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Abstract: Today, the reliability or quality practitioner always aims to shorten testing duration and
reduce testing costs without neglecting efficient statistical inference. So, a generalized progressively
Type-II hybrid censored mechanism has been developed in which the experimenter prepays for
usage of the testing facility for T units of time. This paper investigates the issue of estimating the
model parameter, reliability, and hazard rate functions of the Maxwell–Boltzmann distribution in the
presence of generalized progressive Type-II hybrid censored data by making use of the likelihood and
Bayesian inferential methods. Using an inverse gamma prior distribution, the Bayes estimators of the
same unknown parameters with respect to the most commonly squared-error loss are derived. Since
the joint likelihood function is produced in complex form, following the Monte-Carlo Markov-chain
idea, the Bayes’ point estimators as well as the Bayes credible and highest posterior density intervals
cannot be derived analytically, but they may be examined numerically. Via the normal approximation
of the acquired maximum likelihood and log-maximum-likelihood estimators, the approximate
confidence interval bounds of the unknown quantities are derived. Via comprehensive numerical
comparisons, with regard to simulated root mean squared-error, mean relative absolute bias, average
confidence length, and coverage probability, the actual behavior of the proposed estimation method-
ologies is examined. To illustrate how the offered methodologies may be used in real circumstances,
two different applications, representing the failure time points of aircraft windscreens as well as the
daily average wind speed in Cairo during 2009, are explored. Numerical evaluations recommend
utilizing a Bayes model via the Metropolis-Hastings technique to produce samples from the posterior
distribution to estimate any parameter of the Maxwell–Boltzmann distribution when collecting data
from a generalized progressively Type-II hybrid censored mechanism.

Keywords: Maxwell–Boltzmann model; Bayes inference; maximum likelihood; reliability analysis;
Monte-Carlo Markov-chain algorithms; generalized Type-II progressive hybrid censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Methodology and Materials

This section includes three subsections: the first presents the formal presentation of
the proposed strategy; the second presents the formal presentation of the proposed model;
and the last is devoted to study contributions.

1.1. Generalized Type-II Progressive Hybrid Censoring

If the lifespan of certain objects is quite long and/or the sample size n is extreme, it
is difficult to continue the test until all n observations are made (full data). To end the
test under predetermined conditions, there is a more cost-effective strategy called the
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censored mechanism. For background information on reliability and safety customization
techniques, readers may refer to BahooToroody et al. [1] and Falcone et al. [2].

Progressive Type-II censoring (T2PC), discussed in detail by Balakrishnan and Cramer [3],
has gotten a lot of interest since it permits surviving individuals to be removed from a
study at various points other than the end point. Though, if the experimental subjects
are extremely reliable, it may take longer to perform the test. Thus, to improve the T2PC
strategy, Type-I progressive hybrid censoring (T1PHC) was presented by Kundu and
Joarder [4]. On the other hand, T1PHC has the drawback of having very few failures that
can occur before time T, which means that the offered maximum likelihood estimators
(MLEs) cannot always be evaluated. So, Type-II progressive hybrid censoring (T2PHC) was
proposed by Childs et al. [5]. Although the T2PHC assures an efficient amount of visible
failures, collecting the required failures may take a bit of time.

As a result, Type-II generalized progressive hybrid censoring (T2GPHC) was intro-
duced by Lee et al. [6]. To perform the T2GPHC process, follow these steps:

1. Specify the total experimental items n, number of failures m, two thresholds Ti, i = 1, 2
(where 0 < T1 < T2 < ∞) and the progressive censoring R = (R1, R2, . . . , Rm) (where
n(= ∑m

i=1 Ri + m)).
2. Determine the total number of failures d1(< d2) up to T1(< T2).
3. Start the experiment by placing n independent and identical items into a test.
4. When the first failure item (say X1:m:n) is recorded, R1 of the surviving items (out

of n − 1 units) are randomly selected and withdrawn from the experiment. Next,
when the second failure item (say X2:m:n) is recorded, R2 of the surviving items (out
of n− 2− R1 units) are randomly selected and withdrawn from the experiment, and
so on.

5. Stop the experiment at time T ◦ = max{T1, min{Xm:m:n, T2}}.
6. If Xm:n < T1, set Ri = 0, i = m, m + 1, . . . , d1, the experiment continues until it stops

at T1 (referred to as Case-I).
7. If T1 < Xm:m:n < T2, the experiment stops at Xm:m:n (referred to as Case-II).
8. If T2 < Xm:m:n, the experiment stops at T2 (referred to as Case-III).

Subsequently, the researcher will collect one of the following three data sets of observations:

{X, R} =


{(X1:m:n, R1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, 0), . . . , (Xd1 :n, 0)}; Case-I,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xm−1:m:n, Rm−1), (Xm:m:n, Rm)}; Case-II,

{(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2−1:n, Rd2−1), (Xd2 :n, Rd2)}; Case-III.

