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Abstract: With the progress of society and the diversification of transportation modes, people
are faced with more and more complicated travel choices, and thus, multi-criteria route choosing
optimization problems have drawn increased attention in recent years. A number of multi-criteria
traffic network equilibrium problems have been proposed, but most of them do not involve data
uncertainty nor computational methods. This paper focuses on the methods for solving robust
multi-criteria traffic network equilibrium problems with path capacity constraints. The concepts of
the robust vector equilibrium and the robust vector equilibrium with respect to the worst case are
introduced, respectively. For the robust vector equilibrium, an equivalent min–max optimization
problem is constructed. A direct search algorithm, in which the step size without derivatives and
redundant parameters, is proposed for solving this min–max problem. In addition, we construct a
smoothing optimization problem based on a variant version of ReLU activation function to compute
the robust weak vector equilibrium flows with respect to the worst case and then find robust vector
equilibrium flows with respect to the worst case by using the heaviside step function. Finally,
extensive numerical examples are given to illustrate the excellence of our algorithms compared with
existing algorithms. It is shown that the proposed min–max algorithm may take less time to find the
robust vector equilibrium flows and the smoothing method can more effectively generate a subset of
the robust vector equilibrium with respect to the worst case.

Keywords: multi-criteria traffic network; robust vector equilibrium; min–max method; smoothing method

1. Introduction

Traveling is necessary for everyday human life. However, with the progress of society
and the diversification of transportation modes, people also expect to find the most efficient
route. Traffic network equilibrium problem can describe the distributions of traffic flows
in the logistics industry and transportation network, which is expected to provide an
effective method for travelers to choose an optimization route. The fundamental principle
in the model is the concept of equilibrium that was initially introduced by Wardrop [1].
The principle asserts that travelers will choose the path only if the cost for this path is the
minimum possible among all the paths joining the same O-D pair.

1.1. Literature Reviews

It has been shown that the Wardrop equilibrium concept is a powerful principle which
is widely used in supply and demand networks, traffic assignment, optimization of traffic
control, and other fields (see, e.g., Athanasenas [2]; Nagurney [3]; Ji and Chu [4]; Xu et al. [5];
Wang et al. [6]; Ma et al. [7]). It is worth noting that most of these equilibrium models in the
above references are based on a single criterion. Travelers (in this paper, we use the terms
’user’ and ’traveler’ interchangeably) will naturally consider multi-criteria when choosing
travel paths, including travel time, distance, cost, weather, safety, and other relevant factors.
The equilibrium model with multi-criteria was first put forward by Chen and Yen [8],
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which was an extension of the classical Wardrop user equilibrium principle. Regarding
the theoretical analysis for multi-criteria traffic equilibrium models, we refer the reader to
Yang and Goh [9], Li et al. [10], Luc et al. [11], and Raith and Ehrgott [12].

Recently, Phuong and Luc [13] established the equivalent relationship between strong
vector equilibrium flows and the solutions of variational inequality problems in terms of
a kind of increasing functions. Moreover, they presented a modified projection method
to handle multi-criteria traffic network equilibrium problems. Subsequently, Luc and
Phuong [14] introduced two optimization problems to show that the optimal solutions
are exactly the equilibrium of the traffic network and then put forward a modified Frank–
Wolfe gradient algorithm for multi-criteria traffic network equilibrium problems. However,
this method may lead to the non-differentiability of the objective functions of the two
optimization problems. After that, Phuong [15] proposed a smoothing method to solve
multi-criteria network equilibrium problems. Although this method solves the defects
existing in [14], it does not take into account the data uncertainty.

In the actual traffic network, there are various uncertain factors, such as traveler prefer-
ences, weather, traffic congestion, and holidays. Hence, uncertainty in the logistics industry
and transportation has received more and more attention. In recent years, some related
works with uncertain demands or uncertain parameters in traffic network or ecological
networks have been investigated in [16–21]. Daniele and Giuffré [16] investigated a general
random traffic equilibrium problem and characterize the random Wardrop equilibrium
distribution by means of a random variational inequality. Dragicevic and Gurtoo [17]
modeled the maintenance of ecological networks in forest environments based on random
processes, such as extreme natural events. However, the two above papers do not con-
sider the multi-criteria. Recently, Ehrgott and Wang [18] presented alternative approaches
for combining the principles of multi-objective decision-making with a stochastic user
equilibrium model based on random utility theory. However, since uncertain parameters
in [18] need to know probabilistic information, this may be inconsistent with the reality
because the probabilistic information of related data are usually known. Cao et al. [19]
and Wei et al. [20] only discussed relationships between and the solutions of variational
inequality and robust equilibrium flows but not give the computational methods. Minh
and Phuong [21] paid attention to a modified Frank–Wolfe gradient algorithm for robust
equilibrium flows. The uncertain data in the model proposed in [21] are in a parameter
set that does not need probability information. However, the computational efficiency
of the algorithm is not good, due to the non-differentiability of the objective functions.
In all, there are some research gaps on computational methods for robust multi-criteria
traffic network equilibrium problems with path capacity constraint. This prompts us to
continuously investigate this topic.

1.2. Contributions

To overcome computational inefficiency for the robust vector equilibrium flows in
existing methods, this paper proposes two new computational methods for the robust vector
equilibrium principle and the robust vector equilibrium principle with respect to the worst
case, respectively. Firstly, an equivalent min–max optimization problem is constructed,
in which the solution is equivalent to the robust vector equilibrium flow. A direct search
algorithm with constraints for solving this problem is proposed. For the robust vector
equilibrium with respect to the worst case, we transform it into an deterministic vector
equilibrium problem based on a variant version of ReLU activation function. Then, we
give an algorithm to solve the robust vector equilibrium with respect to the worst case.

In summary, the contributions of the manuscript are ranked in ascending gathered
as follows:

(1) The robust vector equilibrium and the robust vector equilibrium with respect to the
worst case principles are introduced.

(2) An equivalent min–max optimization problem is established and then a direct search
algorithm is proposed to generate a subset of robust vector equilibrium flows.
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(3) To generate a subset of the robust vector equilibrium with respect to the worst case,
a two-step strategy is implemented. More specifically, a smoothing optimization
problem is constructed based on a variant version of ReLU activation function to
compute the robust weak vector equilibrium flows with respect to the worst case, and
then, the robust vector equilibrium flows are found with respect to the worst case by
using the heaviside step function.

