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Abstract: Literature and most textbooks around the world describe Silver-Meal in such a way that
periods with zero demand make Silver-Meal suggest a higher frequency of order replenishments than
necessary and therefore higher total costs than necessary. Silver-Meal, still the best-known technique,
is therefore inferior to other lesser-known techniques when the time interval in the calculations
presently is days and not months. The purpose of this article is to show that another mathematical
formulation of Silver-Meal avoids this trouble. We also point to characteristics such as Silver-Meal,
Least Unit Cost, Part-Period Balancing, and lot-sizing techniques that are available in many textbooks
for operations and supply chain management. We illustrate the techniques with different examples of
periods without demand, declining demand, and varying demand. We point out possible problems
with the different techniques. Literature mostly does not consider periods of zero demand, which was
not so important before. Lot-sizing methods must cope with the important performance indicator
“Days of inventory”. Numerous practical situations with zero demand periods exist where a lot of
sizing techniques help for efficient operations. It is necessary knowledge and a tool for students
(future users, performers, and managers). “Lägsta periodkostnad” is a restored and reformulated
Silver-Meal, with Silver-Meal’s characteristics already presented in literature, except those difficulties
with zero demand periods disappear.

Keywords: lot sizing; Silver-Meal; Least Unit Cost; Part-Period Balancing; education

MSC: 90B05; 90B30

1. Introduction

Goggle searches for ”Silver-Meal”, “Least Unit Cost,” and “Part-Period Balancing”
present a huge surplus of hits for Silver-Meal. Silver-Meal, together with Material Require-
ment Planning and Economic Order Quantity, are probably the most cited and well-known
concepts and techniques in operations and supply chain management.

Bitran et al. [1] wrote, “Due to their importance in production planning and inventory
control, lot size problems have been widely studied (Peterson and Silver [2]). In partic-
ular, these problems play a key role in material requirements planning (Orlicky [3] and
Smith [4]). And yet, despite all these efforts, the type of large-scale lot size problems that
arise frequently in practice remain difficult to solve.” Since 1984, many more articles have
been published. While lot size problems are still difficult to solve, heuristics are a necessary
tool to improve management’s practical decisions.

With material requirements planning or similar implementation in mechanical/electrical
manufacturing with mixed series production and a “make-to-stock” situation, varying order
quantities forwarded upstream create unnecessary variations in the material flow. A fixed
order quantity creates a “leaner” existence; managers can then generate a “takt” and a more
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efficient flow. Nevertheless, in many other practical situations, a fixed economic order
quantity is unsuitable and the wrong solution. A construction company orders plasterboard,
lagging, concrete, etc. for delivery on a special date (days). Between the delivery dates,
there will be several days without demand. Other project-oriented productions contain
demands for different quantities placed at uneven time intervals. Lot-sizing techniques are
tools to improve practical operations. Historically, periods without demand have not been
so important when the time scale was months, but now for a construction company or other
project-oriented company, the time scale is days. Then there will be many periods without
demand or requirements. Lot-sizing methods must cope with the important performance
indicator “days of inventory”.

From the literature, we have noticed that most investigations and evaluations of deter-
ministic lot-sizing methods prefer Silver-Meal compared to Least Unit Cost, Part-Period
Balancing, and other techniques, e.g., Blackburn and Millen [5], Saydam and Evans [6].

Bookbinder and Tan [7] note, and refer to other literature, that the Silver-Meal heuristic
does not perform well when there are frequent periods with no demand and demand is
sharply decreasing. Silver and Miltenburg [8] are aware of the difficulties for Silver-Meal
to treat periods with zero demand and decreasing demand; therefore, they suggest two
modifications to Silver-Meal. Bookbinder and Tan [7] also suggest two modified heuristics.
These heuristics have several steps and rather complicated stop rules, which explain why
these modifications have received limited attention and have not influenced textbooks.

Pujawan [9] tests Silver-Meal and Least Unit Cost in a supply chain receiving demand
with stochastic variability from its downstream channel. Silver-Meal is shown to produce
a series of orders with more stable intervals between orders but with more variable order
quantities. Least Unit Cost results in more stable order quantities but more variable order
intervals. However, the highest variability tested (Normal (200, 80)) presents a probability
less than 0.01 for a period with zero demand. Govindan [10] also favors Silver-Meal in
two-echelon supply chains (one vendor, multiple retailers), in tests with time-varying
stochastic demand, and in some periods with zero demand.

Ho et al. [11] tested Silver-Meal with zero demand over more than one period. Instead
of Silver-Meal, they suggest a heuristic they refer to as net least period cost (nLPC). The
difference is that nLPC divides the total cost by the total number of non-zero demand
periods, while Silver-Meal divides the total cost by the total number of periods between
periods i and j. Ho et al. [11] argue that the justification for nLPC is that “zero demand does
not require a setup and does not inflate holding costs when it is evaluated in isolation”. If
a quantity is carried over periods with zero demand to satisfy a demand in a future period,
the carrying cost, or inventory-holding cost, increases.