It is critical to remember that the T2GPHC modifies the T2PHC by guaranteeing that
the test is completed at T2. Thus, this threshold is the longest duration that the examiner
endures to allow the study to run. Moreover, T2GPHC can be considered a new extension
of several control strategies that can be obtained as sub-plans, such as:

• T1PHC, by Kundu and Joarder [4], if T1 → 0.
• T2PHC, by Childs et al. [5], if T2 → ∞.
• Type-I Hybrid, by Epstein [7], if T1 → 0, Rj = 0, for j = 1, 2, . . . , m− 1, and Rm = n−m.
• Type-I Hybrid, by Childs et al. [8], if T2 → ∞, Rj = 0, for j = 1, 2, . . . , m− 1, and

Rm = n−m.
• Type-I censoring, by Bain and Engelhardt [9], if T1 = 0, m = n, Rj = 0, for

j = 1, 2, . . . , m− 1, and Rm = n−m.
• Type-II censoring, by Bain and Engelhardt [9], if T1 = 0, T2 → ∞, Rj = 0, for

j = 1, 2, . . . , m− 1, and Rm = n−m.
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However, let {X, R} be a T2GPHC sample of size d2 collected from a continuous
distribution with cumulative distribution function (CDF) F(·) and probability density
function (PDF) f (·). Then, the joint likelihood function (say Lc(·)) of the observed T2GPHC
data, for τ = 1, 2, can be formulated as

Lc(σ|X) = KcRc(Tτ ; σ)
Jc

∏
j=1

f (xi:m:n; σ)[1− F(xi:m:n; σ)]Rj , (1)

where Case-I, Case-II, and Case-III denoted by c = 1, 2, 3 correspondingly, and Rc(·)
is a combined-term of reliability functions at Ti, i = 1, 2 points. Table 1 displays the
T2GPHC’s notations.

Table 1. Notations of the T2GPHC process.

c Kc Jc Rc(Tτ ; σ) R∗dτ+1

I Πd1
j=1 ∑m

i=j (Ri + 1) d1 [1− F(T1; σ)]
R∗d1+1 n− d1 −∑m−1

i=1 Ri

II Πm
j=1 ∑m

i=j (Ri + 1) m 1 0

III Πd2
j=1 ∑m

i=j (Ri + 1) d2 [1− F(T2; σ)]
R∗d2+1 n− d2 −∑d2

i=1 Ri

In recent years, using the T2GPHC mechanism, several studies have proposed dif-
ferent estimates for various statistical parameters of life. For example; see Ashour and
Elshahhat [10], Ateya and Mohammed [11], Seo [12], Cho and Lee [13], Wang et al. [14],
Nagy et al. [15], Alotaibi et al. [16], Elshahhat et al. [17,18], and references cited therein.

1.2. Maxwell–Boltzmann Model

In the second half of the 1800s, James Clerk Maxwell and Ludwig Boltzmann found
out the distribution of speeds in a gas at a specific temperature. Their finding is referred
to as the Maxwell-Boltzmann (MB(σ)) distribution since it illustrates how the speeds of
molecules are spread for an ideal gas. It also serves as the foundation for gas kinetic energy,
which explains many fundamental phenomena of gases such as pressure and diffusion.
Since the MB distribution function provides the most probable speed, the average speed,
and the root-mean-square speed that may be determined, it has a wide range of applications
in physical, chemical, statistical mechanics, and reliability analysis. For additional details,
see Peckham and McNaught [19] and Rowlinson [20]. Suppose X is a random variable of
lifetime that follows the MB(σ) distribution, where σ > 0 is the scale parameter, then its
PDF and CDF, are provided by

f (x; σ) =
4√
π

x2
√

σ3
e−

x2
σ , x > 0, (2)

and

F(x; σ) = Γ 3
2

(
x2

σ

)
, (3)

respectively, where Γα(β) = 1
Γ(α)

∫ β
0 yα−1e−ydy (is known as gamma function) and

Γ(α) =
∫ ∞

0 yα−1e−ydy (is known as an incomplete-gamma function). The equivalent form
of the function (3) takes the following expression

F(x; σ) = 2erf
(

x√
σ

)
− 2√

π

x√
σ

e−
x2
σ ,

= 1− 4√
π

1√
σ3

ξ(x, 2, σ), (4)
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where erf(α) = 2√
π

∫ α
0 e−y2

dy is the error term and ξ(x, α, σ) =
∫ ∞

x yαe−
y2
σ dy. From now

on, the CDF (4) will be used wherever it is requested.
Moreover, we consider two unknown time parameters, namely: reliability function

(RF) R(·) and hazard rate function (HRF) h(·) of the MB distribution, at distinct time t > 0,
are given by

R(t; σ) =
4√
π

1√
σ3

ξ(t, 2, σ), (5)

and
h(t; σ) = t2e−

t2
σ ξ−1(t, 2, σ). (6)

From (2), Bekker and Roux [21] stated that the MB model is a particular member of the
generalized Weibull and generalized Rayleigh distributions. Also, Krishna and Malik [22]
showed that the MB failure rate (6) belongs to the group of increasing HRF distributions.
So, it possesses all of the desirable characteristics that make it highly valuable in life-testing
and reliability studies, particularly in cases where the assumption of a constant failure rate
is unrealistic. In reliability literature during the last decade, the MB distribution has become
a popular model and has been extensively studied in reliability theory by many authors,
for example, Krishna and Malik [22,23] considered the conventional Type-II censored and
T2PC data, respectively; Krishna et al. [24] developed randomly censored data; Tomer and
Panwar [25] studied T1PHC data; Chaudhary and Tomer [26] addressed the stress–strength
of T2PC data; later, Pathak et al. [27] considered the T2PC with binomial removals for the
step-stress partially accelerated data, among many other works.