This paper is divided into the following parts. Section 2 mainly introduces the robust
vector equilibrium principle and robust vector equilibrium principle with respect to the
worst case. Section 3 gives a min–max method to generate the subset of robust vector
equilibrium flows. Section 4 presents a smoothing algorithm to find the subset of the robust
vector equilibrium principle with respect to the worst case. Finally, conclusions of this
paper and discussions for future research are provided in Section 5.

2. Definitions and Main Derivations

We review some fundamental definitions and properties that are relevant to this study.
Throughout this paper, let R∗(∗ = n, m) denote the ∗-dimensional Euclidean space. Let
Rm
+ := {x ∈ Rm : xi ≥ 0, i = 1, · · · , m} and Rm

++ := {x ∈ Rm : xi > 0, i = 1, · · · , m}.
The superscript > denotes transpose. The partial order in Rm is induced by Rm

+, defined by:

x = y if xi ≥ yi for all i = 1, . . . , m,

x � y if xi ≥ yi for all i = 1, . . . , m and there exists i0 such that xi0 > yi0 .

and the following stronger relation is given by:

x � y if xi > yi for all i = 1, . . . , m.

Next, we will denote by e the vector of all ones. Given X ⊆ Rm, the set of minimal
elements of X is denoted by Min(X), consists of vectors x ∈ X such that there is no
x′ ∈ X, x′ � x.

Definition 1. Given f : R×R→ R, we say that a point (x∗, y∗) is a saddle-point of the function
f , if

f (x∗, y) ≤ f (x∗, y∗) ≤ f (x, y∗), ∀(x, y) ∈ R×R.

2.1. Robust Multi-Criteria Traffic Network

For a traffic network, N denotes the set of the nodes and E denotes the set of directed
arcs. LetW be the set of origin–destination (O-D) pairs and D = (dω)ω∈W be the demand
vector, where dω > 0 is the flow demand on O-D pair ω. Thus, a traffic network is always
denoted by G = {N , E ,W ,D}. For ω ∈ W , Pω is the set of available paths on the O-D pair
ω and P = ∪ω∈WPω is the set of all available paths of the network. Let n = ∑ω∈W |pω |.
For a given pk ∈ Pω, ypk is the traffic flow on this path and y = (y1, y2, · · · , yn)> ∈ Rn is
called a path flow. For given pk ∈ Pω , suppose lpk ∈ R+, upk ∈ R+ with lpk < upk ; the path
flow ypk needs to satisfy the capacity constraint lpk ≤ ypk ≤ upk . The traffic load is always
presented by arc flows zα, α ∈ E , or path flows ypk , pk ∈ P. Given a path flow, the arc flow
can be obtained by the following formula:

zα = ∑
pk∈P

ypk δαpk ,

where

δαpk =

{
1, if α belongs to path pk,
0, otherwise.
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The arc flow is denoted by z := (zα)α∈E . A path flow y is said to be feasible flow if
it satisfies:

Ω = {y ∈ R+ : ∀ω ∈ W , ∀pk ∈ Pω, lpk ≤ ypk ≤ upk , ∑
pk∈Pω

ypk = dω}.

Let tα : Rn → Rm be a vector-valued cost function along with arc α ∈ E . Let
cpk : Rn → Rm be a vector-valued cost function on the path pk. Thus, we have that the cost
function cpk for path pk is the sum of cost functions for arcs belonging to path pk, namely:

cpk (y) = ∑
α∈E

δαpk tα(y). (1)

However, the path cost functions may be perturbed in reality. This means that it not only de-
pends on the path flow y but also on parameters of ξ ∈ U := U1 ×U2 × · · · ×Un. Throughout
this paper, the cost function cpk (y, ξ) is often given in the form cpk (y, ξ) = cpk (y) + ξpk .

2.2. Robust Vector Equilibrium and Related Concepts

Now, we give the following definitions on a robust vector equilibrium and a robust
(weak) vector equilibrium with respect to the worst case.

Definition 2. A feasible flow ȳ ∈ Ω is said to be a robust vector equilibrium, if for each O-D
ω ∈W, path pk, pj ∈ Pω, one has:

cpk (ȳ, ξ)− cpj(ȳ, ξ) � 0Rm , ∀ξ ∈ U ⇒ either ȳpk = lpk or ȳpj = upj .

The worst case of the cost function on the path pk under all possible scenarios is
defined as follows:

Cpk (y) =


sup
ξ∈U

c1pk (y, ξ)

...

sup
ξ∈U

cmpk (y, ξ)

, Cpj(y) =


sup
ξ∈U

c1pj(y, ξ)

...

sup
ξ∈U

cmpj(y, ξ)


The following definitions are given based on the worst case of path costs, which is

called the robust vector equilibrium with respect to the worst case and the robust weak
vector equilibrium with respect to the worst case.

Definition 3. A feasible flow ȳ ∈ Ω is a robust vector equilibrium with respect to the worst case,
if for ∀ω ∈W, ∀ pk, pj ∈ Pω, one has:

Cpk (ȳ)− Cpj(ȳ) � 0Rm ⇒ either ȳpk = lpk or ȳpj = upj .

Definition 4. A feasible flow ȳ ∈ Ω is in robust weak vector equilibrium with respect to the worst
case , if for ω ∈W, pk, pj ∈ Pω, one has:

Cpk (ȳ)− Cpj(ȳ) � 0Rm ⇒ either ȳpk = lpk or ȳpj = upj .

Remark 1. What should be noteworthy is that a robust vector equilibrium with respect to the worst case is
also a robust vector equilibrium when U is a compact set. Conversely, it is not necessarily true. Although
there is no parameter in the concept of the robust vector equilibrium with respect to the worst case, it still
depends on the values of the parameter or sensitive to parameters. Now, we give the following example to
illustrate the above cases.