In the following, we first present a small numerical deterministic lot-sizing exam-
ple with a time scale in weeks. We use both the traditional and the new. The example
is solved with different heuristics in steps to exemplify the techniques and make the
reader certain about the different techniques. We compare the results for the entire known
planning horizon.

Thereafter, we present another example with a time scale in days. The result of the day-
example is presented in a table. Consequences for the whole horizon, with no new demand,
are included. We also present two informative examples from Silver and Miltenburg [8].
Finally, we present conclusions, reflections, and suggested extensions.

2. A numerical Week-Example

Let us assume we have a demand in week 3 (an example from Segerstedt [12]) and
must order at once. We also know future demand in the forthcoming weeks until week 10,
according to Figure 1 and Table 1.

Should we also order more quantities to reduce costs? We have a setup/order cost of
200 Money Units (MU), the item costs 50 MU per unit, and we assume that capital holding
in inventories costs 20% per year.
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Figure 1. Future requirements, week-example.

We use the following notations:

Table 1. Notations.

A ordering cost

r inventory interest per year

p the price or cost of one unit

h the cost to keep one unit in stock for one period

Xt the demand in period t can be zero or non-zero

X̂0 the demand that must be ordered now

X̂i the i:th known future non-zero demand in period ti

ti period when demand X̂i must be available

M A/h, a comparison number between different examples

Qi,t
the i:th calculated and suggested order quantity necessary to be delivered in
time period t (explanations Q1,1 ≥ X̂0; Q2,t does not contain X̂0 and t > 1)

Xt is the common way, so far, to term demands that will be formed in lots. The
stopping rules for Least Unit Cost and Part-Period Balancing are unaffected if Xt is zero or
not, but not Silver-Meal. Therefore, X̂i is proposed. The demand that must be ordered now
is traditionally called X1, here we introduce X̂0 = X1 and X̂1 is the next forward demand
that is non-zero.

We assume: A = 200 MU, r = 20%/year, and p = 50 MU/unit; h then becomes 50 periods per
year: 50 · 0.2/50 = 0.2 MU per unit and period. Our quota for comparison M = A/h = 1000.

To simplify, we “normalize” the calculations so that week 3 becomes period 1. Which
is standard in most textbooks and other articles.

Then Figure 1 and Table 2 show: X̂0 = X1 = 100, t0 = 1; X̂1 = X2 = 100, t1 = 2;
X̂2 = X4 = 200, t2 = 4; X̂3 = X6 = 100, t3 = 6; and X̂4 = X8 = 350, t4 = 8.

2.1. Solution with Silver-Meal (Silver and Meal [13])

The idea is to choose to have a new delivery when the average cost per period
increases for the first time. Following the presentation and formulas in, e.g., Silver et al. [14],
Axsäter [15], Nahmias [16], Olhager [17], Günter and Tempelmeier [18] and Domínguez-
Machuca et al. [19], we should perform as follows:
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If
A + h ∑k+1

t=1 (t− 1) · Xt

k + 1
>

A + h ∑k
t=1(t− 1) · Xt

k
then Q1,1 = ∑k

t=1 Xt.

Cost of only ordering the quantity in period 1: A/1 = 200 MU/1 period = 200 MU/period.
Cost of also ordering the quantity in period 2:

(
A + h ∑2

t=1(t− 1)Xt

)
/2 =

(200 + 0.2(0 + 1 · 100))/2 = 110 MU/period.
Cost of also ordering the quantity in period 3:

(
A + h ∑3

t=1(t− 1)Xt

)
/3 =

(200 + 0.2(1 · 100 + 2 · 0))/3 = 220/3 = 73.33 MU/period.
Cost of also ordering the quantity in period 4:

(
A + h ∑4

t=1(t− 1)Xt

)
/4 =

(200 + 0.2(1 · 100 + 2 · 0 + 3 · 200))/4 = 85 MU/period.
85 > 77.33; therefore Q1,1 = ∑3

t=1 Xt = 100 + 100 + 0 = 200 units.
Then, to calculate the next forthcoming order quantity, we start in period 4.
Cost of only ordering the quantity in period 4: A/1 = 200 MU/1 period = 200 MU/period.
Cost of also ordering the quantity in period 5:

(
A + h ∑5

t=4(t− 4)Xt

)
/2 =

(A + h · 1 · t5)/2 = (200 + 0.2 · 1 · 0)/2 = 100 MU/period.
Cost of also ordering the quantity in period 6:

(
A + h ∑6

t=4(t− 4)Xt

)
/(6− 4 + 1) =

(200 + 0.2(0 + 2 · 100))/3 = 240/3 = 80 MU/period.
Cost of also ordering the quantity in period 7:

(
A + h ∑7

t=4(t− 4)Xt

)
/(7− 4 + 1) =

(200 + 0.2(0 + 2 · 100 + 3 · 0))/4 = 60 MU/period.
Cost of also ordering the quantity in period 8:

(
A + h ∑8

t=4(t− 4)Xt

)
/(8− 4 + 1) =

(200 + 0.2(200 + 4 · 350))/5 = 104 MU/period.
104 > 60; therefore Q2,4 = ∑7

t=4 Xt = 200 + 0 + 100 + 0 = 300 units. Still to deliver are
350 units in period 8, therefore Q3,8 = ∑9

t=8 Xt = 350 units. Total set-up and inventory
holding cost: 200 + 0.2(1 · 100) + 200 + 0.2(2 · 100) + 200 = 660 MU.