1.3. Study Objectives

Although these research efforts offer a reliability treatment for the MB distribution
in the presence of various reliability scenarios, they lack light on the MB’s applicability
characteristics, particularly in the presence of data collected from the proposed T2GPHC
strategy. To achieve this goal, using the T2GPHC strategy, the main contribution of the
current study is fourfold:

1. Develop maximum likelihood estimators (MLEs) and Bayesian estimators (BE) for σ,
R(t) and h(t).

2. Use the inverted gamma distribution and squared-error loss functions for deriving
Bayes’ estimates.

3. Employ the Markov-Chain Monte Carlo (MCMC) approximation paradigm to evaluate
the nonlinear posterior function.

4. Construct approximate confidence interval (ACI) estimators for σ, R(t) and h(t), based
on two different methods of asymptotic normality approximation.

5. Obtain Bayes credible interval (BCI) and highest posterior density (HPD) interval
estimators from the MCMC variates.

6. Conduct an extensive evaluation of the estimates for σ, R(t) and h(t), based on four
metrics: root mean squared errors, mean relative absolute biases, average confidence
lengths, and coverage percentages.

7. Utilize three specific programming packages in the R 4.2.2 environment, namely:
(1) ‘coda’ (by Plummer et al. [28]), (2) ‘VGAM’ (by Yee [29]), and (3) ‘maxLik’ (by
Henningsen and Toomet [30]).

8. Apply the developed methodologies to two real-world data sets from the engineering
and physics sectors, thereby demonstrating the applicability and versatility of the
MB model. The data sets represent failure times of aircraft windshields and the daily
average wind speed in Cairo city.

The rest of the article is organized as follows: In Sections 2 and 3, the acquired MLEs
and BEs of σ, R(t) and h(t) are provided, respectively. Different intervals of σ, R(t) and
h(t) are created in Section 4. Section 5 presents the Monte Carlo outcomes. In Section 6,
real applications are analyzed. Ultimately, Section 7 reports the paper’s conclusions.



Axioms 2023, 12, 618 5 of 26

2. Likelihood Inference

Suppose X = {(X1:m:n, R1), . . . , (Xd1 :n, Rd1), . . . , (Xd2 :n, Rd2)} is a T2GPHC sample of
size d2 obtained from MB(σ). Inserting (2) and (3) into (1), where xi is used in place of xi:m:n
for simplicity in notation, then the likelihood function of σ in the presence of X observations
can be written as

Lc(σ|X) ∝ σ−
3n
2 e−∑Jc

i=1
x2

i
σ ξc(Tτ , 2, σ)

Jc

∏
i=1

(ξ(xi, 2, σ))Ri , (7)

where ξi(Ti, 2, σ) =
∫ ∞

Ti
y2e−

y2
σ dy for i = 1, 2, and ξ2(Tτ , 2, σ) = 0.

Differentiating (7) in regard to σ, the MLE σ̂ of σ can be owned by solving the next
nonlinear normal equation:

1
σ

[
1
σ

Jc

∑
i=1

x2
i −

3
2

n

]
+

1
σ2

[
ξc(Tτ , 4, σ)

ξc(Tτ , 2, σ)
+

Jc

∑
i=1

Ri
ξ(xi, 4, σ)

ξ(xi, 2, σ)

]∣∣∣∣∣
σ=σ̂

= 0. (8)

It is obvious that, from (8), the solution of σ̂ can be derived by a suitable iterative
approach like the Newton-Raphson (NR) technique. Therefore, as soon as a given T2GPHC
data set is available, we recommend applying the ‘maxLik’ package (which utilizes the NR
function via maxNR(·) command) to evaluate the acquired MLE σ̂.

Next, once σ̂ is evaluated, using the invariance feature of the MLE σ̂, the MLEs R̂(t)
and ĥ(t) of R(t) and h(t) from (5) and (6), respectively, at mission time t can be easily
acquired as

R̂(t) =
4√
π

1√
σ̂3

ξ(t, 2, σ̂) and ĥ(t) = t2e−
t2
σ̂ ξ−1(t, 2, σ̂), (9)

respectively.

3. Bayes Inference

In Bayes’ estimation, we provide the prior information by running an experiment,
and estimators are built to make inferences about the features of interest based on this
updated knowledge. Because it offers legitimate alternatives to standard methodologies,
this strategy has grown in popularity for analyzing failure data. This section introduces
the BEs of σ, R(t) and h(t) of the MB model when a data set is obtained from the T2GPHC
mechanism. First, according to Bekker and Roux [21], we assume that σ is a random
variable with an inverted gamma (IG) density (symbolized by ω(·)) as

ω(σ; a, b) ∝ σ−(a+1)e−b/σ, σ > 0, (10)

where a > 0 and b > 0 are known. The IG distribution is useful as a prior for positive
parameters. It imparts a quite heavy tail and keeps probability further from zero than the
gamma distribution. It also offers different shapes depending on its parameter values and
expresses the posterior distribution in a simple form. It should be noted that one can easily
incorporate other conjugate density priors such as gamma, normal-inverse-gamma, and
inverse gamma-gamma, among others.