Example 1. Consider a network problem with one O-D pair ω = (x, x
′
). Two criteria, i.e., travel

time and travel cost, and two available paths, i.e., Pω = {p1, p2}, with the travel demand dω = 30.
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Assume that the path capacity constraints and cost function on the paths p1 and p2 are, respectively,
given as follows:

lp1 = 0, lp2 = 0; up1 = 30, up2 = 30.

cp1(y, ξ1) =

(
y1 + 2y2 + ξ1

6y1 + 2y2 + ξ1

)
, cp2(y, ξ2) =

(
y1 + 6y2

6y1 + 2y2 − ξ2

)
.

with ξ1 ∈ [−1, 2] and ξ2 ∈ [0, 1].

Direct computation shows that ȳ = (30, 0) is the robust vector equilibrium. However,
it is not the robust vector equilibrium with respect to the worst case since we have:

Cp1(ȳ) =

(
32

182

)
, Cp2(ȳ) =

(
30

180

)
,

but yp1 6= lp1 and yp2 6= up2 .
If ξ1 ∈ [−1, 0] and ξ2 ∈ [−2, 0], then we have Cp2(ȳ)− Cp1(ȳ) � 0Rm , yp1 = up1 and

yp2 = lp2 . Hence, ȳ = (30, 0) is the robust vector equilibrium with respect to the worst case.
It can be seen that the robust vector equilibrium with respect to the worst case is sensitive
to parameter perturbations.

3. Min–Max Method for Robust Vector Equilibrium

In this section, a min–max algorithm is proposed to look for a subset of the robust
vector equilibrium flows.

3.1. Description of the Algorithm

In this subsection, we construct an optimization problem whose solution is equivalent
to the the robust vector equilibrium flow. For (y, ξ) ∈ Ω×U, we define:

ψ(y, ξ) := ∑
pk ,pj∈Pω ,ω∈W

(ypk − lpk )(upj − ypj)[cpk (y, ξ)− cpj(y, ξ)]>H+[cpk (y, ξ)− cpj(y, ξ)].

Proposition 1. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust vector equilibrium;
(ii) There exists (ȳ, ξ̄) such that it is a saddle-point of the problem, denoted as follows:

min
y∈Ω

max
ξ∈U

ψ(y, ξ)

s.t. y ∈ Ω.
(2)

and ψ(ȳ, ξ̄) is equal to zero.

Proof. Firstly, we prove the implication (i) ⇒ (ii). Since ψ(y, ξ) ≥ 0, it suffices to prove
ψ(ȳ, ξ) = 0 for all ξ ∈ U, i.e., 0 = ψ(ȳ, ξ) = ψ(ȳ, ξ̄) ≤ ψ(y, ξ). Hence, for every
ξ ∈ U, pk ∈ Pω, ω ∈ W , we consider the following term:

Opk = ∑
pj∈Pω

(ypk − lpk )(upj − ypj)[cpk (y, ξ)− cpj(y, ξ)]>H+[cpk (y, ξ)− cpj(y, ξ)].

If cpk (ȳ, ξ)− cpj(ȳ, ξ) � 0Rm for some pj ∈ Pω, then by Definition 2, one has ȳpk = lpk

or ȳpj = upj and so Opk = 0. If cpk (ȳ, ξ)− cpj(ȳ, ξ) ≺ 0Rm , for some pj ∈ Pω , H+[cpk (ȳ, ξ)−
cpj(ȳ, ξ)] = 0Rm , and hence, Opk = 0. By the above cases, one has ψ(ȳ, ξ) = 0 for all ξ ∈ U.

Conversely, if (ii) is satisfied, (ȳ, ξ̄) is a saddle-point and Opk = 0. If for every
ξ ∈ U, some pk, pj ∈ Pω, ω ∈ W one has cpk (ȳ, ξ) − cpj(ȳ, ξ) � 0Rm , then [cpk (ȳ, ξ) −
cpj(ȳ, ξ)]>H+[cpk (ȳ, ξ)− cpj(ȳ, ξ)] > 0 and so ȳpk = lpk or ȳpj = upj . Consequently, ȳ is a
robust vector equilibrium.
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Now, a min–max algorithm is proposed to solve problem (2). In our algorithm, we
select different steps for the two variables y and ξ, which is different from one proposed
in [22]. In addition, we extend the search directions of the algorithm to make the search
faster and more suitable for different needs. Thus, our algorithm is an improvement of that
in [22].

Direction set: The set D consist of finite unit vectors which can span Rn. Here, in order
to reduce the computational cost, we only consider some directions in D. For example,

when n = 2, in this paper, let D =
{
(1, 0), (

√
3

2 , 1
2 ), (1, 1), ( 1

2 ,
√

3
2 ), (0, 1), (− 1

2 ,
√

3
2 ), (−1, 1),

(−
√

3
2 , 1

2 ), (−1, 0), (−
√

3
2 ,− 1

2 ), (−1,−1), (− 1
2 ,−

√
3

2 ), (0,−1), ( 1
2 ,−

√
3

2 ), (1,−1), (
√

3
2 ,− 1

2 )
}

.

Step length: Let initial step t0 = 1 and dk = arg minyi ψk(yk + tkd, ξk), d ∈ D. Let
ỹk = yk + tkdk. If iteration is successful, i.e., ψk(ỹk, ξk)) < ψk(yk + tkd, ξk) − ct2

k for all
d ∈ D (c > 0), then the next step length value tk+1 = 1; if the iteration is unsuccessful, then
tk+1 = ‖ỹ− yk‖/2.

Remark 2. It is worth noting that computations for yt and ξt in Algorithm 1 are based on
Algorithm 2.

Algorithm 1: Min–max algorithm (Algorithm 1).
input : ψ: objective function; c: forcing function constant c > 0;

T: maximum number of iterations; t0: initialize step size;
(y0, ξ0): initial iteration point; S = ∅, SE = ∅.

1 for t = 1, · · ·, T do
2 ξt = A1(−ψ(yt−1, .), ξt−1)
3 yt = A1(ψ(., ξt), yt−1)
4 return (yT , ξT), store it in S.

5 Choose a (yT , ξT) from S, compute ψ(yT , ξT).
6 If ψ(yT , ξT) ≤ ε, store yT in SE and return to Step 5 until no element of S left.

Algorithm 2: Algorithm 2 (ψ(), y0).
input : ψ: objective function; c: forcing function constant c > 0;

T: maximum number of iterations; t0: initialize step size value;
y0: initial iteration point.