Table 2. Week-example.

Period Quantity t i ti ti − t0

3 100 1 0 1 0

4 100 2 1 2 1

6 200 4 2 4 3

8 100 6 3 6 5

10 350 8 4 8 7

2.2. Solution with Least Unit Cost (Gorham [20])

Furthermore, following the presentation and formulas in, e.g., Silver et al. [14] and
Nahmias [16], we should perform as follows:

If
A + h ∑k+1

t=1 (t− 1) · Xt

∑k+1
t=1 Xt

>
A + h ∑k

t=1(t− 1) · Xt

∑k
t=1 Xt

then Q1,1 = ∑k
t=1 Xt

As an alternative description for Least Unit Cost, find the minimum cost of:

Cn =
A + h ∑n

i=0(ti − t0)X̂i

∑n
i=0 X̂i

.

Cost of only ordering the necessary quantity in period 1:

C0 =
(

A + h ∑1
t=1(t− 1)Xt

)
/ ∑1

t=1 Xt= A/X1 = 200/100 = 2 MU/unit.
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Cost of also ordering the next demanded quantity in period 2:

C1 =
(

A + h ∑2
t=1(t− 1)Xt

)
/ ∑2

t=1 Xt= (200 + 0.2(0 + 1 · 100))/(100 + 100) = 1.10 MU/unit

Cost of also ordering the zero demanded quantity in period 3:(
A + h ∑3

t=1(t− 1)Xt

)
/ ∑3

t=1 Xt= (200 + 0.2(1 · 100 + 2 · 0))/(100 + 100 + 0) = 1.10 MU/unit.

A zero demand does not change the previous Least Unit Cost, so the search continues.
Cost of also ordering the second next-demanded quantity in period 4:

C2 =
(

A + h ∑4
t=1(t− 1

)
Xt)/ ∑4

t=1 Xt=
(

A + h ∑2
i=0(ti − t0)X̂i

)
/ ∑2

i=0 X̂i

= (200 + 0.2(1 · 100 + (4− 1)200))/(100 + 100 + 200) = 0.85 MU/unit.

Cost of also ordering the third next-demanded quantity in period 6:(
A + h ∑6

t=1(t− 1
)

Xt)/ ∑6
t=1 Xt=

(
A + h ∑3

i=0(ti − t0)X̂i

)
/ ∑3

i=0 X̂i

= (200 + 0.2(700 + (6− 1)100))/(400 + 100) = 0.88 MU/unit

0.88 > 0.85; therefore Q1,1 = ∑4
t=1 Xt = ∑2

i=0 X̂i = 100 + 100 + 200 = 400 units.
Then, to calculate the next forthcoming order quantity, we start in period 6. Starting in

period 5 makes no sense, with the necessary order quantity X6 = X̂3 = 100 units.
Cost of only ordering the quantity in period 6:

A/X6 = 200/100 = 2 MU/unit.

Cost of also adding the quantity in period 8 when ordering the quantity necessary in
period 6:

(
A + h ∑4

i=3(ti − t4)X̂i

)
/ ∑4

i=3 X̂i = (200+ 0.2 · 2 · 350)/(100+ 350) = 0.76 MU/unit

Therefore, Q2,6 = ∑9
t=6 Xt = ∑4

i=3 X̂i = 100 + 350 = 450 units. This solution presents total
set-up and inventory holding cost: 200 + 0.2(1 · 100 + (4− 1)200) + 200 + 0.2(8− 6)350 =
680 MU.

2.3. Solution with Reformulated Silver-Meal (Lägsta Periodkostnad) (Segerstedt [12,21])

Periods with zero demand decrease the cost per period; periods with non-zero demand
thereafter mostly increase the cost per period. This may lead to higher order quantities and
set-up costs that are not necessary. Therefore, this solution only considers periods with non-
zero demand. Segerstedt [12,21] calls this solution Silver-Meal and “Lägsta Periodkostnad”.

If
A + h ∑n+1

i=0 (ti − t0)X̂i

tn+1 − t0 + 1
>

A + h ∑n
i=0(ti − t0)X̂i

tn − t0 + 1
then Q1,1 = ∑n

i=0 X̂i

which means the minimum of Cn =
A+h ∑n

i=0(ti−t0)X̂i
tn−t0+1 is sought.

Cost of only ordering the necessary quantity in period 1:

C0 =
(

A + h ∑0
i=0(ti − t0)X̂i

)
/(t0 − t0 + 1) == 200 MU/period

Cost of also ordering the first next-demanded quantity in period 2:

C1 =
(

A + h ∑1
i=0(ti − t0)X̂i

)
/(t1 − t0 + 1)= (200 + 0.2(2− 1)100)/2 = 110 MU/period
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Cost of also ordering the second next-demanded quantity in period 4:

C2 =

(
A + h

2

∑
i=0

(ti − t0)X̂i

)
/(t2 − t0 + 1)= (200 + 0.2(0 + 1 · 100 + (4− 1)200)/4 = 85 MU/period.