Combining the prior (10) and likelihood (7) into the continuous Bayes’ theorem, the
posterior distribution (say Ω(·)) of σ becomes

Ωc(σ|X) = H−1σ−(
3n
2 +a+1)e−

1
σ

(
∑Jc

i=1 x2
i +b

)
ξc(Tτ , 2, σ)

Jc

∏
i=1

(ξ(xi, 2, σ))Ri , (11)
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where

H =
∫ ∞

0
σ−(

3n
2 +a+1)e−

1
σ

(
∑Jc

i=1 x2
i +b

)
ξc(Tτ , 2, σ)

Jc

∏
i=1

(ξ(xi, 2, σ))Ri dσ.

A loss function is significant in Bayes’ approach since it may discover overestimation
and underestimation in the study. In reliability analysis, the squared-error loss (SEL)
function is suitable when decisions become increasingly damaging due to higher errors.
Using this loss, the BE (say σ̃) of σ is developed by the posterior-expectation as:

σ̃ = H−1
∫ ∞

0
σΩc(σ|X)dσ. (12)

It is obvious, from (12), that the explicit solution of σ̃ is not possible. However, to draw
a posterior sample of σ from (12), the Metropolis-Hastings (M-H) algorithm is adopted,
for further detail, see Gelman et al. [31] and Lynch [32]. We, thus, evaluate the BEs of
σ, R(t) and h(t) by ‘coda’ package (which utilizes the Metropolis-Hastings algorithm via
run_metropolis_MCMC(·) command). Using the normal distribution as a proposal, do the
following M-H steps:

Step-1: Set σ(0) = σ̂.

Step-2: Set l = 1.

Step-3: Obtain a candidate variate σ∗ from normal N(σ̂, v̂ar(σ̂)) distribution.

Step-4: Obtain a candidate variate u∗ from uniform U(0, 1) distribution.

Step-5: Obtain G = Ωc(σ∗ |X)
Ωc(σl−1|X) .

Step-6: Set σ(l) = σ∗ if u∗ 6 min{1,G}, else set σ(l) = σ(l−1).

Step-7: Evaluate the reliability R(t) and hazard rate h(t) parameters, at t > 0, as

R(t) =
4√
π

1√
σ(l)3

ξ(t, 2, σ(l)) and h(t) = t2e
− t2

σ(l) ξ−1(t, 2, σ(l)),

respectively.

Step-8: Set l = l + 1.

Step-9: Redo Steps 3-8 D times, then ignore the first D• iterations as burn-in, to get σ(l),
R(l)(t) and h(l)(t) for l = D• + 1,D• + 2, . . . ,D.

Step-10: Get the BEs of σ, R(t) and h(t) as

σ̃ =
1
D̄

D
∑

l=D•+1
σ(l), R̃(t) =

1
D̄

D
∑

l=D•+1
R(l)(t), and h̃(t) =

1
D̄

D
∑

l=D•+1
h(l)(t),

respectively, where D̄ = D −D•.

4. Interval Inference

In this section, the asymptotic (including: ACI-NA/ACI-NL) intervals based on the
observed Fisher information as well as the Bayes (including: BCI/HPD) intervals based on
the MCMC variates of σ, R(t) or h(t) are created.

4.1. Asymptotic Intervals

To build the 100(1 − $)% ACI-NA (or ACI-NL) of σ, R(t), or h(t), the associated
asymptotic normality of their MLEs is used. Using the observed Fisher information matrix,
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say Io(σ), the estimated variance of σ, R(t), or h(t) must be provided first, see Lawless [33].
As a result, the fitted variance of σ (say v̂ar(σ̂)) is given by

v̂ar(σ̂) = I−1
o (σ̂), (13)

where

Io(σ̂) =−
d2 log Lc(σ|X)

dσ2

∣∣∣∣∣
σ=σ̂

=− 1
σ2

[
3
2

n− 2
σ

Jc

∑
i=1

x2
i

]
+

2
σ3

[
ξc(Tτ , 4, σ)

ξc(Tτ , 2, σ)
+

Jc

∑
i=1

Ri
ξ(xi, 4, σ)

ξ(xi, 2, σ)

]

− 1
σ4

[{
ξc(Tτ , 6, σ)

ξc(Tτ , 2, σ)
−
(

ξc(Tτ , 6, σ)

ξc(Tτ , 2, σ)

)2
}
+

Jc

∑
i=1

Ri

{
ξ(xi, 6, σ)

ξ(xi, 2, σ)
−
(

ξ(xi, 4, σ)

ξ(xi, 2, σ)

)2
}]

.

Consequently, the 100(1− $)% ACI-NA of σ is acquired by

σ̂± z $
2

σ̂σ,

where z $
2

denotes the upper ( $
2 )

th percentage point of the standard normal distribution.
In addition to creating the 100(1− $)% ACI-NA of R(t) or h(t), following Greene [34],

the delta approach is adopted in turn to evaluate the estimated variances v̂ar(R̂) and v̂ar(ĥ)
of R̂(t) and ĥ(t), respectively, as

v̂ar(R̂) ≈ [ΨR var(σ) Ψ>R ]
∣∣∣
σ=σ̂

and v̂ar(ĥ) ≈ [Ψh var(σ) Ψ>h ]
∣∣∣
σ=σ̂

,

where

ΨR =
dR(t)

dσ

=
4

√
π
√

σ3

[
ξ(t, 4, σ)− 3

2σ
ξ(t, 2, σ)

]
,

and

Ψh =
dh(t)

dσ

= t2e−
t2
σ ξ−1(t, 2, σ)

[(
t
σ

)2
− ξ−1(t, 2, σ)ξ(t, 4, σ)

]
.