1 for k = 0, · · ·, T − 1 do
2 1. Generate direction set

D = {di : any one unit direction of a certain point}.
3 2. Generate the points

y = yk + tkd ⊂ Ω, ∀ d ∈ D.

3. Choose dk = arg mind ψ(y, ξk)and let ỹk = yk + tkdk.
4 4. if ψ(ỹ, ξk) < ψ(yk, ξk)− ct2

k then
5 (Iteration is successful)
6 yk+1 = ỹ, tk+1 = 1;
7 else

8 (Iteration is unsuccessful)
9 yk+1 = yk, tk+1 = ‖ỹ− yk‖/2.

10 return yT
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3.2. Comparison with Other Methods

In this subsection, we will give three numerical examples to show the comparison with
that of [22]. In these numerical examples, both Algorithm 1 and the algorithm proposed
in [22] start from the same set of initial points. To make a fair comparison, all test problems
are run five times to reduce the impact of randomness.

Remark 3. There is a step calculation method in reference [22]—if the iteration is successful:
tk+1 = min(tmax, γtk), γ > 1, where tmax is the largest step size; if iteration is unsuccessful:
tk+1 = 1

γ tk. Compared with the step calculation method in reference [22], the step calculation
method presented in Algorithm 1 has better performance, since Algorithm 1 selects different step
size for different variables and extends the search directions. What is more, Algorithm 1 requires
neither gradient information nor redundant parameters.

Example 2. Consider a network problem depicted in Figure 1, where N = {1, 2},
W = {ω} =

{
(1, 2)

}
, E = {α1, α2},D = dω = 30. There are two criteria: travel time

and travel cost. The cost functions of arcs and constraints of paths are given as bel-
low: t1,α1(y, ξ) = y2

1 + 2y1y2 + y2 − ξ1, t2,α1(y, ξ) = y1 + y2
2; t1,α2(y, ξ) = y2

1 + 10y2y2,
t2,α2(y, ξ) = 7y1 + 6y2

2 − 6ξ2.

lp1 = 0, lp2 = 0; up1 = 30, up2 = 30.

Figure 1. Network topology for Example 2.

Then, we have:

cp1(y, ξ) =

(
y2

1 + 2y1y2 + y2 − ξ1

y1 + y2
2

)
, cp2(y, ξ) =

(
y2

1 + 10y2y2

7y1 + 6y2
2 − 6ξ2

)
.

where ξ1 ∈ [0, 1] and ξ2 ∈ [0, 1]. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 23.82s. The results are shown in Table 1. However, if we
use step calculational method in [22], then it takes 25.68 s and the obtain the same robust
vector equilibrium flows with our algorithm.

Table 1. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0.00, 30.00) (3.75, 26.25) (25.00, 5.00) (25.75, 4.25)
(11.25, 18.75) (11.25, 18.75) (25.50, 4.50) (25.25, 4.75)
(15.00, 15.00) (18.75, 11.25) (25.00, 5.00) (25.75, 4.25)
(22.50, 7.50) (26.25, 3.75) (25.50, 4.50) (26.25, 3.75)
(30.00, 0.00) (30.00, 0.00)

Example 3. Consider the network problem depicted in Figure 2, where N = {1, 2, 3, 4},
W =

{
(1, 4), (2, 4)

}
, and there are two O-D pairs, ω1, ω2. E = {α1, α2, α3, α4, α5},

p1 = (α1α5), p2 = (α2), p3 = (α3α5), p4 = (α4), D = {dω1 , dω2} = {55, 35}. There
are two criteria: travel time and travel cost. Constrains of paths are given as follows:

lp1 = 0, lp2 = 0, lp3 = 0, lp4 = 0;

up1 = 55, up2 = 55, up3 = 35, up4 = 35.
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Figure 2. Network topology for Example 3.

The cost functions of arcs are defined as follows:

tα1(y, ξ) =

(
y2

1 + 2y2 + y2
3 + y2

4 + 1
2y1 + y2

2 + 2y3 + y4 +
3
2 − 6ξ1

)
, tα2(y, ξ) =

(
2y1 + 3y2 + 5y3 + y4 + 1 + ξ2

2y1y2 + y2 + y2
3 + y4 +

1
2

)
,

tα3(y, ξ) =

(
2y1 + y2 + y2

3 + y4 +
3
2 + 3ξ3

y2
3 + 5y4 + 1

)
, tα4(y, ξ) =

(
2y2 + 3y3y4 + y2

4 + 1
y2

1 + y2 + y4 +
1
2 − 8ξ4

)
, tα5(y, ξ) =

(
y1 + y2
y3 + y4

)
.

Then, we have:

cp1(y, ξ) =

(
y2

1 + y1 + 3y2 + y2
3 + y2

4 + 1

2y1 + y2
2 + 3y3 + 2y4 + 1.5− 6ξ1

)
, cp2(y, ξ) =

(
2y1 + 3y2 + 5y3 + y4 + 1 + ξ2

2y1y2 + y2 + y2
3 + y4 + 0.5

)

cp3(y, ξ) =

(
3y1 + 2y2 + y2

3 + y4 + 1.5 + 3ξ3

y2
3 + y3 + 6y4 + 1

)
, cp4(y, ξ) =

(
2y2 + 3y3y4 + y2

4 + 1

y2
1 + y2 + 8y4 + 0.5− 8ξ4

)
where ξi ∈ [0, 1], i = 1, 2, 3, 4. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 40.56 s. The results are shown in Table 2. The time cost of
Algorithm 1 is 4% lower than that of the step calculation method in [22].

