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Abstract: We investigate fixed points for p cyclic maps by introducing a new notion of p–cyclic infi-
mum summing maps and a generalized best proximity point for p–cyclic maps. The idea generalizes
some results about best proximity points in order to widen the class of sets and maps for which we
can ensure the existence and uniqueness of best proximity points. The replacement of the classical
notions of best proximity points and distance between the consecutive set arises from the well-known
group traveling salesman problem and presents a different approach to solving it. We illustrate
the new result with a map that does not satisfy the known results about best proximity maps for
p–cyclic maps.
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1. Introduction

The Banach contraction principle is a fundamental result in fixed point theory. Fixed
point theory is a crucial technique when solving equations of the Tx = x kind for self-
mappings T : A → A, defined on subsets of metric or normed spaces. The problem of
finding a fixed point Tx = x may be considered a particular case of the optimization task
of finding min{ρ(Tx, x) : x ∈ A}, where (X, ρ) is a metric space and T : A ⊆ X → A is a
self-map. The problem min{ρ(Tx, x) : x ∈ A} can be investigated for self-maps that lack a
fixed point.

The idea to investigate the existence and uniqueness of fixed points for non-self-maps
was introduced in [1], where the authors considered the so-called cyclic maps T(A) ⊆ B and
T(B) ⊆ A, where A, B ⊂ X. A non-self-mapping T : A→ B may lack a fixed point. We can
alter the fixed points problem Tx = x to the optimization problem min{ρ(Tx, x) : x ∈ A},
where (X, ρ) is a metric space and T : A ∪ B→ A ∪ B be a cyclic map, i.e., we are searching
for an element x, which is in some sense closest to Tx. The best proximity point results
are relevant in this perspective. The notion of a best proximity point was initiated in [2].
A sufficient condition for the uniqueness of the best proximity points in uniformly convex
Banach spaces is given in [2]. It turns out that many of the contractive-type conditions that
are investigated for fixed points ensure the existence of the best proximity points. Some
results of this kind are obtained in [3–9], which do not even exhaust the publications in
the current year 2023. Some other relevant results on the topic can be found in [10,11].
The uniform convexity of the underlying Banach space is replaced by the so called UC and
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UC∗ properties in [12,13] and the best proximity points’ results are obtained. Connections
between uniform convexity, UC and UC∗ properties are investigated in [14].

The optimization problem min{ρ(Tx, x) : x ∈ A ⊂ X} can be considered as the gener-
alized traveling salesman problem (GTSP) [15–25], which extends the traveling salesperson
problem (TSP) [26,27]). Let us recall (TSP). We use a list of cities and distances between
each pair of them. What is the shortest possible route that visits each city exactly once and
returns to the origin city? Distribute the cities Ai, i = 1, . . . , p and Bj, j = 1, . . . , q into two
sets A = {Ai, i = 1, . . . , p} and B = {Bj, j = 1 . . . , q}, called clusters. The (GTSP) or group
TSP aimed to find the shortest distance min{ρ(Ai, Bj) : Ai ∈ A, Bj ∈ B} (Figure 1).

Figure 1. Generalized TSP or group TSP.

This can be interpreted as a problem for three distributes: one collects all the goods
produced in the set A and delivers them to a city Ai, the second one, whenever they arrive
at a city Bj, will distribute them in the hole set B, and the third one will transport them
from point Ai to point Bj. This can be interpreted as two clusters of port at the sea shore, so
that there is no a ground route from A to B. The first two distributors are working with
trucks and the third one with ships.

We may generalize the above example by replacing the clusters A and B with their
convex hulls convA and convB [18,28,29]. In this case, the following is possible (Figure 2)

min{ρ(a, b) : a ∈ convA, b ∈ convB} < min{ρ(Ai, Bj) : Ai ∈ A, Bj ∈ B}.
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Figure 2. Generalized TSP or group TSP.

If we generalize this problem to p clusters Xi, i = 1, . . . p, where each Xi is a convex
hull of some points Y(i)

j , j = 1, . . . qi, we can obtain the following optimization problem:

min{ρ(xp, x1) +
p−1

∑
i=1

ρ(xi, xi+1) : xi ∈ Xi},

which is not the case for the best proximity points for p–cyclic maps investigated to date,
which are introduced in [30].

One illustration of such a model is the widely investigated Unmanned Aerial Vehicle
(UAV) and/or unmanned surface vehicle (USV), or UAV and USV simultaneously [31–33].
We can consider (Figure 3) that there are four convex sets X, Y, W and Z with sensors, and
four UAVs will collect the information. After collecting the data, the UAVs will transfer
them to a fifth UAV, so that the path traveled by the fifth UAV should be the shortest.

A generalization, proposed in [30], is the introduction of p–cyclic maps. This idea have
been developed throughout the years [30,34,35]. It is interesting that whenever p–cyclic
maps have been considered, using the ideas from [30] the distances between consecutive
sets are equal [11,30,34,35]. A new type of condition that warrants the existence and the
uniqueness of the best proximity points for sets with different distances between them is
presented in [36–39]. This new type of a map has been called a p–summing map.

It is shown [36] that these new kind of maps are a generalization of the p–cyclic maps
introduced in [30,34].

We will show in the next section that a wide class of p–cyclic maps is not covered by
the notions introduced in [30] nor in [36], but can be fitted to the convex hull cluster model
of the TSP. Therefore, we will present a generalization of the p–summing maps [36], which
will cover the p–cyclic contraction maps [30] and p–summing maps [36].
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Figure 3. Generalized TSP or group TSP.

The main goal of the present study is to expand the class of convex sets for which we
can solve optimization-type problems with the help of a generalization of the concept of
best proximity points.

2. Materials and Methods

In this section, we provide some basic definitions and concepts that are useful and
related to the best proximity points. We will denote, using N and R, the sets of all natural
numbers and the set of all real numbers, respectively. We will denote, using (X, ρ) and
(X, ‖ · ‖), a metric space and a normed space, respectively. We will denote, using SX and
BX , the unit sphere and unit ball, respectively, in the normed space (X‖ · ‖). Let (X, ρ) be
a metric space a distance between two subsets A, B ⊂ X, defined by inf{ρ(x − y) : x ∈
A, y ∈ B} and denoted with dist(A, B). Whenever we consider a normed space (X, ‖ · ‖),
we will consider the distance in it to be generated by the norm ‖ · ‖, i.e., ρ(x, y) = ‖x− y‖.

Definition 1 ([1,2,30]). Let A1, A2, . . . , Ap be non-empty subsets of an arbitrary set X. A map
T : ∪p

i=1 Ai → ∪
p
i=1 Ai is said to be a p–cyclic map if T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p, where we use

the convention Ap+1 = A1.

If p = 2, we obtain the notion of cyclic maps, as introduced in [1]. The notion of best
proximity points for cyclic maps was later studied in [2]. The notion of p–cyclic maps for
arbitrary p was introduced in [30].

Definition 2 ([2,30]). Let A1, A2, . . . , Ap be non-empty subsets of a metric space (X, ρ) and let
T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic map. The map T is called a p–cyclic contraction, if for some

k ∈ (0, 1), the inequalities

ρ(Tx, Ty) ≤ kρ(x, y) + (1− k)dist(Ai, Ai+1)

hold for any x ∈ Ai, y ∈ Ai+1 and 1 ≤ i ≤ p.
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Definition 3 ([2,30]). Let A1, A2, . . . , Ap be non-empty subsets of a metric space (X, ρ) and let
T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic map. A point ξ ∈ Ai is said to be the best proximity point of

T in Ai if ρ(ξ, Tξ) = dist(Ai, Ai+1).