Then, the two-sided 100(1 − $)% ACIs of R(t) and h(t), using NA approach, are
provided by

R̂(t)± z $
2

√
v̂ar(R̂) and ĥ(t)± z $

2

√
v̂ar(ĥ),

respectively.
Nonetheless, the fundamental disadvantage of the traditional ACI-NA for MLE is

that it occasionally yields a negative lower limit for a parameter that accepts positive
values. Instead of replacing the negative value of the ACI-NA lower bound with a zero,
Meeker and Escobar [35] suggested a log-transformed MLE in order to create the ACI-NL
for an unknown parameter whose domain takes positive values. Hence, we construct the
two-sided 100(1− $)% ACI-NL of σ, for instance, as

σ̂ exp
(
±z $

2
v̂ar(σ̂)σ̂−1

)
,



Axioms 2023, 12, 618 8 of 26

where, in a similar way, other ACIs of R(t) and h(t) can be easily obtained using the
NL approach.

4.2. Bayesian Intervals

This subsection investigates the BCI and HPD interval estimators of σ, R(t) and h(t)
using their simulated MCMC iterations. However, first, to create the BCI of σ (as an
example), order its MCMC variates σ(l) for l = D• + 1,D• + 2, . . . ,D as

σ(D•+1), σ(D•+2), . . . , σ(D),

hence, the 100(1− $)% two limits for the BCI of σ is given by(
σ(L?), σ(U ?)

)
,

where L? = D̄ $
2 and U ? = D̄

(
1− $

2
)
. In a similar pattern, the 100(1− $)% BCIs of R(t)

and h(t) are developed.
Moreover, using the technique proposed by Chen and Shao [36], the 100(1− $)% HPD

interval estimate of σ (as an example) is provided as

σ(l∗), σ(l∗+(1−$)D̄),

where l∗ = D• + 1,D• + 2, . . . ,D is selected so that

σ(l∗+[(1−$)(D̄)]) − σ(l∗) = min
16l6$D̄

[
σ(l+[(1−$)D̄]) − σ(l))

]
,

where [w] stands for the largest integer that is less than (or equal) to w.

5. Numerical Comparisons

This section deals with Monte Carlo simulations, which are performed to test the
accuracy of the point and interval estimates of the MB’s parameters and its reliability
indices, such as RF and HRF, provided in the sections that preceded.

5.1. Simulation Design

The relevant performance of the acquired estimators of σ, R(t) and h(t), through
several Monte Carlo simulations, is assessed based on various options of Ti, i = 1, 2
(threshold times), n (total experimental items), m (effective sample items) and R (removal
fashion). Taking σ (= 0.8, 1.5), we repeat the T2GPHC process 1000 times. At t = 0.5, the
plausible values of R(t) are (0.8907,0.9536) and of h(t) are (0.6477,0.2726), for σ (= 0.8, 1.5),
respectively. Taking also two sets of (T1, T2) such as (0.5,1) and (1.5,2), two different
choices of n and m are considered as n (= 40,80) while the values of m are taken as failure
percentages (FPs) such as m

n (= 50, 80)% of each n. Also, for given (n, m), four removal
plans R are utilized, namely:

S1 : R = (n−m, 0∗(m− 1)),

S2 : R =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
,

S3 : R = (0∗(m− 1), n−m),

S4 : R =
(

2∗
(m

2

)
, 0∗
(m

2

))
and (1∗n−m, 0∗2m− n), for FP = 50 and 80%, respectively,

where 0∗(m− 1) means 0 is repeated m− 1 times.
Once 1000 T2GPHC samples are obtained, by installing ‘maxLik’ package (by Hen-

ningsen and Toomet [30]) in R 4.2.2 software, the maximum likelihood and asymptotic
interval estimates (from NA and NL methodologies) of σ, R(t) and h(t) are offered. Fol-
lowing the M-H steps proposed in Section 3, we simulated 12,000 MCMC samples and
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ignored the first 2000 iterations as burn-in, in turn evaluating the Bayes estimates as well as
their BCI/HPD interval estimates of the same objective parameters. According to the prior
mean and prior variance criteria.

Two different sets for the values of prior hyperparameters (a, b) are used: Prior-1:
Prior-1:(3.2,5) and Prior-2:(6.4,9) (for σ = 0.8) as well as Prior-1:(6,5) and Prior-2:(12,9) (for
σ = 1.5). Specifically, the given values of a and b are determined in such a way that the
prior average reflects the actual value of σ. After installing the ‘coda’ package (by Plummer
et al. [28]) in R 4.2.2 software, the evaluation of Bayes findings is conducted. Recently,
these packages have been recommended by Elshahhat and Mohammed [37].