Cost of also ordering the third next-demanded quantity in period 6:

C3 =

(
A + h

3

∑
i=0

(ti − t0)X̂i

)
/(t3 − t0 + 1)= (200 + 0.2(1 · 100 + (4− 1)200) + (6− 1)100))/6 = 73.33 MU/period.

Cost of also ordering the forth next-demanded quantity in period 8:

C4 =

(
A + h

4

∑
i=0

(ti − t0)X̂i

)
/(t4 − t0 + 1)

116.25 > 77.33; therefore, Q1,1 = ∑3
i=0 X̂i = 100 + 100 + 200 + 100 = 500 units.

Then, we start with X̂4 = 350 and see if we have any demand (X̂5) that it is favored to
include. This is not the case, so Q2,8 = 350 units. The total set-up and inventory-holding cost
for this solution becomes 200 + 0.2(1 · 100 + (4− 1)200) + (6− 1)100) + 200 = 640 MU.

2.4. Solution with Part-Period Balancing (DeMatteis [22])

The basic criterion is to select the number of demanded quantities covered by the re-
plenishment so that the total inventory holding cost is as close as possible to the
set-up cost.

When h ∑n+1
i=0 (ti − t0)X̂i ≥ A > h ∑n

i=0(ti − t0)X̂i the search stops.

Then If A
h ∑n

i=0(ti−t0)·X̂i
− 1 ≤ h ∑n+1

i=0 (ti−t0)·X̂i
A − 1 then Q1,1 = ∑n

i=0 X̂i else Q1,1

= ∑n+1
i=0 X̂i.
This rule differs, e.g., from Axsäter [15], p. 69, which specifies that the inventory

holding cost should be equal to or larger than the setup cost.
That means that the ratio between the set-up cost and the holding cost should be

as close to one as possible. “As close to one as possible” is an idea involving several
items with complementing restrictions that has also performed well: Economic Order
Quantity (EOQ): Harris [23]; Economic Lot Scheduling Problem (ELSP): Segerstedt [12] and
Holmbom and Segerstedt [24]; Joint Replenishment Problem (JRP): Nilsson et al. [25]; One-
Warehouse N-Retailer (OWNR): Abdul-Jalbar et al. [26]. Table 3 presents the calculations
for Part-Period Balancing.

Table 3. Solution: Part-Period Balancing, week-example.

i ^
Xi

ti Inventory Holding Cost Ratio 1/Ratio

0 100 1 0 - -

1 100 2 0.2·1·100 = 20 200/20 = 10 0.1

2 200 4 20 + 0.2·3·200 = 140 200/140 = 1.43 0.699

3 100 6 140 +0.2·5·100 = 240 200/240 = 0.833 1.2

4 350 8 240 + 0.2·7·350 = 730 200/730 = 0.274 3.65

To order all quantities until period 6 presents the ration closest to one. Therefore, Q1,1
is 500 units; left to deliver is Q2,8 = 350 units. This solution presents the following total
set-up and inventory holding cost: 200 + 0.2(1 · 100 + (4− 1)200) + (6− 1)100) + 200 =
640 MU.
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2.5. Solution with Dynamic Programming (Wagner and Whitin [27])

An optimal solution to this problem with dynamic programming is what reformulated
Silver-Meal (rSM) and Part-Period Balancing (PPB) have already shown: Q1,1 = 500 units,
Q2,8 = 350 units. A better solution than 640 MU cannot be found.

3. A numerical Day-Example

We continue with a day-example. We know that we must order 300 units for a special
project to be delivered in period 1. Five days later, in period 6, we have a new demand for
300 units of the same item; we have complementary future demands according to Table 4.
The question is: should we order only these 300 units, or should we also order more, and
how much of the future demand should we meet at the same time to avoid costs.

Table 4. Demand day-example, dates normalized to periods.

^
Xi

i t ti − t0

300 0 1 0

300 1 6 5

400 2 16 15

500 3 31 32

200 4 37 36

300 5 45 44

600 6 52 51

600 7 62 61

Table 4 and Figure 2 show the current demand: X̂0 = 300, t0 = 1; X̂1 = 300, t1 = 6;
X̂2 = 400, t2 = 16; X̂3 = 500, t3 = 31; X̂4 = 200, t4 = 37; X̂5 = 300, t5 = 45; X̂6 = 600,
t6 = 52; X̂7 = 600, t7 = 62. The estimated order cost is A = 2000 MU, r = 15 %/year, and
p = 150 MU/unit. h then becomes with 360 periods/days per year: 150 · 0.15/360 = 0.0625 MU
per unit and day. M = A/h = 32,000.
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Table 5. Solutions day-example. Superscript i means i-replenishment.

