α+(n−5).

EΠα
1(C

∗
3,1,3) = e3(2)α

.e2(3)α
.e(n−4)α

.e(n−6),

EΠα
1(C

∗
3,1,3) = e(n−4)α+3(2)α+2(3)α+(n−6).

EΠα
1(C

∗∗
3,1,3) = e4(2)α

.e(3)
α
.e(n−3)α

.e(n−6),

EΠα
1(C

∗∗
3,1,3) = e(n−3)α+4(2)α+(3)α+(n−6).

EΠα
1(C

1∗
2,2) = e3(2)α

.e2(3)α
.e(n−2)α

.e(n−4),

EΠα
1(C

1∗
2,2) = e(n−2)(α)+3(2)α+2(3)α+(n−4).

In the following, the value of bicyclic graphs with respect to the second general exponential
multiplicative Zagreb index.

EΠα
2(C

∗
3,3) = e3(2)2α

.e2(3)3α
.e(n−3)α(n−3)

.e(n−5),

EΠα
2(C

∗
3,3) = e(n−3)α(n−3)+3(4)α+2(27)α+(n−5).

EΠα
2(C

∗∗
3,3) = e4(2)2α

.e(3)
3α

.e(n−2)α(n−2)
.e(n−5),

EΠα
2(C

∗∗
3,3) = e(n−2)α(n−2)+4(4)α+(27)α+(n−5).

EΠα
2(C

∗
3,1,3) = e3(2)2α

.e2(3)3α
.e(n−4)α(n−4)

.e(n−6),

EΠα
2(C

∗
3,1,3) = e(n−4)(αn−4)+3(4)α+2(27)α+(n−6).

EΠα
2(C

∗∗
3,1,3) = e4(2)2α

.e(3)
3α

.e(n−3)α(n−3)
.e(n−6),

EΠα
2(C

∗∗
3,1,3) = e(n−3)α(n−3)+4(4)α+27α+(n−6).

EΠα
2(C

1∗
2,2) = e3(2)2α

.e2(3)3α
.e(n−2)α(n−2)

.e(n−4),

EΠα
2(C

1∗
2,2) = e(n−2)α(n−2)+3(4)α+2(27)α+(n−4).

Below are the comparisons between the B∗k and the above discussed type of bicyclic graphs
for Πα

1 and Πα
2 . For α > 1, we have

EΠα
1(B∗k )

EΠα
1(c
∗
3,3)

=
e(n−1)α+2(2)α+3α+n−4

e(n−3)α+3(2)α+2(3)α+n−5
,

= e(n−1)α−(n−3)α−2α−3α+1 > 1.

EΠα
1(B∗k )

EΠα
1(c
∗∗
3,3)

=
e(n−1)α+2(2)α+3α+n−4

e(n−2)(α)+4(2)α+(3)α+n−5
> 1.

EΠα
1(B∗k )

EΠα
1(c
∗
3,1,3)

=
e(n−1)α+2(2)α+3α+n−4

e(n−4)(α)+3(2)α+2(3)α+n−6
> 1.

EΠα
1(B∗k )

EΠα
1(c
∗∗
3,1,3)

=
e(n−1)α+2(2)α+3α+n−4

e(n−3)(α)+4(2)α+(3)α+n−6
> 1.

EΠα
1(B∗k )

EΠα
1(c

1∗
2,2)

=
e(n−1)α+2(2)α+3α+n−4

e(n−2)(α)+3(2)α+2(3)α+n−4
> 1.
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Below are the comparisons between the B∗k and newly constructed graphs with respect to
the second exponential multiplicative Zagreb index.

Let

f (y) = (y− 3)α(y−3) + 3(4)α + 2(27)α

+ y− 5− (y− 1)α(y−1) − 2(4)α − 27α − y + 4

is a decreasing function, since y ≥ 6, as

f ′(y) =

α
[
(y− 3)α(y−3)[ln(y− 3) + 1]

−(y− 1)α(y−1)[ln(y− 1) + 1]
]
< 0.

EΠα
2(C

∗
3,3)

EΠα
2(B∗k )

=
e(n−3)α(n−3)+3(4)α+2(27)α+(n−5)

e(n−1)α(n−1)+2(4)α+(27)α+(n−4)
< 1,

EΠα
2(C

∗∗
3,3)

EΠα
2(B∗k )

=
e(n−2)α(n−2)+4(4)α+27α+(n−5)

e(n−1)α(n−1)+2(4)α+(27)α+(n−4)
< 1.