Table 2. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0.00, 55.00, 0.00, 35.00)
(5.00, 50.00, 5.00, 30.00)

(27.00, 28.00, 27.00, 8.00)
(27.00, 28.00, 27.00, 8.00)

(10.00, 45.00, 10.00, 25.00)
(15.00, 40.00, 15.00, 20.00)

(27.00, 28.00, 27.00, 8.00)
(27.00, 28.00, 27.00, 8.00)

(20.00, 35.00, 20.00, 15.00)
(25.00, 30.00, 25.00, 10.00)

(27.00, 28.00, 27.00, 8.00)
(29.00, 26.00, 29.00, 6.00)

(30.00, 25.00, 30.00, 5.00)
(35.00, 20.00, 35.00, 0.00)

(29.00, 26.00, 29.00, 6.00)

Example 4. Consider the network problem depicted in Figure 3, where N = {1, 2, 3, 4, 5, 6},
W = {ω1, ω2} =

{
(1, 5), (2, 6)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9}, D = {dω1 , dω2},

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost. Pω = {p1, p2, p3, p4, p5, p6, p7},
where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}, p1 = (α3), p2 = (α2α5α8),
p3 = (α1α4α5α8), p4 = (α1α6α8), p5 = (α7), p6 = (α6α9), and p7 = (α4α5α9).
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Figure 3. Network topology for Example 4.

The constrains of paths and cost functions are given as follows:

lp1 = 0, lp2 = 0, lp3 = 0, lp4 = 0, lp5 = 0, lp6 = 0, lp7 = 0;

up1 = 25, up2 = 25, up3 = 25, up4 = 25, up5 = 20, up6 = 20, up7 = 20.

t1,α1(y, ξ) = 4(y6 + y7) + 50− 2ξ3, t2,α1(y, ξ) = (y6 + y7)
2 + 90− 2ξ3;

t1,α2(y, ξ) = 2y2 + 20− ξ2 + 4ξ6, t2,α2(y, ξ) = 3y2
2 + 10;

t1,α3(y, ξ) = 4y2
1 + 100 + ξ1, t2,α3(y, ξ) = 2y2

1 + 110 + 6ξ1;

t1,α4(y, ξ) = 2(y4 + y7) + 10 + ξ2, t2,α4(y, ξ) = (y4 + y7)
2 + 30− ξ2 + ξ3;

t1,α5(y, ξ) = 2(y3 + y4 + y7)
2 + 10− ξ2, t2,α5(y, ξ) = (y3 + y4 + y7)

2 + 20 + ξ2;

t1,α6(y, ξ) = 5(y4 + y5)
2 + 430 + 2ξ3 + ξ4, t2,α6(y, ξ) = 2(y4 + y5) + 530 + 2ξ3 − ξ4;

t1,α7(y, ξ) = 2y2
2 + 100 + 5ξ5, t2,α7(y, ξ) = 3y5 + 300;

t1,α8(y, ξ) = (y3 + y6 + y7)
2 + 20, t2,α8(y, ξ) = 2(y3 + y6 + y7)

2 + 10;

t1,α9(y, ξ) = (y5 + y6)
2 + 30− 4ξ6, t2,α9(y, ξ) = 2(y5 + y6) + 10 + 2ξ7 − ξ3;

where zαi (i = 1, 2, . . . , 9) denotes the flow on arc αi. Then we have

cp1(y, ξ) =

(
4y2

1 + 100 + ξ1

2y2
1 + 110 + 6ξ1

)
, cp2(y, ξ) =

(
2y2 + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 50− 2ξ2

3y2
2 + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 40 + ξ2

)

cp3(y, ξ) =

(
4(y6 + y7) + 2(y4 + y7) + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 90− 2ξ3

(y6 + y7)
2 + (y4 + y7)

2 + (y3 + y4 + y7)
2 + 2(y3 + y6 + y7)

2 + 150− ξ3

)

cp4(y, ξ) =

(
4(y6 + y7) + 5(y4 + y5)

2 + (y3 + y6 + y7)
2 + 500 + ξ4

(y6 + y7)
2 + 2(y4 + y5) + 2(y3 + y6 + y7)

2 + 630− ξ4

)

cp5(y, ξ) =

(
2y2

2 + 100 + 5ξ5

3y5 + 300

)
, cp6(y, ξ) =

(
5(y4 + y5)

2 + (y5 + y6)
2 + 460− 4ξ6

2(y4 + y5) + 2(y5 + y6) + 540

)

cp7(y, ξ) =

(
2(y4 + y7) + 2(y3 + y4 + y7)

2 + (y5 + y6)
2 + 50

(y4 + y7)
2 + (y3 + y4 + y7)

2 + 2(y5 + y6)
2 + 60 + 2ξ7

)
where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7. Initial feasible flows and a subset of the robust vector
equilibrium flows are obtained in 538.47 s. The results are shown in Table 3. The algo-
rithm proposed in [22] obtains the same robust vector equilibrium flows, but its time cost
is 548.32 s.
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Table 3. Computational results of Algorithm 1.

Initial Feasible Flows Robust Vector Equilibrium Flows

(0, 0, 0, 25, 0, 0, 20) (0, 0, 25, 0, 0, 0, 20) (9, 7, 9, 0, 19, 0, 1) (12, 13, 0, 0, 8, 0, 12)
(0, 25, 0, 0, 0, 0, 20) (25, 0, 0, 0, 0, 0, 20) (15, 10, 0, 0, 9, 0, 11) (15, 10, 0, 0, 9, 0, 11)
(0, 0, 0, 25, 0, 20, 0) (0, 0, 25, 0, 0, 20, 0) (12, 8, 5, 0, 15, 0, 5) (15, 10, 0, 0, 9, 0, 11)
(0, 25, 0, 0, 0, 20, 0) (25, 0, 0, 0, 0, 20, 0) (9, 7, 9, 0, 19, 0, 1) (12, 13, 0, 0, 8, 0, 12)
(0, 0, 0, 25, 20, 0, 0) (0, 0, 25, 0, 20, 0, 0) (11, 7, 7, 0, 18, 0, 2)
(0, 25, 0, 0, 20, 0, 0) (25, 0, 0, 0, 20, 0, 0)

4. Smoothing Method for the Robust Vector Equilibrium with the Worst Case

It is worth noting that the algorithm in [21] needs to solve a non-smoothing optimiza-
tion problem. This results in its computational inefficiency. This prompts us to continuously
investigate algorithm for solving robust equilibrium flows. In this section, we propose a
smoothing method to calculate a subset of the robust vector equilibrium with respect to
the worst case. The algorithm is denoted Algorithm 3. To generalize a subset of the robust
vector equilibrium flows with respect to the worst case, we use a two-step strategy. The first
step is to construct an equivalent optimization problem with the help of a variant version
of ReLU activation function for finding the robust weak vector equilibrium flows with
respect to the worst case. The second step is to judge whether or not the robust weak vector
equilibrium flows with respect to the worst case are equal to the robust vector equilibrium
flows with respect to the worst case by an equivalent optimization problem using the vector
version of heaviside step function.