i
^
Xi t ti − t0 h

i
∑
j=0

(tj − t0)
^
Xj S-M LUC rSM PPB

0 300 1 0 0 2000 1 6.667 1 2000.0 1 -

1 300 6 5 93.75 348.96 1 3.490 1 348.96 1 -

2 400 16 15 468.75 2000 2 2.469 1 154.30 1 -

3 500 31 30 1406.25 2000 3 2.271 1 109.87 1 -

4 200 37 36 1856.25 296.43 3 2.268 1 104.27 1 0.928; 1.08

5 300 45 44 2681.25 2000 4 6.667 2 104.03 1 0.746; 1.34

6 600 52 51 4593.75 282.81 4 2.514 2 2000.0 2 -

7 600 62 61 6881.25 2000 5 1.933 2 138.66 2 -

Silver-Meal (S-M) (as it is presented in Silver et al. [14], Nahmias [16], Axsäter [15],
etc.) results in the fact that to meet the first demand, the next should also be ordered.
For t = 5, the total cost per period is 2000/5 = 400; for t = 6 = t1, the total cost
per period is (2000 + 93.75)/6 = 348.96, still a decrease. For t = 15, the total cost
per period is (2000 + 93.75)/15 = 139.58. For t = 16 = t2, the total cost per period
is (2000 + 93.75 + 400 · 15 · 0.0625)/16 = (2000 + 468.75)/16 = 154.30. 154.30 > 139.58.
Therefore, the “optimal” first lot size, according to S-M, is 300 + 300 = 600. For t = 30, the
total cost per period for the new lot size is 2000/(30− 16 + 1) = 133.33; for t = 31 = t3,
the total cost per period for the new lot size is (2000 + 500 · (30− 15) · 0.0625/(31− 16 + 1)
= 154.30, 154.30 > 113.33. Therefore, the “optimal” second lot size according to S-M is only
400. A continuation of S-M results in the following order quantities presented in Table 4:
Q1,1 = 600, Q2,16 = 400, Q3,31 = 700, Q4,45 = 900, and Q5,62 = 600.

Least Unit Cost (LUC) for t = 1, 2 . . . , 5 the total cost per unit is 2000/300 = 6.667. For
t = 6 = t1, the total cost per unit becomes (2000+ 93.75)/(300+ 300) = 3.490; similarly, for
t = 7, 8, . . . , 15. For t = 16 = t2, the total cost per unit becomes (2000+ 468.75)/(600+ 400)
= 2.469. LUC continues to decrease until t = 45 = t5, then total cost per unit becomes
(2000 + 2681.25)/(1700 + 300) = 2.341, 2.341 > 2.268 (total cost per unit for t = 44);
that means that the next four demands should be ordered, i.e., 300 + 300 + 400 + 500 +
200 = 1700 units. Therefore, a new lot size will start for t = 45 = t5 with a unit cost
2000/300 = 6.667. For t = 52 = t6, the unit cost for the new lot becomes 200 + 600 ·
0.0625(52− 45)/(300 + 600) = 2.541. Instead of five quantities for S-M, LUC leads to two:
Q1,1 = 1700 and Q2,45 = 1500.

Reformulated Silver-Meal (rSM) starts with, like S-M, for t = 1 = t0, a period cost
of 2000/1 = 2000 MU/day. For t = 6 = t1, the period cost is (2000 + 0.0625 · 5 · 300)/
6 = 348.96. For t = 16 = t2, the period cost is (2000 + 468.75)/(15 + 1) = 154.30. rSM
continues to decrease to t = 45 = t5, (2000 + 2681.25)/45 = 104.03. However, for t = 52
= t6, rSM becomes (2000 + 4593.75)/52 = 126.80. Therefore, rSM results in the following
order quantities: Q1,1 = 2000 and Q2,52 = 1200.

Net least period cost (nLPC) results in three order quantities: 1000, 1000, and 1200,
Two less than S-M and one more than rSM.

Part-Period Balancing (PPB) recommends that Q1,1 = 1700; because first for i = 5
the inventory holding cost is larger than the setup cost; then a comparison is made with
i = 4. Which ratio is closest to one? i = 4 is closest. For the rest of the planning horizon, the
inventory holding costs will never exceed the new ordering costs; therefore, Q2,45 = 1500.

With these order quantities, the total cost for the complete planning horizon becomes:
S-M: 2000 + 93.75 + 2000 + 2000 + 75 + 2000 + 262.5 + 2000 = 10431.25 MU.
LUC and PPB: 2000 + 1826.25 + 2000 + 900 = 6726.25 MU.
rSM: 2000 + 2681.25 + 2000 + 375 = 7056.25 MU.
nLPC: 2000 + 468.75 + 2000 + 337.50 + 2000 + 375 = 7181.25 MU.
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Dynamic Programming: 6726.25 MU.

4. Silver and Miltenburg’s Examples

Silver and Miltenburg [8] present two interesting and informative examples that we
will recapitulate here: Tables 5 and 6. The example in Table 6 shows a sharp decline in
demand. The example illustrates S-M’s difficulty in treating decreasing demand, and it
also triggers the modifications suggested in Silver and Miltenburg [8]. They state that
M = 100 and S-M results in a single replenishment of 350 units at the start of period 1 and
a normalized cost of 520. That means that A = 100 and h = 1. We show here the solutions
with LUC, rSM, and PPB.