The Brooks-Gelman-Rubin (BGR) diagnostic statistic assesses the convergence of
Markovian chains by comparing the variances within and variance across chains for each
model parameter. Using this criterion, the posterior distribution is said to have converged if
the variance-between-to-within ratio is near one; see Nassar and Elshahhat [38]. However,
to examine the convergence of the simulated Markovian draws of σ, the BGR diagnostic
plots, when σ(= 0.8, 1.5), (n, m) = (40, 20), (T1, T2) = (0.5, 1.5), S1 and Prior-1 in both sets
of σ (as an example), are shown in Figure 1. It shows that there is no significant difference
between the simulated chains, demonstrating that the burn-in sample is large enough to
ignore the influence of starting point values. So, the collected Markovian chains have
converged well.
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Figure 1. The BGR diagnostic plots for MCMC draws of σ in Monte Carlo simulation. (a) σ = 0.8;
(b) σ = 1.5.

However, the average point estimates (Av.Es) of σ (for example) are given by

σ̌ =
1

1000

1000

∑
i=1

σ̌(i),

where σ̌(i) is the offered estimate of σ at ith sample.
Comparison between the acquired point estimates of σ is made based on their root

mean squared-errors (RMSEs) and mean relative absolute biases (MRABs) as

RMSE(σ̌) =

√√√√ 1
1000

1000

∑
i=1

(
σ̌(i) − σ

)2,

and

MRAB(σ̌) =
1

1000

1000

∑
i=1

1
σ

∣∣∣σ̌(i) − σ
∣∣∣,
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respectively.
On the other hand, the comparison between the acquired interval estimates of σ is

made based on their average confidence lengths (ACLs) and coverage percentages (CPs) as

ACL(1−$)%(σ) =
1

1000 ∑1000
i=1

(
Uσ̌(i) −Lσ̌(i)

)
,

and
CP(1−$)%(σ) =

1
1000 ∑1000

i=1 q(L
σ̌(i)

;U
σ̌(i)

)(σ),
respectively, where q(·) is the indicator function, (L(·),U (·)) represent the (lower-bound,
upper-bound) of (1− $)% asymptotic (or credible) interval of σ. In a similar pattern, the
Av.Es, RMSEs, MRABs, ACLs and CPs of R(t), or h(t) can be easily computed.

5.2. Simulation Discussions

One of the best data visualization tools in R 4.2.2 software is known as a heat-map.
Therefore, all simulated outputs (including: RMSEs, MRABs, ACLs, and CPs) of σ, R(t)
or h(t) are displayed graphically, in Figures 2–7, by using the heat-map designer. For
specialization, from Figures 2–7, the proposed methods are defined on ‘x-axis’ line, while the
proposed censoring setting is defined on ‘y-axis’ line. Each heat-map has several notations
for distinguishing, using Prior-1 (for example), such as (i) Bayes estimate referred to as
“BE-P1”; (ii) BCI estimate referred to as “BCI-P1”; and (iii) HPD estimate referred to as
“HPD-P1”.

These maps illustrate various behaviors and findings related to σ, R(t), and h(t),
including their relationships with RMSE, MRAB, ACL, and CP values. Key observations
derived from these figures include:

• The obtained estimates for σ, R(t), or h(t) demonstrate good behavior and provide
accurate results.

• As n (or FP%) increases, all point and interval estimates for life’s unknown parameters
perform satisfactorily. A similar finding is observed when n−m decreases.

• With the increase in Ti, i = 1, 2, in most tests of all unknown parameters, the simulated
CPs of σ, R(t), and h(t) increase, while the simulated RMSEs, MRABs, and ACLs
narrow down.

• The Bayes estimates, developed using the M-H algorithm, outperform the frequentist
estimates, as they involve more priority information on the unknown parameters.

• Among the four interval estimation techniques, ACI-NA, ACI-NL, BCI, and HPD,
there are observable variations in performance under different conditions and for
different parameters.

• MCMC calculations using Prior-2 provide more precise estimates than others for all
unknown parameters due to Prior-2’s variance being less than Prior-1’s variance.

• The proposed estimates of σ, R(t), and h(t) perform better using S1 ‘left-censoring’
and S4 ‘uniformly censoring’ than other schemes.

• The Bayes M-H methodology is recommended for evaluating the Maxwell–Boltzmann
parameters or its reliability time characteristics when data is produced via a general-
ized Type-II progressively hybrid strategy.

• These findings, illustrated in detail in the Appendix, provide valuable insights into
the reliability of the MB distribution when using the T2GPHC strategy.
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Figure 2. Heat-maps for the Monte Carlo outcomes of σ when σ = 0.8.
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Figure 3. Heat-maps for the Monte Carlo outcomes of σ when σ = 1.5.
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Figure 4. Heat-maps for the Monte Carlo outcomes of R(t) when σ = 0.8.
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Figure 5. Heat-maps for the Monte Carlo outcomes of R(t) when σ = 1.5.
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Figure 6. Heat-maps for the Monte Carlo outcomes of h(t) when σ = 0.8.
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Figure 7. Heat-maps for the Monte Carlo outcomes of h(t) when σ = 1.5.