Definitions 1 and 3 are given for two sets A1 and A2 in [2], and for p–sets in [30].

Definition 4 ([40], p. 429). Let (X, ‖ · ‖) be a Banach space. The functions δ(X,‖·‖) : [0, 2] →
[0, 1], defined by

δ(X,‖·‖)(ε) = inf
{

1− ‖x+y‖
2 : x, y ∈ BX , ‖x− y‖ ≥ ε

}
= inf

{
1− ‖x+y‖

2 : x, y ∈ SX , ‖x− y‖ = ε
}

are called the modulus of convexity.

Definition 5 ([40], p. 429). Let (X, ‖ · ‖) be a Banach space. If δ(X,‖·‖)(ε) > 0 for all ε ∈ (0, 2]
the space (X, ‖ · ‖) is called uniformly convex.

When there is no danger of misunderstanding, we will use δ(ε) instead of δ(X,‖·‖)(ε).

It is easy to observe that the inequality δ(‖x − y‖) ≤ 1 − ‖x + y‖
2

holds for any
x, y ∈ BX .

An extensive study of the Geometry of Banach spaces can be found in [40–42].
It is proved in [30] that if a map is a p–cyclic contraction and the underlying space

(X, ‖ · ‖) is a uniformly convex Banach space, then it has best proximity points for every
set Ai, 1 ≤ i ≤ p.

Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . , p. We denote

P(A1, . . . , Ap) =
p

∑
i=1

dist(Ai, Ai+1),

where we use the convention Ap+1 = A1.
We will use the notation P = P(A1, . . . , Ap) to fit some of the formulas into the text field.

Definition 6 ([36]). Let Ai, i = 1, . . . , p be subsets of a metric space (X, ρ). A map T : ∪p
i=1 Ai →

∪p
i=1 Ai will be called a p–cyclic summing contraction if it is a p–cyclic map and there exists

k ∈ (0, 1), such that, for any xi ∈ Ai, i = 1, . . . , p there holds the inequality

p−1

∑
i=1

ρ(Txi, Txi+1) + ρ(Txp, Tx1) ≤ k

(
p−1

∑
i=1

ρ(xi, xi+1) + ρ(xp, x1)

)
+ (1− k)P. (1)

Whenever we consider a p–cyclic contraction [30] or a p–cyclic summing contrac-
tion [36] and the underlying space (X, ‖ · ‖) be a uniformly convex Banach space, it follows
that the if ξ is the best proximity point of T in Ai; therefore, Tξ is the best proximity point
of T in Ai+1.

Let us consider an example illustrated in Figure 4. Let T : ∪3
i=1 Ai → ∪3

i=1 Ai
be a 3–cyclic map. If T is a p–cyclic contraction, then dist(A1, A2) = dist(A2, A3) =
dist(A3, A1) [30].
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Figure 4. A p–cyclic contraction.

Let us consider an example illustrated in Figure 5. Let T : ∪3
i=1 Ai → ∪3

i=1 Ai. If T is
a 3–cyclic contraction, then, according to [30], dist(A1, A2) = dist(A2, A3) = dist(A3, A1)
should hold, which is not the case. If there is a p–cyclic summing contraction, then it is
possible to construct map T [36].

Figure 5. A p–cyclic summing contraction.

Let us consider an example illustrated in Figure 6. Let T : ∪3
i=1 Ai → ∪3

i=1 Ai be a
3–cyclic map. We see that ξ is a best proximity point of T in A1, i.e., ρ(ξ, Tξ) = dist(A1, A2),
but Tξ is not a best proximity point of T in A2, i.e., ρ(Tξ, T2ξ) > ρ(η, Tη) = dist(A2, A3).
This example shows that in order to obtain the best proximity point results for p–cyclic
maps, it is not sufficient to construct a specific p–cyclic maps for arbitrary positioned subsets
in the space (X, ρ), but the positioning of the sets Ai in the underlying space is crucial.
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Figure 6. A p–cyclic summing contraction.

We will try to provide a contractive condition so that ρ(ξ, Tξ)+ ρ(Tξ, T2ξ)+ ρ(T2ξ, T3ξ)
is equal to a constant depending on the sets Ai, i = 1, . . . , p, for a unique ξ ∈ A1, to hold
ξ = T3ξ, and whenever the sets are of the kind from Figures 4 or 5, the investigated
mapscoincide with the p–cyclic contractions or p–cyclic summing contractions, i.e., in this
case, the point ξ ∈ Ai is a best proximity point of T in Ai in the sense of [2,30].

The next two lemmas, established in [2], are crucial in the investigation of best proxim-
ity points for p–cyclic maps.

Lemma 1 ([2]). Let (X, ‖ · ‖) be a uniformly convex Banach space. Let A ⊂ X be a non-empty,
closed, convex subset, and B ⊂ X be a non-empty, closed subset. Let {xn}∞

n=1 and {zn}∞
n=1 be

sequences in A and {yn}∞
n=1 be a sequence in B satisfying

1. lim
n→∞

‖zn − yn‖ = dist(A, B)

2. for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0,

‖xm − yn‖ ≤ dist(A, B) + ε.

Then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds ‖xm − zn‖ ≤ ε.

Lemma 2 ( [2]). Let (X, ‖ · ‖) be a uniformly convex Banach space. Let A ⊂ X be a non-empty,
closed, convex subset, and B ⊂ X be a non-empty, closed subset. Let {xn}∞

n=1 and {zn}∞
n=1 be

sequences in A and {yn}∞
n=1 be a sequence in B satisfying

1. lim
n→∞

‖xn − yn‖ = dist(A, B)

2. lim
n→∞

‖zn − yn‖ = dist(A, B).

Then lim
n→∞

‖xn − zn‖ = 0.

We will use the well-known inequality, which is a corollary of the triangle inequality
for the metric function ρ(·, ·).

Lemma 3 ([43], p. 3). Let (X, ρ) be a metric space and a, b, c ∈ X. Then,

ρ(a, b) ≥ ρ(a, c)− ρ(c, b).
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3. Results

Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . , p. We denote

S
(
{xi}

p
i=1

)
=

p

∑
i=1

ρ(xi, xi+1) = ρ(xp, x1) +
p−1

∑
i=1

ρ(xi, xi+1),

where xi ∈ Ai, i = 1, . . . , p + 1 and we use the convention Ap+1 = A1 and xp+1 = x1.
Whenever we consider the sets Ai ⊂ X, i = 1, . . . , p we will assume that we consider

them as an ordered p–tuple (A1, . . . , Ap).
If it is more convenient for the reader, we will use the notation

S(x1, . . . , xp) = S
(
{xi}

p
i=1

)
.

Definition 7. Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . , p. Let us denote

D(A1, A2, ..., Ap) = inf{S(x1, . . . , xp) : xi ∈ Ai, i = 1, . . . p}.

We will call D(A1, A2..., Ap) a distance between the sets A1, . . . , Ap in the order (A1, A2, ..., Ap).

If we consider 4 sets (A1, A2, A3, A4) (Figure 7), then D(A1, A2, A3, A4) is the infimum
of the perimeter of the quadrilateral x1x2x3x4.