Table 6. Solutions: Silver and Miltenburg’s declining demand. Superscript i means i-replenishment.

i
^
Xi t ti − t0 h(ti − t0)

^
Xi h

i
∑
j=1

(tj−t0)
^
Xj S-M LUC rSM PPB

0 150 1 0 0 0 100 1 0.667 1 100 1 - 1

1 95 2 1 95 95 97.5 1 0.796–1.053 2 97.5 1 0.95; 1.05 1

2 40 3 2 80 175 91.7 1 1.037 2 91.7 1 1.75; 0.57 2

3 30 4 3 90 265 91.3 1 1.212–3.333 3 91.3 1 - 2

4 20 5 4 80 345 89 1 2.4 3 89 1 0.7; 1.43 2

5 15 6 5 75 420 86.7 1 2.308 3 86.7 1 1.15; 0.87 2

LUC finds the same solutions as Wagner-Whitin, Q1,1 = 150, Q2,2 = 135, and
Q3,4 = 65; for a total cost of 390. PPB cannot stop at period 1 because it has no inven-
tory holding costs; PPB therefore finds Q1,1 = 245 and Q2,3 = 105, with a total cost: 100 +
95 + 100 + 30 + 40 + 45 = 410. There are no periods of zero demand; therefore, rSM presents
the same solution as S-M, Q1,1 = 350 and a total cost 520.

Silver and Miltenburg [8] present another example, Table 7, with sharply varying
demand and periods with zero demand. A = 70 and h = 0.25; i.e., M = 280.

Table 7. Solutions: Silver and Miltenburg’s varying demand. Superscript i means i-replenishment.

i
^
Xi t ti − t0 h(ti−t0)

^
Xi h

i
∑
j=1

(tj − t0)
^
Xj S-M LUC rSM PPB

0 179 1 0 0 0 70 1 0.391 1 70 1 - 1

1 44 2 1 11 11 40.5 1 0.363 1 40.5 1 - 1

2 10 7 6 15 26 13.5→13.7–70
2 0.412–7 2 13.7 1 2.69; 0.37 1

3 123 11 10 307.5 333.5 17.5→38.6–70
3 1.45 2 36.7–70 2 0.210;4.76 2

4 55 15 14 192.5 526 23.3→25–70 4 1.61–1.27 3 25 2 0.78; 1.27 2

5 19 22 21 99.75 625.75 10→12.9–70 5 1.40–3.68 4 15.7 2 1.53; 0.65 3

6 174 25 24 1044 1669.75 23.3→50.1–70
6 1.038 4 52.7–70 3

7 16 26 25 100 1769.75 37 6 1.035 4 37 3

Silver-Meal (S-M) finds a solution:
Q1,1 = 223, Q2,7 = 10, Q3,11 = 123, Q4,15 = 55, Q5,22 = 19, and Q6,25 = 190; with a total

cost: 70 + 11 + 70 + 70 + 70 + 70 + 70 + 4 = 435.
Least Unit Cost (LUC) finds a solution:
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Q1,1 = 233, Q2,7 = 133, Q3,15 = 55, and Q4,22 = 209; with a total cost: 70 + 11 + 70 +
123 + 70 + 70 + 130.5 + 16 = 560.5.

Reformulated Silver-Meal (rSM) finds a solution:
Q1,1 = 233, Q2,11 = 197, and Q3,25 = 190; with a total cost: 70 + 26 + 70 + 55 + 52.25 +

70 + 4 = 347.25.
Part-Period Balancing (PPB) finds a solution:
Q1,1 = 233, Q2,11 = 178, Q3,22 = 193, and Q4,26 = 16; with a total cost: 70 + 26 + 70 +

55 + 70 + 130.5 + 70 = 491.5. However, the odd end can easily be adjusted to Q1,1 = 233,
Q2,11 = 178, and Q3,22 = 209; with a total cost 437.5.

The Wagner-Whitin algorithm finds a solution:
Q1,1 = 233, Q2,11 = 123, Q3,15 = 74, and Q4,25 = 190; with a total cost: 70 + 26 + 70 +

70 + 33.25 + 70 + 4 = 343.25. Normalized to 343.25/0.25 = 1373.
Compared to the examples in Tables 1 and 4, examples in Tables 5 and 6 have small

M-values, i.e., low order costs and/or high inventory holding costs. Solving the problem
in Table 6, with A = 70 and h = 0.025; i.e., M =2800, in our opinion with more realistic
values, we find the following solutions:

S-M: Q1,1 = 233, Q2,11 = 197, and Q3,25 = 190; with a total cost: 223.725.
LUC: Q1,1 = 356 and Q2,15 = 264; with a total cost: 224.575.
rSM, PPB, and Wagner-Whitin: Q1,1 = 430 and Q2,25 = 190; with a total cost: 202.975.