6. Real-Life Applications

This section analyses two sets of valuable real data from the engineering and physical
sectors to demonstrate the value of the suggested estimating methodologies and the rel-
evance of research objectives to actual scenarios. These examples demonstrated that the
proposed inferential procedures operate effectively with real-world data and the recom-
mended censoring scheme.
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6.1. Aircraft Windshield

The windscreen of an aircraft is a sophisticated piece of equipment, consisting of
multiple layers of material, including a highly tough outer skin with a heated layer just
behind it, all laminated under high temperature and pressure. These breakdowns do not
cause aircraft damage, but they do require the repair of a windscreen. This application
provides an analysis of a data set, reported by Murthy et al. [39] and rediscussed by
Alotaibi et al. [40], representing 84 failure time points of aircraft windshields, see Table 2.
To demonstrate whether aircraft windshields data fit the MB distribution or not, the
Kolmogorov–Smirnov (K-S) statistic (along with its p-value) is obtained. From Table 2, to
establish this objective, the MLE σ̂ (with its standard–error (St.Er)) of σ is 5.1849(0.4619),
meanwhile the K-S (p-value) is 0.0661(0.856). This result confirms the fact that the MB
lifetime model fits the aircraft windshield data satisfactorily.

Table 2. Failure timesof aircraft windshields.

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610 3.478
0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914 2.646 3.699
1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281 2.038 2.823 4.035
1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167 1.432 2.097 2.934 4.240
1.480 2.135 2.962 4.255 1.505 2.154 2.964 4.278 1.506 2.190 3.000 4.305
1.568 2.194 3.103 4.376 1.615 2.223 3.114 4.449 1.619 2.224 3.117 4.485
1.652 2.229 3.166 4.570 1.652 2.300 3.344 4.602 1.757 2.324 3.376 4.663

From aircraft windshields data, in turn to examine the proposed estimation method-
ologies, three T2GPHC samples based on various combinations of R and Ti, i = 1, 2 with
FP = 50% are created, see Table 3. For specification, in Table 3, three various PT2C scenarios
are used to get samples Si for i = 1, 2, 3, as:

• Scheme-S1: (1∗m);
• Scheme-S2: (2∗

(m
2
)
, 0∗
(m

2
)
);

• Scheme-S3: (0∗
(m

2
)
, 2∗
(m

2
)
),

respectively.
For each Si, i = 1, 2, 3, the MLEs (along with their St.Ers) and the 95% ACIs (along

with their widths) from NA and NL methods of σ, R(t) and h(t) (at t = 1.5) are evaluated
and reported in Table 4. Because we have no previous knowledge about the MB parameter
from the aircraft windshields data, the Bayes estimate is performed under non-informative
assumptions, with the hyperparameter values of a and b set to zero. For computational
purposes, we have set a = b = 0.001. Eliminating the first 10,000 iterations from the
full MCMC 50,000 times as burn-in, the Bayes estimates (with their St.Ers) as well as the
BCI/HPD interval estimates (with their widths) are evaluated and also provided in Table 4.
For each sample, the classical estimates are taken as starting points to carry out the Bayes
results. Table 4 shows that the Bayes estimates of σ, R(t) and h(t) behave better, in terms of
the smallest St.Er values, than the others. A similar pattern is also noted when comparing
the asymptotic (including: ACI-NA/ACI-NL) intervals with the competitively credible
(including: BCI/HPD) intervals.

Additionally, from the remaining 40,000 iterations of σ, R(t) and h(t), several proper-
ties, including: mean, mode, first-quartileQ1, second (or median) quartileQ2, third-quartile
Q3, standard deviation (St.Dv) and skewness (Skew.) are estimated, see Table 5.

Figure 8 depicts the log-likelihood function for all obtained samples Si, i = 1, 2, 3 at
varying choices of σ. It reveals the existence and uniqueness of σ̂. One of the main issues in
Bayesian analysis is how to show that the simulated posterior samples converge weakly
to the true parameter. So, from Si, i = 1, 2, 3, Figure 9 displays both the density and trace
plots of σ, R(t), and h(t). For discrimination, the solid line refers to the Bayes estimate,
while the dashed lines refer to the BCI limits. Figure 9 indicates that the MCMC approach
converges favorably, and that the recommended size of the burn-in sample is large enough
to eliminate the impact of the proposed beginning values. It also supports the same results



Axioms 2023, 12, 618 18 of 26

listed in Table 5 and shows that the calculated estimates of σ and h(t) are positive-skewed
while those associated with R(t) are negative-skewed. Using sample S1 (as an example) in
Table 3, Figure 10 displays the BGR diagnostic plot and shows that there is no significant
difference between the acquired Markovian chains. It also indicates that eliminating the
first 10,000 iterations as burn-in is enough to discard the influence of initial guess values.

Table 3. Artificial T2GPHC samples from aircraft windshields data.

Sample T1(d1) T2(d2) R∗ T∗ Artificial Data

S1 4.8(43) 5.5(43) 1 4.8 0.040, 0.309, 0.943, 1.124, 1.281, 1.303, 1.480, 1.506, 1.615, 1.652,
1.757, 1.876, 1.911, 1.914, 2.010, 2.085, 2.097, 2.154, 2.194, 2.224,
2.300, 2.385, 2.610, 2.632, 2.661, 2.823, 2.902, 2.962, 3.000, 3.114,
3.166, 3.376, 3.467, 3.578, 3.699, 3.924, 4.121, 4.240, 4.278, 4.376,
4.485, 4.602, 4.663