Algorithm 3: Robust vector equilibrium algorithm (denoted Algorithm 3).

1 Choose a positive integer q and a tolerance level ε ≥ 0.
2 Enter l = (lpk )pk∈P and u = (upk )Pk∈P. Set δj = dωj /(q|Pωj |), j = 1, · · · , l̃.
3 Choose (k1, · · · , kn)> ∈ Nn satisfying

∑
i∈Ij

ki = q|Pωj |, and lpi ≤ kiδj ≤ upi , i ∈ Ij, j = 1, · · · , l̃.

4 Store y = (yp1 , · · · , ypn)
> in S0 where

ypi = kiδj, i ∈ Ij, j = 1, · · · , l̃

and return to Step 3 for other vectors (k1, · · · , kn) unless no one left.
5 Choose a feasible flow y0 from S0 to start. Set k = 0, S0 = S0 \ {y0} and

WE = ∅.
6 For every i, j ∈ {1, · · · , n}, solve

minimize φ(y)

subject to y ∈ Ω∣∣∣ypi − y0
pi

∣∣∣ ≤ δω(i), i = 1, · · · , n.

If φ(y) 5 ε, store y in WE and return to Step 5 until no element of S0 left.
7 Choose a feasible flow y ∈WE, WE = WE\{y}.
8 Compute

ϕ(y) = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)−Cpj(y))
>H+[Cpk (y)−Cpj(y)]

9 If ϕ(y) 5 ε, store y in E and return to Step 7 until no element of WE left.
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Define a function r : R → R and give its vector version function R : Rn → Rm

as follows:

r(a) =
(

max{0, a}
)2

.

R(x) = (
n

∏
i=1

r(xi))e,

In addition, the heaviside step function h+ : R → R and its vector version function
H+ : Rn → Rm are also given below:

h+(a) =

{
1, if a ≥ 0,
0, otherwise.

H+(x) = (
n

∏
i=1

h+(xi))e, ∀x ∈ Rm.

4.1. Description of the Algorithm

In this subsection, we construct an optimization problem whose solution is equivalent
to a robust weak vector equilibrium flow with respect to the worst case. For y ∈ Ω, we
define:

φ(y) := ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>R[Cpk (y)− Cpj(y)].

Proposition 2. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust weak vector equilibrium with respect to the worst case;
(ii) ȳ is an optimal solution of the problem, denoted:

min φ(ȳ)

s.t. y ∈ Ω.
(3)

and the optimal value φ(ȳ) is equal to zero.

Proof. We first prove the implication (i) ⇒ (ii). It is not hard to see φ(y) ≥ 0 for every
y ∈ Ω. Thus, if ȳ is a robust weak vector equilibrium with respect to the worst case, in order
to deduce (ii), it suffices to prove φ(ȳ) = 0. In addition, for every pk ∈ pω, ω ∈ W,
consider the term:

Qp = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>R[Cpk (y)− Cpj(y)].

If Cpk (ȳ) − Cpj(ȳ) � 0Rm , for some pj ∈ Pω, then by Definition 4, either
ȳpk = lpk or ȳpj = upj ; if Cpk (ȳ)− Cpj(ȳ) = 0Rm , for some pj ∈ Pω, we also get Qp = 0; if
Cpk (ȳ)− Cpj(ȳ) ≺ 0Rm , thenR[Cpk (y)− Cpj(y)] = 0Rm , and thus, Qp = 0. As a result, one
has φ(ȳ) = 0.

Conversely, assume that ȳ is an optimal solution of Problem (3) and φ(ȳ) = 0. Then,
we have Qp = 0 for all p ∈ P. If there exists some pk, pj ∈ pω, ω ∈ W such that
Cpk (ȳ)− Cpj(ȳ) � 0Rm , then (Cpk (y)− Cpj(y))

′R[Cpk (y)− Cpj(y) � 0Rm , and thus, either
ȳpk = lpk or ȳpj = upj by Qp = 0. Consequently, we deduce that ȳ is a robust weak vector
equilibrium with respect to the worst case.

For y ∈ Ω, we define

ϕ(y) = ∑
ω∈W

∑
pk ,pj∈Pω

(ypk − lpk )(upj − ypj)(Cpk (y)− Cpj(y))
>H+[Cpk (y)− Cpj(y)].
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Then, by using a similar method of proof, we may establish the following result for
the robust vector equilibrium with respect to the worst case.

Proposition 3. Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust vector equilibrium with respect to the worst case.
(ii) ȳ is an optimal solution of the problem, denoted as follows:

min ϕ(y)

s.t. y ∈ Ω.
(4)

and the optimal value ϕ(ȳ) is equal to zero.

Algorithm 3 is mainly based on ideas of Propositions 2 and 3. Steps 1–4 create a
subset of feasible flows with the initial conditions, denoted as S0, with which Steps 4–6
will start. Steps 5–6 are aimed at solving Problem (3) given in Proposition 2 by using
first-order optimization methods, and then a subset of the robust weak vector equilibrium
flows with respect to the worst case is gained. Steps 7–9 focus on solving Problem (4) given
in Proposition 3, and then a subset of the robust vector equilibrium flows with respect to
the worst case is generated.

Assume thatW consists of l̃ elements ω1, . . . , ωl̃ in the network and for each pair ωi.

Let Ij =
{

i ∈ {1, . . . , n} : pi ∈ Pwj

}
. Denote WE by the subset of the robust weak vector

equilibrium flows with respect to the worst case and E by the subset of the robust vector
equilibrium flows with respect to worst case.

4.2. Comparison with Other Methods

In this subsection, we will give two numerical examples to show the comparison with
that of [21]. In these numerical examples, both Algorithm 3 and the algorithm proposed
in [21] start from the same set of initial points. To make a fair comparison, all test problems
are run five times to reduce the impact of randomness.