EΠα
2(C

∗
3,1,3)

EΠα
2(B∗k )

=
e(n−4)α(n−4)+3(4)α+2(27)α+(n−6)

e(n−1)α(n−1)+2(4)α+(27)α+(n−4)
< 1.

EΠα
2(C

∗∗
3,1,3)

EΠα
2(B∗k )

=
e(n−3)α(n−3)+4(4)α+27α+(n−6)

e(n−1)α(n−1)+2(4)α+(27)α+(n−4)
< 1.

EΠα
2(C

1∗
2,2)

EΠα
2(B∗k )

=
e(n−2)α(n−2)+3(4)α+2(27)α+(n−4)

e(n−1)α(n−1)+2(4)α+(27)α+(n−4)
< 1.

Hence, proof is completed.

3. Applications of Generalized Exponential Multiplicative Zagreb Indices

A set of graph theory indices known as the Zagreb indices measures a molecular
graph’s complexity or topological characteristics. They were first introduced in 1978 by
Matula and Balaban, and they have a number of uses in mathematical chemistry and
chemical graph theory.

The general Zagreb index is defined as the sum of the degrees of all vertices in a
graph raised to a certain power. For a graph with vertices {v1, v2, . . . , vn} and degrees
d1, d2, . . . , dn, the general Zagreb index of order k, is given by:

∏
1
(G) = ∏

v∈V(G)

d2
G(v).

∏
2
(G) = ∏

vu∈E(G)

[dG(v)× dG(u)] = ∏
z∈V(G)

[
dG(z)

dG(z)
]
,

where the summation is taken over all vertices in the graph.
The exponential multiplicative Zagreb indices are a modification of the general Zagreb

indices where instead of summing the degrees raised to a power, the product of the
degrees raised to a power is considered. The exponential multiplicative Zagreb indices are
defined as:
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E ∏
1
(G) = ∏

v∈V(G)

e[d
2
G(v)],

E ∏
2
(G) = ∏

vu∈E(G)

[
e[dG(v)×dG(u)]

]
= ∏

z∈V(G)

[
e
[
dG(z)

dG(z)
]]

.

where the product is taken over all vertices in the graph.
As an alternate method of describing the structural characteristics of molecular net-

works, the exponential multiplicative Zagreb indices are presented. In order to anticipate
diverse chemical properties, such as boiling temperatures, octanol-water partition coeffi-
cients, and molecular bioactivity, they have been included into mathematical models.

These indices are very helpful in quantitative structure-activity relationship (QSAR)
research, which aim to determine a connection between the structural characteristics of
molecules and their biological activities or characteristics. The exponential multiplicative
Zagreb indices capture the interaction between the degrees of various graph vertices by
taking into account the product of the degrees raised to a power.

It is important to keep in mind that there are more Zagreb index variations, such as the
first and second Zagreb indices, which are particular instances of the basic Zagreb index.
In chemical graph theory, these indices each have a unique significance and use.

Multiplicative general exponential Chemical graph theory employs topological indices
called Zagreb indices to measure the molecular structure of chemical substances. They are
developed from the Zagreb indices, a concept from graph theory that stores information
about a molecular graph’s vertex degrees.

It has been discovered that the generic exponential multiplicative Zagreb indices
can be used to forecast a variety of chemical compound attributes, including boiling
points, melting points, toxicity, and biological activity. These indices capture crucial
molecular structural traits including branching, connection, and symmetry that might
affect a molecule’s chemical behaviour and characteristics.

The application and utility of any topological index, including the standard exponen-
tial multiplicative Zagreb indices, are dependent on the particular property or behaviour
being investigated and the dataset being analysed. For different kinds of molecules or
features, various topological indices might be more or less pertinent. To achieve a thor-
ough understanding of chemical processes, the use of generic exponential multiplicative
Zagreb indices should be taken into account alongside other molecular descriptors and
experimental data.

4. Conclusions

Exponential multiplicative Zagreb indices were recently introduced in 2021. For
α ∈ R+ \ {1}, we proposed the generalized form of the exponential multiplicative Zagreb
indices. Additionally, we employed a transformation method to observe the behavior of
generalized first and second exponential Zagreb indices for α ∈ R+ \ {1}. We looked into
the extremal bicyclic, unicyclic, and tree graphs in terms of the two recently discovered
generalized exponential multiplicative Zagreb indices. A few constraints are shown using
extended exponential multiplicative Zagreb indices and four different graph transforma-
tions. The Formula is given in Equation (2), is the generalization version of Equation (1).
For comparison, by putting the value of α = 1, then it becomes Equation (1), it is very clear
that Equation (2) will give more generalized result than Equation (1).
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