Figure 7. The infimum perimeter of the quadrilateral x1x2x3x4.

We will use the notation D = D(A1, A2, ..., Ap) to fit some of the formulas into the
text field.

Definition 8. Let A1, A2, . . . , Ap be non-empty subsets of a metric space (X, ρ) and let T :
∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic map. A point ξ ∈ Ai is said to be a generalized best proximity

point of T in Ai if S(ξ, Tξ, . . . , Tp−1ξ) = D(A1, . . . , Ap).

There holds D(A1, . . . , Ap) = D(Ai, Ai+1, . . . , Ap, A1, . . . , Ai−1).
A crucial element in the investigation of best proximity points is the iterated sequence

{xn}∞
n=1. For an arbitrary chosen x0 ∈ Ai, we define x1 = Tx0. If we have already defined

xn, then we use xn+1 = Txn. Without loss of generality, we can assume that x0 ∈ A1,
as long as we can always enumerate the sets Ai so that x0 ∈ A1.
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Let (X, ρ) be a metric space and Ai ⊂ X where i = 1, . . . , p. Let {xi}
p
i=1 and {yi}

p
i=1 be

such that xi, yi ∈ Ai for i = 1, . . . , p. Let us denote

S
(
{xi}

p
i=1, {yi}

p
i=1

)
=

p

∑
i=1

ρ(xi, yi+1) = ρ(xp, y1) +
p−1

∑
i=1

ρ(xi, yi+1),

using the convention yp+1 = y1.
With the following definitions, we will establish the concept of a p–cyclic infimum

summing contraction.

Definition 9. Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . p. Let T : ∪p
i=1 Ai → ∪

p
i=1 Ai

be a p–cyclic map. We say that T is a p–cyclic infimum summing contraction if, for any ai, bi ∈ Ai,
the inequality

S
(
{Tai}

p
i=1, {Tbi}

p
i=1

)
≤ λS

(
{ai}

p
i=1, {bi}

p
i=1

)
+ (1− λ)D(A1, . . . Ap) (2)

holds for some λ ∈ [0, 1).

Sometimes, it will be easier to apply (2) in the form

S
(
{Tai}

p
i=1, {Tbi}

p
i=1

)
− D ≤ λ

(
S
(
{ai}

p
i=1, {bi}

p
i=1

)
− D

)
. (3)

Theorem 1. Let (X, ‖ · ‖) be a uniformly convex Banach space, and let Ai ⊂ X, i = 1, . . . p and
T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing contraction. Then:

1. There exists αi ∈ Ai, i = 1, . . . p, such that for each arbitrarily chosen ai ∈ Ai, i = 1, . . . p
there holds

lim
n→∞

Tpnai = αi.

2. αi is a unique fixed point of Tp in Ai for every i = 1, . . . p.
3. αi+1 = Tαi for every i = 1, . . . p, where we use the convention αp+1 = α1.
4. S(α1, . . . , αk) = D(A1, . . . , Ap), i.e., αi is a generalized best proximity point of T in Ai.

4. Auxiliary Results

We will prove some auxiliary results that will be needed for the proof of Theorem 1.

Lemma 4. Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . p. Let T :
⋃p

i=1 Ai →
⋃p

i=1 Ai be
a p–cyclic infimum summing contraction and let ai, bi ∈ Ai for i = 1, . . . p be arbitrarily chosen.
Then, the following inequality

S
(
{Tpnai}

p
i=1, {Tpnbi}

p
i=1

)
≤ λpnS

(
{ai}

p
i=1, {bi}

p
i=1

)
+ (1− λpn)D(A1, . . . , Ap) (4)

holds for all arbitrary chosen ai, bi ∈ Ai.

Proof. By applying (2) three times, we can obtain the chain of inequalities

S
(
{Tpnai}

p
i=1, {Tpnbi}

p
i=1

)
− D ≤ λ(S

(
{Tpn−1ai}

p
i=1, {Tpn−1bi}

p
i=1

)
− D)

≤ λ2(S
(
{Tpn−2ai}

p
i=1, {Tpn−2bi}

p
i=1

)
− D)

≤ λ3(S
(
{Tpn−3ai}

p
i=1, {Tpn−3bi}

p
i=1

)
− D)

. . . . . . . . . . . . . . . . . . . .
≤ λpn(S

(
{ai}

p
i=1, {bi}

p
i=1

)
− D).
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Corollary 1. Let (X, ρ) be a metric space and Ai ⊂ X, i = 1, . . . p. Let T : ∪p
i=1 Ai → ∪

p
i=1 Ai be

a p–cyclic infimum summing contraction and x ∈ ⋃p
i=1 Ai be arbitrarily chosen. Then, the inequal-

ities

S
({

T(n+m+i)x
}p−1

i=0

)
≤ λnS

({
T(m+i)x

}p−1

i=0

)
+ (1− λn)D(A, . . . , Ap) (5)

and

S(T(n+1)px, Tp+1x, Tp+2x..., T2p−1x) ≤ λpS(Tnpx, Tx, T2x..., Tp−1x)+ (1−λp)Dhold. (6)

Lemma 5. Let (X, ρ) be a metric space, Ai ⊂ X, i = 1, . . . , p be nonempty convex subsets. Let
T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing contraction. Then, for every x ∈ ∪p

i=1 Ai,
the sequence {Tpnx}∞

n=0 is a bounded one.

Proof. Without loss of generality, we can assume that x ∈ A1. From (6), it follows that

S(T(n+1)px, Tp+1x, Tp+2x..., T2p−1x) ≤ λpS(Tnpx, Tx, T2x..., Tp−1x) + (1− λp)D,

i.e.,

S1 = ρ(T(n+1)px, Tp+1x) + ρ(T(n+1)px, T2p−1x) +
p−2

∑
i=1

ρ(Tp+ix, Tp+i+1x)

≤ λp(ρ(Tnpx, T1x) + ρ(Tnpx, Tp−1x) +
p−2

∑
i=1

ρ(Tix, Ti+1x)) + (1− λp)D.

(7)

From Lemma 3, we have

ρ(Tp+ix, Tp+i+1x) ≥ ρ(Tp+ix, Ti+1x)− ρ(Ti+1x, Tp+i+1x)
ρ(Tp+ix, Ti+1x) ≥ ρ(Ti+1x, Tix)− ρ(Tix, Tp+ix),

(8)

i.e.,
ρ(Tp+ix, Tp+i+1x) ≥ ρ(Ti+1x, Tix)− ρ(Tix, Tp+ix)− ρ(Ti+1x, Tp+i+1x) (9)

and
ρ(T(n+1)px, Tp+1x) ≥ ρ(T(n+1)px, Tx)− ρ(Tx, Tp+1x)

ρ(T(n+1)px, T2p−1x) ≥ ρ(T(n+1)px, Tp−1x)− ρ(Tp−1x, T2p−1x).
(10)

Let us put C = 2
p−1

∑
i=1

ρ(Tp+ix, Tix). From (7), (9) and (10); it follows that

S2 = ρ(T(n+1)px, Tx) + ρ(T(n+1)px, Tp−1x) +
p−2

∑
i=1

ρ(Tix, Ti+1x)− C

≤ λp(ρ(Tnpx, Tx) + ρ(Tnpx, Tp−1x) +
p−2

∑
i=1

ρ(Tix, Ti+1x)) + (1− λp)D,

i.e.,

S(T(n+1)px, Tx, T2x..., Tp−1x) ≤ λpS(Tnpx, Tx, T2x..., Tp−1x) + (1− λp)D + C. (11)
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By applying (11) n− 1 times, we can obtain the chain of inequalities

S3 = S(Tnpx, Tx, T2x..., Tp−1x)
≤ λpS(T(n−1)px, Tx, T2x..., Tp−1x) + (1− λp)D + C
≤ λ2pS(T(n−2)px, Tx, T2x..., Tp−1x) + (1− λ2p)D + C + λ2pC
≤ λ3pS(T(n−3)px, Tx, T2x..., Tp−1x) + (1− λ3p)D + C + λ2pC + λ3pC

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤ λ(n−1)pS(Tpx, Tx, T2x..., Tp−1x) + (1− λ(n−1)p)D + C
1− λ(n−1)p

1− λp

≤ S(Tpx, Tx, T2x..., Tp−1x) + C
1

1− λp .