Example 5. Consider the network problem depicted in Figure 4, where N = {1, 2, 3, 4, 5},
W = {ω1, ω2} =

{
(1, 4), (1, 5)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9},D = {dω1 , dω2},

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost, Pω = {p1, p2, p3, p4, p5, p6, p7},
where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}.

Figure 4. Network topology for Example 5.

Assume that:

lp1 = lp2 = lp3 = lp4 = lp5 = lp6 = lp7 = lp8 = 0;

up1 = 100, up2 = 100, up3 = 100, up4 = 200, up5 = 100, up6 = 120, up7 = 150, up8 = 100;
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t1,α1(y, ξ) = y2
1 + y2

2 + y3
3 + ξ1, t2,α1(y, ξ) = 2y1 + 5y2 + 3y3 + y4 − 2ξ1;

t1,α2(y, ξ) = 8y1y2 + y2
2 + y7 + y8 + 4ξ2, t2,α2(y, ξ) = y2 + 10y3 + 2y7 + y8 + 2ξ2;

t1,α3(y, ξ) = y1 + y2
2 + y3

3 + y5 + y6 − 3ξ3, t2,α3(y, ξ) = 10y3
3 + 2y5 + ξ3;

t1,α4(y, ξ) = y1 + y2 + y3
4 + y2

5 + y3
8 + ξ4, t2,α4(y, ξ) = y1 + 2y4 + y6y5 + 15y8;

t1,α5(y, ξ) = y1 + y3 + y3
4 + y2

5 + y2
6, t2,α5(y, ξ) = y1 + 5y3 + 5y5 + 3y6 + 12y7 + 4ξ5;

t1,α6(y, ξ) = y3 + y4 + y5 + y3
6 − 3ξ6, t2,α6(y, ξ) = 3y3 + 10y5 + y6 + 2y8 − 2ξ6;

t1,α7(y, ξ) = y2 + 8y2
4 + y5 + y3

7 + 2ξ7, t2,α7(y, ξ) = y1 + y2 + 5y4 + 3y7;

t1,α8(y, ξ) = y1 + y3 + 8y6y7 + y2
8 + ξ8, t2,α8(y, ξ) = y1 + y3 + 10y3

5 + y8 − ξ8,

where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7, 8. Then, we have

Cp1(y) =

(
y2

1 + y2
2 + y3

3 + 1

2y1 + 5y2 + 3y3 + y4

)
, Cp2(y) =

(
8y1y2 + y2

2 + y7 + y8 + 4

y2 + 10y3 + 2y7 + y8 + 2

)

Cp3(y) =

(
y1 + y2

2 + y3
3 + y5 + y6

10y3
3 + 2y5 + 1

)
, Cp4(y) =

(
y1 + y2 + y3

4 + y2
5 + y3

8 + 1

y1 + 2y4 + y6y5 + 15y8

)

Cp5(y) =

(
y1 + y3 + y3

4 + y2
5 + y2

6

y1 + 5y3 + 5y5 + 3y6 + 12y7 + 4

)
, Cp6(y) =

(
y3 + y4 + y5 + y3

6

3y3 + 10y5 + y6 + 2y8

)

Cp7(y) =

(
y2 + 8y2

4 + y5 + y3
7 + 2

y1 + y2 + 5y4 + 3y7

)
, Cp8(y) =

(
y1 + y3 + 8y6y7 + y2

8 + 1

y1 + y3 + 10y3
5 + y8

)
Choosing q = 2, we have 32 feasible flows and 2 robust (weak) vector equilibrium

flows with respect to the worst case, which are obtained in 0.18 s. Robust (weak) vector
equilibrium flows with respect to the worst case are shown in Table 4. However, using the
algorithm proposed in [21], it will take 13.826 s to obtain five robust vector equilibrium
flows with respect to the worst case, which are shown in Table 5.

Table 4. Computational results of Algorithm 3.

Robust Weak Vector Equilibrium Flows
(Worst Case)

Robust Vector Equilibrium Flows (Worst
Case)

(100, 100, 100, 145.125, 0, 120, 134.875, 100) (100, 100, 100, 145.125, 0, 120, 134.875, 100)
(100, 100, 100, 150, 0, 120, 130, 100) (100, 100, 100, 150, 0, 120, 130, 100)

Table 5. Computational results of algorithm in [21].

Robust Vector Equilibrium Flows (Worst Case)

(100, 100, 100, 30, 100, 120, 150, 100)
(100, 100, 100, 50, 100, 120, 130, 100)
(100, 100, 100, 100, 100, 120, 80, 100)
(100, 100, 100, 150, 100, 120, 30, 100)
(100, 100, 100, 200, 100, 100, 100, 0)

Example 6. Consider the network problem depicted in Figure 5, where N = {1, 2, 3, 4, 5},
W = {ω1, ω2} =

{
(1, 4), (1, 5)

}
, E = {α1, α2, α3, α4, α5, α6, α7, α8, α9},D = {dω1 , dω2} with

dω1 = 25, dω2 = 20, with two criteria: travel time and travel cost, Pω = {p1, p2, p3, p4, p5, p6, p7},
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where Pω1 = {p1, p2, p3, p4}, Pω2 = {p5, p6, p7}. p1 = (α4), p2 = (α2α8), p3 = (α2α6α3),
p4 = (α1α3), p5 = (α5), p6 = (α2α9), p7 = (α1α7). Let:

l1 = 0, l2 = 0, l3 = 0, l4 = 0, l5 = 0, l6 = 0, l7 = 0;

u1 = 15, u2 = 20, u3 = 15, u4 = 10, u5 = 15, u6 = 10, u7 = 15.

Figure 5. Network topology for Example 6.