5. Conclusions/Reflections

Literature and textbooks have traditionally not been considered in periods of zero
demand. Today, a construction company and other companies with project-oriented produc-
tion of products and services must satisfy demand for different quantities on different days.
Between the delivery dates, there will be several days without demand. Lot-sizing methods
must adapt to “days of inventory”. Our examples verify the conclusions already formed by
Silver and Miltenburg [8], Bookbinder and Tan [7], and Ho et al. [11]: the traditional way to
present Silver-Meal makes it unsuitable to treat situations with zero demand periods. How-
ever, with a rather simple reformulation, Silver-Meal avoids this problem and calculates the
true least-period cost. What Ho et al. [11] suggest does not calculate the true least-period
cost. If it is a cost per period, the total cost must be divided by all involved and covered
periods. (It is surprising that Ho et al. [11], or their reviewers, did not suggest rSM).

Our examples show that even a reformulated Silver-Meal still has difficulties with
a sharp decline in demand (both S-M and rSM). In such a situation, it would be advantageous
to include an additional constraint to eliminate set-ups covering a very large number of
periods (Axsäter [28]). Otherwise, LUC or PPB may be preferable.

LUC has difficulties with sharply varying demand, especially with low order costs and
high inventory holding costs. Therefore, it may not be a method suitable for a construction
company or something similar with varying demand.

A reformulated Silver-Meal (rSM) avoids the problem S-M has with periods with zero
demand. However, in some circumstances, rSM, like S-M, can stay at a local minimum and
not the true minimum (noticed in Silver et al. [14], p. 212, and the example in Table 4). LUC
is not harmfully affected by periods of zero demand. The same applies for PPB, which, in
our investigation, has favorable characteristics.

The difference between rSM and S-M may look more complicated than it is. The
problem we point to is that textbooks so far tell S-M: calculate a new least period cost for
every period; we say: calculate a new least period cost only for periods with demand. For
example, Segerstedt [12,21], call it Silver-Meal, but update the formulas.

In a practical application, there is generally a “rolling horizon”; when we have decided
the first order quantity, we soon have new future demand to consider. An optimal solution
only considering what we know presently (for example, in Tables 1, 3, 5 and 6) will
seldom be optimal in the long run (Blackburn and Millen [5]). In a practical situation,
the first necessary quantity is ordered, then after a while, another lot size is necessary to
order, and then there are new future demands to consider. Furthermore, from Silver and
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Miltenburg [8], “In many cases, in actual practice, the demand pattern continues beyond
the planning horizon, and lot sizing is done on a rolling schedule basis. The basic heuristic
can actually outperform the Wagner-Whitin approach in a rolling schedule environment”.
Therefore, heuristics, treated here and in textbooks, will help managers and performers in
industry improve operations. A proper textbook should contain and treat Silver-Meal, Least
Unit Cost, and Part-Period Balancing.

6. Suggested Extensions

We have not found a thorough literature review about what is published about lot
sizing techniques the last 25–30 years, to the best of our knowledge. We have noticed other
literature reviews that do not cover the techniques we treat here. Our target was to focus
on how textbooks present these techniques. One hypothesis is that previous claims about
the importance of lot-sizing techniques for Material Requirements Planning (MRP) were
exaggerated. A forthcoming literature review must cover what is published and should
cover what and how the techniques are used.

Previous studies of which technique is best, now appear obsolete. A future simulation
study is suggested with different M values (=A/h), stochastic demand quantities, and
stochastic periods with frequent zero demand, where these three lot sizing techniques
are competing to show the least total cost. Examined with ANOVA analyses or similar.
Compared to a reformulated Silver-Meal, a not reformulated Silver-Meal would be a loser
in such a study.

Author Contributions: Methodology and investigation, A.S.; investigation and validation, B.A.-J.;
detection and initiative, B.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are thankful for valuable input from reviewers. The authors are
thankful for the input and comments from Edward A. Silver concerning this article, as well as for his
extensive contributions in practical and theoretical operations management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bitran, G.R.; Magnati, T.L.; Horacio, H.Y. Approximation Methods for the Uncapacitated Dynamic Lot Size Problem. Manag. Sci.

1984, 30, 1121–1140. [CrossRef]
2. Peterson, R.; Silver, E.A. Decision System for Inventory Management and Production Planning; John Wiley: New York, NY, USA, 1979.
3. Orlicky, J. Material Requirements Planning; McGraw-Hill: New York, NY, USA, 1975.
4. Smith, D.J. Material Requirements Planning, Chapter 11. In Studies in Operations Management; Hax, A.C., Ed.; North-Holland:

Amsterdam, The Netherlands, 1978.
5. Blackburn, J.D.; Millen, R.A. Heuristic lot-sizing performance in a rolling-schedule environment. Decis. Sci. 1980, 11, 691–701.

[CrossRef]
6. Saydam, C.; Evans, J.R. A comparative performance analysis of the Wagner-Whitin algorithm and lot-sizing heuristics. Comput.

Ind. Eng. 1990, 18, 91–93. [CrossRef]
7. Bookbinder, J.H.; Tan, J.-Y. Two lot-sizing heuristics for the case of deterministic time-varying demands. Int. J. Oper. Prod. Manag.

1985, 5, 30–42. [CrossRef]
8. Silver, E.A.; Miltenburg, J. Two modifications of the Silver Meal Lot Sizing Heuristic. INFOR Inf. Syst. Oper. Res. 1984, 22, 56–69.