(12)

From the definition of the function S, we can obtain

S(Tnpx, Tx, T2x..., Tp−1x) = ρ(Tnpx, Tx) + ρ(Tnpx, Tp−1x) +
p−2

∑
i=1

ρ(Tix, Ti+1x)

and

S(Tpx, Tx, T2x..., Tp−1x) = ρ(Tpx, Tx) +
p−1

∑
i=1

ρ(Tix, Ti+1x).

Consequently, by (12), we obtain the inequality

ρ(Tnpx, T1x) + ρ(Tnpx, Tp−1x) ≤ ρ(Tpx, Tx) + ρ(Tpx, Tp−1x) + C
1

1− λp . (13)

As far as ρ(Tpx, Tx) + ρ(Tpx, Tp−1x) + C 1
1−λp does not depend on n, it follows that

the sequence {Tpnx}∞
n=1 is a bounded one.

Let (X, ρ) be a metric space and xi, yi ∈ X, where i = 1, . . . p. Let us use the notations

s
(

x1, y1, {xi}
p
i=2, {yi}

p
i=2

)
= S

(
{xi}

p
i=1, {yi}

p
i=1

)
= ρ(xp, y1) +

p−1

∑
i=1

ρ(xi, yi+1)

and
s
(

x1, y1, {xi}
p
i=2

)
= s
(

x1, y1, {xi}
p
i=2, {xi}

p
i=2

)
.

Lemma 6. Let (X, ρ) be a metric space and Ai ⊂ X, where i = 1, . . . p. Let ε > 0 and there are
x, y ∈ A1, ai ∈ Ai for i = 1, . . . p, such that the inequality

max
{

s
(

x, y, {ai}
p
i=2

)
, s
(

y, x, {ai}
p
i=2

)}
≤ D(A1, . . . , Ap) + ε

holds true. Then, there holds

D(A1, . . . , Ap)− ε ≤ min
{

s
(

x, y, {ai}
p
i=2

)
, s
(

y, x, {ai}
p
i=2

)}
.

Proof. From the definition of D(A1, . . . , Ap), it follows that

D(A1, . . . , Ap) ≤ S(x, a2, a3, . . . , ap) and D(A1, . . . , Ap) ≤ S(y, a2, a3, . . . , ap), (14)

i.e.,
S(x, a2, a3, . . . , ap) + S(y, a2, a3, . . . , ap) ≥ 2D(A1, . . . , Ap). (15)
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Let us put s(x) = s
(

x, y, {ai}
p
i=2

)
and s(y) = s

(
y, x, {ai}

p
i=2

)
. Using the introduced

notations, we have

s(x) = s
(

x, y, {ai}
p
i=2

)
= ρ(x, a2) + ρ(y, ap) +

p−1

∑
i=2

ρ(ai, ai+1)

and

s(y) = s
(

y, x, {ai}
p
i=2

)
= ρ(y, a2) + ρ(x, ap) +

p−1

∑
i=2

ρ(ai, ai+1).

It is easy to observe that

s(x) + s(y) =

(
ρ(x, a2) + ρ(y, ak) +

p−1

∑
i=2

ρ(ai, ai+1)

)

+

(
ρ(y, a2) + ρ(x, ak) +

p−1

∑
i=2

ρ(ai, ai+1)

)

=

(
ρ(x, a2) + ρ(x, ak) +

p−1

∑
i=2

ρ(ai, ai+1)

)

+

(
ρ(y, a2) + ρ(y, ak) +

p−1

∑
i=2

ρ(ai, ai+1)

)
= S(x, a2, a3, . . . , ap) + S(y, a2, a3, . . . , ap) ≥ 2D(A1, . . . , Ap).

(16)

Let us assume that
s(y) < D(A1, . . . , Ap)− ε, (17)

then, from (16), it follows that s(x) > D(A1, . . . , Ap) + ε, which is a contradiction, and thus
s(x) > D(A1, . . . , Ap)− ε.

Using similar arguments, we can obtain that s(y) > D(A1, . . . , Ap)− ε.

Lemmas 1 and 2 of Eldred and Veeramani are crucial in obtaining results about the
best proximity points. We will need generalizations of these lemmas in order to obtain
similar results about p–cyclic infimum summing contraction maps.

Lemma 7. (a generalization of Lemma 1) Let (X, ‖ · ‖) be a uniformly convex Banach space,
Ai ⊂ X i = 1, . . . p and A1 be a convex set. Let {αn}∞

n=1, {βn}∞
n=1 ⊂ A1 and {ai

n}∞
n=1 ⊂ Ai for

i = 2, . . . p. If there hold

lim
n→∞

s
(

αn, βn, {ai
n}

p
i=2

)
= D(A1, . . . , Ap)

lim
n→∞

s
(

βn, αn, {ai
n}

p
i=2

)
= D(A1, . . . , Ap)

(18)

then limn→∞(‖αn − βn‖) = 0.

Proof. From (16), we have the equality

s
(

αn, βn, {ai
n}

p
i=2

)
+ s
(

βn, αn, {ai
n}

p
i=2

)
= S(αn, a2

n, ...ak
n) + S(βn, a2

n, ...ak
n). (19)

By (18) and (19), we can obtain that

lim
n→∞

(
S
(

αn, a2
n, ...ap

n

)
+ S

(
βn, a2

n, ...ap
n

))
= 2D(A1, . . . , Ap). (20)

From the definition of D(A1, . . . , Ap), it follows

D(A1, . . . , Ap) ≤ S
(

αn, a2
n, ...ap

n

)
and D(A1, . . . , Ap) ≤ S

(
βn, a2

n, ...ap
n

)
. (21)
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Now, using (20) and (21), we can obtain

lim
n→∞

S
(

αn, a2
n, ...ak

n

)
= D(A1, . . . , Ap)

and
lim

n→∞
S
(

βn, a2
n, ...ak

n

)
= D(A1, . . . , Ap).

Consequently, there is M < +∞, so that

M = sup
n∈N

{
max(‖αn − a2

n‖, ‖βn − a2
n‖, ‖αn − ap

n‖, ‖βn − ap
n‖)
}

.

Let us assume that limn→∞(‖αn − βn‖) = 0 is not true. Then, there exists ε > 0, such
that, for any N ∈ N, there is m > N, so that the inequality ‖αm − βm‖ > ε holds true.