Now, we give the cost function of arcs as follows:

tα1(y, ξ) =

(
4(y6 + y7) + 2(y3 + y4 + y7)

2 + 300− 2ξ1

(y6 + y7)
2 + (y3 + y4 + y7)

2 + 330− ξ1

)
, tα2(y, ξ) =

(
2(y3 + y4 + y7)

2 + 50 + ξ2

(y3 + y4 + y7)
2

)

tα3(y, ξ) =

(
2(y3 + y7) + 2(y4 + y7)

2 + 300 + 2ξ1 + ξ6

(y3 + y7)
2 + 2(y4 + y7) + 100 + ξ1 − ξ3

)
, tα4(y, ξ) =

(
4y2

1 + 100 + ξ4

2y2
1 + 110 + 6ξ4

)

tα5(y, ξ) =

(
2y2

2 + 100 + 5ξ5

3y2 + y5 + 300

)
, tα6(y, ξ) =

(
(y3 + y6 + y7)

2 − 260− ξ6 − ξ2

2(y3 + y6 + y7)
2 + 50− ξ1

)

tα7(y, ξ) =

(
2(y3 + y7) + 2(y4 + y7)

2 − 150 + 3ξ1 − ξ7

(y3 + y7)
2 + (y4 + y7)

2 − 310 + ξ1

)
, tα8(y, ξ) =

(
2y2 + (y3 + y6 + y7)

2 − ξ2

3y2
2 + 2(y3 + y6 + y7)

2 + 40− ξ8

)

tα9(y, ξ) =

(
5(y5 + y6)

2 + 410 + ξ2

2(y5 + y6)
2 + 540− ξ9

)
where ξi ∈ [0, 1], i = 1, 2, 3, 4, 5, 6, 7, 8, 9. Then, we have:

Cp1(y) =

(
4y2

1 + 101

2y2
1 + 116

)
, Cp2(y) =

(
2y2 + 2(y3 + y4 + y7)

2 + (y3 + y6 + y7)
2 + 50

3y2
2 + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 41

)
,

Cp3(y) =

(
4(y3 + y7) + 2(y4 + y7)

2 + 2(y3 + y4 + y7)
2 + (y3 + y6 + y7)

2 + 90

(y3 + y7)
2 + 2(y4 + y7) + (y3 + y4 + y7)

2 + 2(y3 + y6 + y7)
2 + 150

)
,

Cp4(y) =

(
4(y3 + y7) + 2(y4 + y7)

2 + 4(y6 + y7) + 2(y3 + y4 + y7)
2 + 601

(y3 + y7)
2 + 2(y4 + y7) + (y6 + y7)

2 + (y3 + y4 + y7)
2 + 430

)
,
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Cp5(y) =

(
2y2

2 + 105

3y2 + y5 + 300

)
, Cp6(y) =

(
5(y5 + y6)

2 + 2(y3 + y4 + y7)
2 + 460

2(y5 + y6) + (y3 + y4 + y7)
2 + 540

)
,

Cp7(y) =

(
4(y6 + y7) + 2(y4 + y7)

2 + 2(y3 + y4 + y7)
2 + 2(y3 + y7) + 152

(y6 + y7)
2 + (y4 + y7)

2 + (y3 + y4 + y7)
2 + (y3 + y7)

2 + 20

)
.

Choosing q = 1, 80 feasible flows are created and a subset of robust vector equilibrium
flows with respect to the worst case (displayed in Tables 6) are obtained. This takes about
0.62 s. However, using the algorithm presented in [21], it spends 579 s to obtain a subset of
robust vector equilibrium flows with respect to the worst case, which are shown in Table 7.

Table 6. Computational results of Algorithm 3.

Robust Weak Vector Equilibrium Flows
(Worst Case)

Robust Vector Equilibrium Flows (Worst
Case)

(11.88, 11.29, 1.83, 0, 13.23, 0, 6.77) (11.88, 11.29, 1.83, 0, 13.23, 0, 6.77)
(10.56, 12.5, 1.94, 0, 13.33, 0, 6.67) (10.56, 12.5, 1.94, 0, 13.33, 0, 6.67)
(10.04, 14.92, 0.04, 0, 11.89, 0, 8.11) (10.04, 14.92, 0.04, 0, 11.89, 0, 8.11)
(11.03, 12.4, 1.57, 0, 13.33, 0, 6.67) (11.03, 12.4, 1.57, 0, 13.33, 0, 6.67)
(11.42, 13.58, 0, 0, 11.93, 0, 8.07) (11.42, 13.58, 0, 0, 11.93, 0, 8.07)
(10.45, 12.5, 2.05, 0, 13.33, 0, 6.67) (10.45, 12.5, 2.05, 0, 13.33, 0, 6.67)
(11.12, 10, 3.88, 0, 15, 0, 5) (11.12, 10, 3.88, 0, 15, 0, 5)

Table 7. Computational results of algorithm in [21].

Robust Vector Equilibrium Flows (Worst Case)

(10.94, 12.5, 1.56, 0, 12.29, 0, 7.71)
(10.94, 13.28, 0.78, 0, 12.29, 0, 7.71)
(12.66, 10.78, 1.56, 0, 12.29, 0, 7.71)
(10.94, 12.5, 1.56, 0, 12.5, 0, 7.5)

5. Conclusions

In this paper, we mainly consider a robust multi-criteria traffic network equilibrium
problem with path capacity constraints. Firstly, the robust vector equilibrium principle
and the robust vector equilibrium principle with respect to the worst case are given. We
pay attention to constructing an equivalent min–max optimization problem for the robust
vector equilibrium, in which the solution is equivalent to a robust vector equilibrium. Then,
a direct search algorithm is proposed for solving the corresponding min–max optimization
problem. The step size in the algorithm requires neither gradient information nor redundant
parameters. What is more, we select different step sizes for different variables and extend
the search directions. The results of three numerical experiments show that it takes less
time than the method in [22] to find the robust vector equilibrium flows.

To generate a subset of the robust vector equilibrium with respect to the worst case,
we employ a two-step strategy. The first step is to construct a smoothing optimization
problem based on a variant version of the ReLU activation function to compute the robust
weak vector equilibrium flows with respect to the worst case. The second step is to judge
whether or not the robust weak vector equilibrium flows with respect to the worst case are
equal to the robust vector equilibrium flows with respect to the worst case. Compared with
the algorithm in [21], the results of two numerical experiments show that our algorithm
can greatly reduce the computational cost.

Recently, robust vector optimization based on set orders is widely used in the uncertain
optimization environment [23,24]. It is noteworthy that the robust vector equilibrium
principles considered in this paper are all based on vector order. In addition, our method
can only be applied to small-scale traffic networks. Therefore, an interesting topic for future
research is to investigate large-scale, multi-criteria traffic networks based on set orders.
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