[CrossRef]
9. Pujawan, I.N. The effect of lot sizing rules on order variability. Eur. J. Oper. Res. 2004, 159, 617–635. [CrossRef]
10. Govindan, K. The optimal replenishment policy for time-varying stochastic demand under vendor managed inventory. Eur. J.

Oper. Res. 2015, 242, 402–423. [CrossRef]
11. Ho, J.C.; Chang, Y.-L.; Solis, A.O. Two Modifications of the Least Cost per Period Heuristic for Dynamic Lot-Sizing. J. Oper. Res.

Soc. 2006, 57, 1005–1013. [CrossRef]
12. Segerstedt, A. Logistik Med Fokus på Material-Och Produktionsstyrning; Liber: Malmö, Sweden, 1999. (In Swedish)
13. Silver, E.A.; Meal, H.C. A heuristic for selecting lot size requirements for the case of deterministic time-varying demand rate and

discrete opportunities for replenishment. Prod. Inventory Manag. 1973, 14, 210–222.

https://doi.org/10.1287/mnsc.30.9.1121
https://doi.org/10.1111/j.1540-5915.1980.tb01170.x
https://doi.org/10.1016/0360-8352(90)90044-M
https://doi.org/10.1108/eb054746
https://doi.org/10.1080/03155986.1984.11731912
https://doi.org/10.1016/S0377-2217(03)00419-3
https://doi.org/10.1016/j.ejor.2014.09.045
https://doi.org/10.1057/palgrave.jors.2602076


Axioms 2023, 12, 661 12 of 12

14. Silver, E.A.; Pyke, D.F.; Peterson, R. Inventory Management and Production Planning and Scheduling, 3rd ed.; John Wiley & Sons:
New York, NY, USA, 1998.

15. Axsäter, S. Inventory Control, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2015.
16. Nahmias, S. Production and Operations Analysis, 6th ed.; McGraw-Hill/Irwin: Boston, MA, USA, 2013.
17. Olhager, J. Produktionsekonomi; Studentlitteratur: Lund, Sweden, 2013. (In Swedish)
18. Günter, H.-O.; Tempelmeier, H. Produktion und Logistik, 7th ed.; Springer: Berlin/Heidelberg, Germany, 2007. (In German)
19. Domínguez-Machuca, J.A.; García, S.; Domínguez, M.A.; Ruiz, A.; Álvarez, M.J. Dirección de Operaciones. Aspectos Tácticos y

Operativos en la Producción y Los Servicios; McGraw-Hill: Madrid, Spain, 1995. (In Spanish)
20. Gorham, T. Dynamic order quantities. Prod. Inventory Manag. J. 1968, 9, 75–79.
21. Segerstedt, A. Logistik Med Fokus på Material-Och Produktionsstyrning, 2nd ed.; Liber: Malmö, Sweden, 2008. (In Swedish)
22. DeMatteis, J.J. An economic lot-sizing technique, I: The part-period algorithm. IBM Syst. J. 1968, 7, 30–38. [CrossRef]
23. Harris, F.W. How many parts to make at once. Fact. Mag. Manag. 1913, 10, 135–136, 152. [CrossRef]
24. Holmbom, M.; Segerstedt, A. Economic Order Quantities in Production: From Harris to Economic Lot Scheduling Problems. Int.

J. Prod. Econ. 2014, 155, 82–90. [CrossRef]
25. Nilsson, A.; Segerstedt, A.; van der Sluis, E. A new iterative heuristic to solve the Joint Replenishment Problem using a spread-

sheet technique. Int. J. Prod. Econ. 2007, 108, 399–405. [CrossRef]
26. Abdul-Jalbar, B.; Segerstedt, A.; Sicilia, J.; Nilsson, A. A new heuristic to solve the One-warehouse N-retailer problem. Comput.

Oper. Res. 2010, 37, 265–272. [CrossRef]
27. Wagner, H.M.; Whitin, T. Dynamic version of the economic lot size model. Manag. Sci. 1958, 5, 89–96. [CrossRef]
28. Axsäter, S. Worst case performance for lot sizing heuristics. Eur. J. Oper. Res. 1982, 9, 339–343. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1147/sj.71.0030
https://doi.org/10.1287/opre.38.6.947
https://doi.org/10.1016/j.ijpe.2014.03.024
https://doi.org/10.1016/j.ijpe.2006.12.022
https://doi.org/10.1016/j.cor.2009.04.012
https://doi.org/10.1287/mnsc.5.1.89
https://doi.org/10.1016/0377-2217(82)90176-X

	Introduction 
	A numerical Week-Example 
	Solution with Silver-Meal (Silver and Meal B13-axioms-2394308) 
	Solution with Least Unit Cost (Gorham B20-axioms-2394308) 
	Solution with Reformulated Silver-Meal (Lägsta Periodkostnad) (Segerstedt B12-axioms-2394308,B21-axioms-2394308) 
	Solution with Part-Period Balancing (DeMatteis B22-axioms-2394308) 
	Solution with Dynamic Programming (Wagner and Whitin B27-axioms-2394308) 

	A numerical Day-Example 
	Silver and Miltenburg’s Examples 
	Conclusions/Reflections 
	Suggested Extensions 
	References