We have that, for every w ∈ X, the following is valid

2 max{‖αm − w‖, ‖βm − w‖} ≥ ‖αm − w‖+ ‖βm − w‖ ≥ ‖αm − βm‖ > ε.

Thus, following the definition of M, it follows that, for every qm ∈ {a2
m, ap

m} holds

ε

2
≤ max{‖αm − qm‖, ‖βm − qm‖} ≤ M.

Using that δ‖·‖ is an increasing function and the uniform convexity of (X, ‖ · ‖), it

follows that there is δ =
ε

2
δ‖·‖

( ε

M

)
> 0, such that

∥∥∥∥ (αm − a2
m) + (βm − a2

m)

2

∥∥∥∥ ≤ max{‖αm − a2
m‖, ‖βm − a2

m‖} − δ

and ∥∥∥∥∥ (αm − ap
m) + (βm − ap

m)

2

∥∥∥∥∥ ≤ max{‖αm − ap
m‖, ‖βm − ap

m‖} − δ.

Thus,

S4 = S
(

αm+βm
2 , a2

m, ...ap
m

)
=

∥∥∥∥αm + βm

2
− a2

m

∥∥∥∥+ ∥∥∥∥αm + βm

2
− ap

m

∥∥∥∥+ p−1

∑
i=2
‖ai

m − ai+1
m ‖

≤ max{‖αm − a1
m‖, ‖βm − a1

m‖}+ max{‖αm − ap
m‖, ‖βm − ap

m‖}

+
p−1

∑
i=2
‖ai

m − ai+1
m ‖ − 2δ.

(22)

Let us put xm =
(

αm, βm, {ai
m}

p
i=2

)
and ym =

(
βm, αm, {ai

m}
p
i=2

)
. From the equality

S5(m) = max
{∥∥αm − a1

m
∥∥,
∥∥βm − a1

m
∥∥}+ max{‖αm − ap

m‖, ‖βm − ap
m‖}

+
p−1

∑
i=2
‖ai

m − ai+1
m ‖

= max
{

s(xm), s(ym), S(αm, a2
m, ...ap

m), S(βm, a2
m, ...ap

m)
}

it follows that
lim

n→∞
S5(m) = D. (23)
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Therefore, from (22) and (23), for a sufficiently large m ∈ N, we obtain

S(
αm + βm

2
, a2

m, ...ak
m) < D(A1, . . . , Ap),

which is a contradiction with the definition of D(A1, . . . , Ap), because, by the convexity of
A1, it holds that αm+βm

2 ∈ A1.

Lemma 8. Let (X, ‖ · ‖) be a uniformly convex Banach space, and Ai ⊂ X, i = 1, . . . , p be
nonempty convex subsets. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing contraction.

Then, for every x ∈ ∪p
i=1 Ai, there holds

lim
n→∞

(‖Tknx− Tkn+kx‖) = 0.

Proof. From Lemma 4, we have

s(Tpnx, Tp(n+1)x, {Tpn+ix}p−1
i=1 ) ≤ λpns(x, Tpx, {Tix}p−1

i=1 ) + (1− λpn)D. (24)

Consequently, from (24), it follows that for any ε > 0, there exists N ∈ N, so that for
all n ≥ N, there holds

s(Tpnx, Tp(n+1)x, {Tpn+ix}p−1
i=1 ) ≤ D(A1, . . . , Ap) + ε. (25)

Using similar arguments, it is proven that

s(Tp(n+1)x, Tpnx, {Tpn+ix}p−1
i=1 ) ≤ λpns(Tpx, x, {Tix}p−1

i=1 ) + (1− λpn)D. (26)

Thus, from (26) it follows that, for any ε > 0, there exists N ∈ N, so that for all n ≥ N
there holds

s(Tp(n+1)x, Tpnx, {Tpn+ix}p−1
i=1 ) ≤ D(A1, . . . , Ap) + ε. (27)

Applying Lemma 6 to (25) and (27), we can obtain that for any ε > 0, there is N ∈ N,
such that for all n ≥ N, the inequalities

D− ε ≤ s(Tpnx, Tp(n+1)x, {Tpn+ix}p−1
i=1 ) ≤ D + ε

and
D− ε ≤ s(Tp(n+1)x, Tpnx, {Tpn+ix}p−1

i=1 ) ≤ D + ε

hold true. Thus, by the arbitrary choice of ε > 0, it follows that

lim
n→∞

s(Tpnx, Tp(n+1)x, {Tpn+ix}p−1
i=1 ) = D(A1, . . . , Ap)

and
lim

n→∞
s(Tp(n+1)x, Tpnx, {Tpn+ix}p−1

i=1 ) = D(A1, . . . , Ap).

Consequently, from Lemma 7, we get

lim
n→∞

‖Tpnx− Tpn+px‖ = 0.



Axioms 2023, 12, 628 15 of 24

Lemma 9. Let (X, ‖ · ‖) be a uniformly convex Banach space, Ai ⊂ X, i = 1, . . . p and A1 be a
convex set. Let {αn}∞

n=1, {βn}∞
n=1 ⊂ A1 and {ai

n}∞
n=1 ⊂ Ai for i = 2, . . . p. Let for any ε > 0

there exists N ∈ N, so that for all m ≥ n ≥ N, the following inequalities

s
(

αn, βm, {ai
n}

p
i=2

)
≤ D(A1, . . . , Ap) + ε

s
(

βm, αn, {ai
n}

p
i=2

)
≤ D(A1, . . . , Ap) + ε

(28)

are true. Then for any ε0 > 0, there exists N0 ∈ N, such that for all m ≥ n ≥ N0, there holds

‖βm − αn‖ ≤ ε0.

Proof. From Lemma 6 and (28), it follows that, for any ε > 0 there hold

D(A1, . . . , Ap)− ε ≤ s
(

αn, βm, {ai
n}

p
i=2

)
≤ D(A1, . . . , Ap) + ε

D(A1, . . . , Ap)− ε ≤ s
(

βm, αn, {ai
n}

p
i=2

)
≤ D(A1, . . . , Ap) + ε.

(29)

By the definitions of the functions s and S, we can write

s
(

αn, βm, {ai
n}

p
i=2

)
+ s
(

βm, αn, {ai
n}

p
i=2

)
= S(αn, a2

n, a3
n, ...ap

n) + S(βm, a2
n, a3

n, ...ap
n). (30)

From the definition of D(A1, . . . , Ap), it follows that the inequalities

S(αn, a2
n, a3

n, ...ap
n) ≥ D(A1, . . . , Ap) and S(βm, a2

n, a3
n, ...ap

n) ≥ D(A1, . . . , Ap) (31)

hold true. Using (29)–(31), we can obtain

2D ≤ S(αn, a2
n, a3

n, ...ap
n) + S(βm, a2

n, a3
n, ...ap

n) ≤ 2(D + ε). (32)

From the inequalities (31) and (32), it follows that

D ≤ S(αn, a2
n, a3

n, ...ap
n) ≤ D + 2ε

D ≤ S(βm, a2
n, a3

n, ...ap
n) ≤ D + 2ε.

(33)

Let us denote xn,m = (αn, βm, {ai
n}

p
i=2) and yn,m = (βm, αn, {ai

n}
p
i=2). Using (29) and

(33), we obtain

max{s(xn,m), s(yn,m), S(αn, a2
n, a3

n, ...ap
n), S(βm, a2

n, a3
n, ...ap

n)} ≤ D + 2ε. (34)

Consequently, there exists M < +∞, such that

M = sup
n,m∈N

(max(‖αn − a2
n‖, ‖βm − a2

n‖, ‖αn − ap
n‖, ‖βm − ap

n‖)).

Let us suppose that there exists ε0 > 0 so that, for any N ∈ N, there are m, n ≥ N and
the inequality

‖βm − αn‖ ≥ ε0 (35)

holds true. Using (35) we have that for every w ∈ X, there holds

2 max{‖αn − w‖, ‖βm − w‖} ≥ ‖αn − w‖+ ‖βm − w‖ ≥ ‖αn − βm‖ ≥ ε0.

By the definition of M it follows that for every qn ∈ {a2
n, ap

n} we can write the inequality

ε0

2
≤ max{‖αn − qn‖, ‖βm − qn‖} ≤ M.
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Using δ‖·‖ as an increasing function and the uniform convexity of (X, ‖ · ‖), it follows

that there is δ =
ε0

2
δ‖·‖

( ε0

M

)
> 0, such that the inequalities

∥∥∥∥ (αn − a2
n) + (βm − a2

n)

2

∥∥∥∥ ≤ max(‖αn − a2
n|, ‖βm − a2

n‖)− δ

and ∥∥∥∥∥ (αn − ak
n) + (βm − ak

n)

2

∥∥∥∥∥ ≤ max(‖αn − ap
n‖, ‖βm − ap

n‖)− δ.

Consequently,

S6 = S
(

αn + βm

2
, a2

n, a3
n, ...ap

n

)
=

∥∥∥ αn+βm
2 − a2

n

∥∥∥+ ∥∥∥ αn+βm
2 − ap

n

∥∥∥+ p−1

∑
i=2
‖ai

n, ai+1
n ‖

≤ max
{
‖αn − a2

n‖, ‖βm − a2
n‖
}
+ max

{
‖αn − ap

n‖, ‖βm − ap
n‖
}

+
p−1

∑
i=2
‖ai

n − ai+1
n ‖ − 2δ.

(36)

For ε1 < δ, there is N1 > 0 so that (34) holds true for any m, n ≥ N1, and thus

max{‖αn − a2
n‖, ‖βm − a2

n‖}+ max{‖αn − ap
n‖, ‖βm − ap

n‖}+
p−1

∑
i=2
‖ai

n − ai+1
n ‖ ≤ D + 2ε1.

Therefore,

∥∥∥∥αn + βm

2
− a2

n

∥∥∥∥+ ∥∥∥∥αn + βm

2
− ak

n

∥∥∥∥+ k−1

∑
i=2
‖ai

n − ai+1
n ‖ ≤ D + 2ε1 − 2δ < D, (37)

which is a contradiction.

Lemma 10. Let (X, ‖ · ‖) be a uniformly convex Banach space, Ai ⊂ X, i = 1, 2, . . . , p be
nonempty convex and closed subsets. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum sum-

ming contraction. Then, for every x ∈ ∪p
i=1 Ai, the sequence {Tpnx}∞

n=0 is a Cauchy one and
limn→∞ Tpnx and x are in one the same subset Ai.

Proof. Without loss of generality, we can assume that x ∈ A1. Let n < m be arbitrary
chosen naturals. From Lemma 4, we can obtain

s
(

Tpnx, Tpmx, {Tpn+ix}p−1
i=1

)
≤ λpns

(
x, Tp(m−n)x, {Tix}p−1

i=1

)
+ (1− λpn)D. (38)

Using Lemma 5, it follows that supn∈N{‖Tp−1x− Tpnx‖} ≤ M. Therefore, there exists

M1 < +∞, such that s
(

x, Tpnx, {Tix}p−1
i=1

)
≤ M1 for every n ∈ N. Consequently,

s
(

Tpnx, Tpmx, {Tpn+ix}p−1
i=1

)
≤ λpn M1 + (1− λpn)D. (39)

From (39) it follows that, for any ε > 0, there is N ∈ N, such that for any m > n ≥ N,
there holds

s
(

Tpnx, Tpmx, {Tpn+ix}p−1
i=1

)
≤ D + ε. (40)
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From Lemma 4, we get

s
(

Tpmx, Tpnx, {Tpn+ix}p−1
i=1

)
≤ λpns

(
Tp(m−n)x, x, {Tix}p−1

i=1

)
+ (1− λpn)D. (41)

By Lemma 5, it follows that supn∈N{‖Tx − Tpnx‖} ≤ M2. Therefore, there exists

M3 < +∞, such that s
(

Tpnx, x, {Tix}p−1
i=1

)
≤ M3 for every n ∈ N. Consequently,

s
(

Tpmx, Tpnx, {Tpn+ix}p−1
i=1

)
≤ λpn M3 + (1− λpn)D. (42)

From (39) it follows that, for any ε > 0, there is N ∈ N, such that, for any m > n ≥ N,
it holds that

s
(

Tpmx, Tpnx, {Tpn+ix}p−1
i=1

)
≤ D + ε. (43)

Applying Lemma 9 to the inequalities (40) and (43), it follows that, for any ε > 0, there
exists N, such that for any m > n ≥ N, there holds ‖Tpmx− Tpnx‖ ≤ ε, i.e, {Tpnx}∞

n=0 is a
Cauchy sequence. From the assumption that T represents p–cyclic maps, it follows that
T(Ai) ⊆ Ai+1 for i = 1, . . . , p− 1, T(Ap) ⊆ A1, i.e., {Tpnx}∞

n=0 and x lie in one and the
same set Ai. From the assumption that the sets Ai, i = 1, . . . , p are closed, it follows that
limn→∞ Tpnx lies in the same set Ai.

Corollary 2. Let (X, ‖ · ‖) be a uniformly convex Banach space; Ai ⊂ X, i = 1, 2, . . . , p are
nonempty convex and closed subsets. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing

contraction. Then, for every x ∈ ∪p
i=1 Ai, the sequences {Tpn+i−1x}∞

n=0 = {Tpn(Ti−1x)}∞
n=0 are

Cauchy ones.

Lemma 11. Let (X, ‖ · ‖) be a uniformly convex Banach space; Ai ⊂ X, i = 1, 2, . . . , p are
nonempty convex and closed subsets. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing

contraction. Then, for every x ∈ ∪p
i=1 Ai, it holds that Tp(limn→∞ Tpnx) = limn→∞ Tpnx.

Proof. Let x ∈ ∪p
i=1 Ai be arbitrarily chosen. Without loss of generality, we can assume that

x ∈ A1. Let xn = Tnx, n ∈ {0} ∪N. From Lemma 10, we have limn→∞ xpn = z for some
z ∈ A1.

From (5), we have

s
(

xpn, xpn, {xpn+i}
p−1
i=1

)
− D ≤ λpn

(
s
(

x0, x0, {xi}k−1
i=1

)
− D

)
and consequently,

lim
n→∞

s
(

xpn, xpn, {xpn+i}
p−1
i=1

)
≤ D(A1, . . . , Ap). (44)

Using the continuity of ‖ · − · ‖ and Corollary 2, we obtain

lim
n→∞

s
(

xpn, xpn, {xpn+i}
p−1
i=1

)
= lim

n→∞
s
(

z, xpn, {xpn+i}
p−1
i=1

)
(45)

Using Corrolary 1, (44) and (45), we obtain

S6 = lim
n→∞

s
(

Tpz, xp(n+1), {xp(n+1)+i}
p−1
i=1

)
≤ λp lim

n→∞
s
(

z, xpn, {xpn+i}
p−1
i=1

)
+ (1− λp)D

= λp lim
n→∞

s(xpn, xpn, {xpn+i}
p−1
i=1 ) + (1− λp)D

≤ D(A1, . . . , Ap).

(46)
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By the continuity of ‖ · − · ‖ and Corollary 2, we obtain

S7 = limn→∞ s
(

Tpz, xp(n+1), {xp(n+1)+i}
p−1
i=1

)
= s

(
Tpz, lim

n→∞
xp(n+1),

{
lim

n→∞
xp(n+1)+i

}p−1

i=1

)
= s

(
Tpz, z,

{
lim

n→∞
xp(n+1)+i

}p−1

i=1

)
.

(47)

From (46) and (47), it follows that

s
(

Tpz, z,
{

lim
n→∞

xp(n+1)+i

}p−1

i=1

)
≤ D(A1, . . . , Ap) (48)

By similar arguments, we can obtain

s
(

z, Tpz,
{

lim
n→∞

xp(n+1)+i

}p−1

i=1

)
≤ D(A1, . . . , Ap). (49)

From (48), (49) and Lemma 6, it follows that∣∣∣∣∣∣∣∣
s
(

Tpz, z,
{

limn→∞ xk(n+1)+i

}k−1

i=1

)
= D

s
(

z, Tpz,
{

limn→∞ xk(n+1)+i

}k−1

i=1

)
= D.

(50)

Using (50) and Lemma (7), we conclude that ‖Tpz− z‖ = 0, i.e., z = Tpz.

Lemma 12. Let (X, ‖ · ‖) be a uniformly convex Banach space, Ai ⊂ X, i = 1, 2, . . . , p be
nonempty convex and closed subsets. Let T : ∪p

i=1 Ai → ∪
p
i=1 Ai be a p–cyclic infimum summing

contraction. Then, there is a unique fixed point of Tp in each of the subsets Ai.

Proof. From Lemmas 10 and 11, it follows that there is at least one fixed point of Tp in each
of the subsets Ai. Let us assume that the fixed point of Tp in A1 is not unique, i.e., there
are x, y ∈ A1, ai ∈ Ai for i = 2, . . . p and Tpx = x, Tpy = y, Tpai = ai. From (4), follow
the inequalities∣∣∣∣∣∣

s
(

x, y, {ai}
p
i=2

)
− D = s

(
Tpx, Tpy, {Tpai}k

i=p

)
− D ≤ λp

(
s
(

x, y, {ai}
p
i=2

)
− D

)
s
(

y, x, {ai}
p
i=2

)
− D = s

(
Tpy, Tpx, {Tpai}

p
i=2

)
− D ≤ λp

(
s
(

y, x, {ai}
p
i=2

)
− D

)
and consequently, we can write the inequalities∣∣∣∣∣∣

s
(

x, y, {ai}
p
i=2

)
≤ D

s
(

y, x, {ai}
p
i=2

)
≤ D.

(51)

From (51) and Lemma 6, we obtain∣∣∣∣∣∣ s
(

x, y, {ai}
p
i=2

)
= D

s(y, x, {ai}i=2 p) = D,
(52)

i.e., ∣∣∣∣∣∣
lim

n→∞
s
(

x, y, {ai}
p
i=2

)
= D

lim
n→∞

s
(

y, x, {ai}
p
i=2

)
= D.

(53)
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from (53) and Lemma 7, it follows that limn→∞ ‖x− y‖ = 0, i.e. ‖x− y‖ = 0. Similarly ,we
can prove that the fixed points in any of the sets Ai, i = 2, . . . p are unique.

5. Proof of the Main Result

Proof of Theorem 1. From Lemma 10 it follows that, for every ai ∈ Ai, i = 1, . . . p, there
exist αi ∈ Ai, such that limn→∞ Tpnai = αi. By Lemmas 11 and 12, it follows that αi is
the unique fixed point of Tp in Ai, i.e., Tpαi = αi. From the inclusions Tαi ∈ Ai+1 and
Tp(Tαi) = Tp+1αi = T(Tpαi) = Tαi we can obtain, that Tαi is the fixed point of Tp in Ai+1.
From the uniqueness of the fixed points, it follows that Tαi = αi+1 and Tαp = α1.

By replacing in (52) x, y and {ai}
p
i=2 with α1, α1 and {αi}p

i=2, respectively, we obtain

D = s
(

α1, α1,
{

αi
}p

i=2

)
= ρ(α1, αk) +

k−1

∑
i=1

ρ(αi, αi+1) = S(α1, α2, α3..., αk).

6. Example

Example 1. Let (R × R, ‖ · ‖2) be a Cartesian plane with the Euclidean norm ‖ · ‖2. Let us
consider the subsets Xi ⊂ R×R, i = 1, 2, 3, 4, defined by

X1 = {(x, y) : y ≥ 1
x , 0 < x}

X2 = {(x, y) : y ≥ − 1
x , x < 0}

X3 = {(x, y) : y ≤ 1
x , x < 0}

X4 = {(x, y) : y ≤ − 1
x , x > 0}

Let T : X1 ∪ X2 ∪ X3 ∪ X4 → X1 ∪ X2 ∪ X3 ∪ X4 be a 4–cyclic infimum summing contrac-
tion, defined by

T(x, y) =


(−y−1

2 , x+1
2 ), (x, y) ∈ X1

(−y−1
2 , x−1

2 ), (x, y) ∈ X2

(−y+1
2 , x−1

2 ), (x, y) ∈ X3

(−y+1
2 , x+1

2 ), (x, y) ∈ X4.

The points (1, 1) ∈ X1, (−1, 1) ∈ X2, (−1,−1) ∈ X3 and (1,−1) ∈ X4 are the unique
fixed points for the map T4 in X1, respectively (Figure 8).

Figure 8. Example 1.

It is easy to see that (1, 1) ∈ X1, (−1, 1) ∈ X2, (−1,−1) ∈ X3 and (1,−1) ∈ X4.
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Let (x, y) ∈ X1; then, T(x, y) = (−y−1
2 , x+1

2 ). From y ≥ 1
x and 0 < x, it follows that

x ≥ − 1
−y and −y < 0, i.e., (−y, x) ∈ X2. From the convexity of the set X2 and (−1, 1) ∈ X2,

it follows that (−y,x)+(−1,1)
2 = (−y−1

2 , x+1
2 ) = T(x, y) ∈ X2, i.e., TX1 ⊆ X2. Using similar

arguments, we can prove that TX2 ⊆ X3, TX3 ⊆ X4 and TX4 ⊆ X1.
It is easy to check that T(1, 1) = (−1, 1), T(−1, 1) = (−1,−1), T(−1,−1) = (1,−1),

T(1,−1) = (1, 1) and T4(1, 1) = (1, 1), T4(−1, 1) = (−1, 1), T4(−1,−1) = (−1,−1),
T4(1,−1) = (1,−1).

Now, we calculate D(X1, X2, X3, X4).
Let a1 = (x1, y1) ∈ X1, a2 = (x2, y2) ∈ X2, a3 = (x3, y3) ∈ X3, a4 = (x4, y4) ∈

X4. Then,

S
(
{ai}4

i=1

)
= ‖a1 − a2‖2 + ‖a2 − a3‖2 + ‖a3 − a4‖2 + ‖a4 − a1‖2

≥ ‖a1 − a2‖∞ + ‖a2 − a3‖∞ + ‖a3 − a4‖∞ + ‖a4 − a1‖∞
≥ |x1 − x2|+ |y2 − y3|+ |x3 − x4|+ |y4 − y1|.

Using consecutively the inequalities x1 > 0; x2 < 0, y2 > 0; y3 < 0, x3 < 0; x4 > 0,
y4 < 0; y1 > 0 and the inequality |y| ≥ | 1x | for any (x, y) ∈ X1 ∪ X2 ∪ X3 ∪ X4 we can write
the chain of inequalities

S
(
{ai}4

i=1

)
≥ |x1 − x2|+ |y2 − y3|+ |x3 − x4|+ |y4 − y1|
= |x1|+ |x2|+ |y2|+ |y3|+ |x3|+ |x4|+ |y4|+ |y1|
≥ |x1|+ |x2|+ | 1

x2
|+ | 1

x3
|+ |x3|+ |x4|+ | 1

x4
|+ | 1

x1
|

=
(
|x1|+ | 1

x1
|
)
+
(
|x2|+ | 1

x2
|
)
+
(
|x3|+ | 1

x3
|
)
+
(
|x4|+ | 1

x4
|
)
≥ 2,

where, for the last inequality, we use the well-known one |a|+
∣∣∣ 1

a

∣∣∣ ≥ 2.
Consequently, D(X1, X2, X3, X4) ≥ 8. There holds S((1, 1), (−1, 1), (−1,−1), (1,−1)) =

8, and thus D(X1, X2, X3, X4) = 8.
It remains to be proven that T is a 4–cyclic infimum summing contraction, i.e., it

satisfies (2).
Let a1 = (x1, y1) ∈ X1 and a2 = (x2, y2) ∈ X2, then

‖Ta1 − Ta2‖2 =

∥∥∥∥(−y1 − 1
2

,
x1 + 1

2

)
−
(
−y2 − 1

2
,

x2 − 1
2

)∥∥∥∥
2

=
‖(−y1, x1) + (−1, 1)− (−y2, x2)− (−1,−1)‖2

2

≤ ‖(−y1, x1)− (−y2, x2)‖2

2
+
‖(−1, 1)− (−1,−1)‖2

2

=
1
2

√
(y2 − y1)2 + (x1 − x2)2 +

1
2

.2

=
1
2
‖(x1, y1)− (x2, y2)‖2 +

1
2
(

1
4

D(X1, X2, X3, X4))

=
1
2
‖a1 − a2‖2 + (1− 1

2
)(

1
4

D(X1, X2, X3, X4)),

i.e.,

‖Ta1 − Ta2‖2 ≤
1
2
‖a1 − a2‖2 +

(
1− 1

2

)
D(X1, X2, X3, X4)

4
. (54)
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We can prove in a similar fashion that inequality (54) holds for each a1 ∈ Xi and
a2 ∈ Xi+1, where i = 2, 3 and a1 ∈ X4 and a2 ∈ X1. Thus, for each ai, bi ∈ Xi, i = 1, 2, 3, 4,
the inequalities ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖Ta1 − Tb2‖2 ≤ 1
2‖a1 − b2‖2 + (1− 1

2 )
D(X1,X2,X3,X4)

4

‖Ta2 − Tb3‖2 ≤ 1
2‖a2 − b3‖2 + (1− 1

2 )
D(X1,X2,X3,X4)

4

‖Ta3 − Tb4‖2 ≤ 1
2‖a3 − b4‖2 + (1− 1

2 )
D(X1,X2,X3,X4)

4

‖Ta4 − Tb1‖2 ≤ 1
2‖a4 − b1‖2 + (1− 1

2 )
D(X1,X2,X3,X4)

4

hold, and after summing them, we can obtain

S
(
{Tai}4

i=1}, {Tbi}4
i=1}

)
= ‖Ta4 − Tb1‖2 +

2

∑
i=1
‖Tai − Tbi+1‖2

≤ 1
2

(
‖a4 − b1‖2 +

2

∑
i=1
‖ai − bi+1‖2

)
+ (1− 1

2 )D.
(55)

Consequently, T satisfies (2) with λ = 1
2 and (1, 1), (−1, 1), (−1,−1), (1,−1) are the

generalized best proximity points of T in X1, X2, X3, X4.
This example could not be handled with the known techniques to obtain best proximity

points for p–cyclic maps or even p–cyclic summing maps. Indeed if there is x ∈ X1, which
is a best proximity point of T in X1, then ‖x− Tx‖ = dist(X1, X2) = 0. Actually, there are
no xi ∈ Xi, i = 1, 2, so that ‖xi − xi+1‖ = dist(Xi, Xi+1) in the considered example.

From the definition of the sets, it follows that dist(Xi, Xi+1) = 0 and there are no xi ∈
Xi, satisfying ‖xi − xi+1‖ = dist(Xi, Xi+1) = 0. We can alter this example by considering
the a square S with vertexes A1 = (6, 0), A2 = (0, 6), A3 = (−6, 0) and A4 = (0,−6) and
replacing the sets Xi with the sets Yi = Xi ∩ S (Figure 9). Then, dist(Yi, Yi+1) = r > 0 for
i = 1, 2, 3, 4. If we consider the map T, defined on the sets Yi, i = 1, 2, 3, 4, this will satisfy
the conditions of (2) as far as T(Yi) ⊂ Yi+1. If x1 ∈ Y1 is a best proximity point of T in Y1,
then x2 = Tx1 ∈ Y2 and ‖x1 − Tx1‖ = dist(Y1, Y2) = r (Figure 9). Furthermore if y2 ∈ Y2
is a best proximity point of T in Y2, then y3 = Tx2 ∈ Y3 and ‖y2 − Ty2‖ = dist(Y2, Y3) = r
(Figure 9). All known results about best proximity points ensure that x2 = y2, which is not
the case in the considered example.

Figure 9. Example 1 with the sets Yi = S ∩ Xi.



Axioms 2023, 12, 628 22 of 24

7. Discussion

We presented a generalization of the notion of best proximity points [2,34,36] and
illustrated that the new notion of a generalized best proximity point and p–cyclic infimum
summing maps is different from the known classical ones. It will be interesting to see
whether generalizations of Kannan, Chatterjea, Hardy–Roger or Meir–Keeler types of maps
can be obtained for infimum-summing maps.

As we mentioned in the Section 1, the idea to consider the infimum sum focused on the
widely investigated TSP in the case where a convex hulls of the cluster are considered. There
are a lot of results in this field and applications in different fields, such as computer wiring [44],
wallpaper cutting [45], hole punching [46], dartboard design [47], crystallography [48], and
vehicle routing [44]. The most recent applications are finding the best route for the inspection
of transmission infrastructure using Unmanned Aerial Vehicles (UAV) [49,50]. When the TSP
is considered for UAVs, naturally, the classical discrete optimization techniques can be altered
to continuous ones. It will be interesting to see whether it is possible to apply the main
results to solve some of the TSP set in the continuous setting.
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