S2 2.5(26) 4.6(42) 0 4.485 0.040, 0.557, 0.943, 1.070, 1.281, 1.303, 1.432, 1.506, 1.568, 1.615,
1.619, 1.652, 1.757, 1.866, 1.914, 1.981, 2.010, 2.038, 2.085, 2.089,
2.097, 2.190, 2.194, 2.223, 2.385, 2.481, 2.610, 2.625, 2.646, 2.902,
2.964, 3.000, 3.117, 3.166, 3.443, 3.578, 3.779, 4.240, 4.305, 4.376,
4.449, 4.485

S3 2.2(28) 3.7(40) 6 3.7 0.040, 0.301, 0.309, 0.557, 0.943, 1.070, 1.124, 1.248, 1.281, 1.281,
1.303, 1.432, 1.480, 1.505, 1.506, 1.568, 1.615, 1.619, 1.652, 1.652,
1.757, 1.866, 1.876, 1.899, 1.911, 1.912, 2.085, 2.154, 2.385, 2.481,
2.610, 2.646, 2.890, 2.962, 3.103, 3.166, 3.376, 3.443, 3.467, 3.595

Table 4. Estimates of σ, R(t) and h(t) from aircraft windshields data.

Sample Par. MLE MCMC ACI-NA BCI
ACI-NL HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S1 σ 9.2860 1.0830 9.2804 0.1963 7.1634 11.409 4.2451 8.8971 9.6642 0.7671
7.3885 11.671 4.2822 8.8997 9.6658 0.7661

R(1.5) 0.9223 0.0123 0.9221 0.0022 0.8981 0.9464 0.0483 0.9176 0.9264 0.0088
0.8984 0.9467 0.0483 0.9177 0.9265 0.0087

h(1.5) 0.1527 0.0204 0.1529 0.0045 0.1128 0.1926 0.0798 0.1445 0.1619 0.0174
0.1176 0.1983 0.0807 0.1444 0.1617 0.0173

S2 σ 7.8375 0.9622 7.8334 0.1947 5.9516 9.7235 3.7719 7.4513 8.2200 0.7687
6.1613 9.9698 3.8084 7.4401 8.2081 0.7680

R(1.5) 0.9023 0.0160 0.9022 0.0033 0.8710 0.9337 0.0627 0.8955 0.9084 0.0128
0.8715 0.9342 0.0627 0.8958 0.9086 0.0128

h(1.5) 0.1925 0.0253 0.1928 0.0065 0.1430 0.2420 0.0990 0.1804 0.2061 0.0257
0.1488 0.2489 0.1001 0.1799 0.2055 0.0256

S3 σ 6.0963 0.7473 6.0904 0.1940 4.6316 7.5610 2.9294 5.7121 6.4730 0.7609
4.7943 7.7520 2.9577 5.7140 6.4743 0.7603

R(1.5) 0.8642 0.0214 0.8638 0.0056 0.8222 0.9062 0.0841 0.8524 0.8743 0.0220
0.8232 0.9073 0.0841 0.8528 0.8747 0.0219

h(1.5) 0.2699 0.0307 0.2706 0.0115 0.2097 0.3301 0.1204 0.2491 0.2943 0.0452
0.2159 0.3373 0.1214 0.2483 0.2934 0.0451

Table 5. Properties for 40,000 MCMC iterations of σ, R(t) and h(t) from aircraft windshields data.

Sample Par. Mean Mode Q1 Q2 Q3 St.Dv Skew.

S1 σ 9.28038 9.03596 9.14744 9.27976 9.41397 0.19626 −0.01305
R(1.5) 0.92214 0.91933 0.92066 0.92219 0.92369 0.00224 −0.14448
h(1.5) 0.15294 0.14969 0.14986 0.15284 0.15588 0.00445 0.14790

S2 σ 7.83344 7.61917 7.70182 7.83284 7.96417 0.19464 0.01719
R(1.5) 0.90216 0.89858 0.90002 0.90224 0.90439 0.00325 −0.14971
h(1.5) 0.19279 0.18673 0.18832 0.19263 0.19708 0.00651 0.15563

S3 σ 6.09041 5.83385 5.95859 6.09008 6.22052 0.19394 0.02101
R(1.5) 0.86384 0.85630 0.86015 0.86402 0.86768 0.00560 −0.18068
h(1.5) 0.27064 0.25270 0.26271 0.27025 0.27822 0.01152 0.19304
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Figure 8. The log-likelihood of σ from aircraft windshields data.

(a) (b) (c)

Figure 9. Density (left) and Trace (right) plots of σ, R(t) and h(t) from aircraft windshields data.
(a) Sample S1; (b) Sample S2; (c) Sample S3.

0 10000 20000 30000 40000 50000

1
2

3
4

5

last iteration in chain

s
h
ri

n
k
 f
a
c
to

r

median

97.5%

Figure 10. The BGR diagnostic for MCMC draws of σ from aircraft windshields data.

One of the most challenging aspects of reliability inference is determining how to
discover the real behavior of the reliability R(t) parameter across all data points. Thus,
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in Figure 11, from Table 3, the two bounds of ACI-NA, ACI-NL, BCI and HPD interval
estimates are displayed. It demonstrates, in terms of the smallest interval width, that the
Bayes (BCI/HPD) interval limits perform superiorly compared to the asymptotic (ACI-
NA/ACI-NL) interval limits.
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Figure 11. Interval limits of R(t) at all aircraft windshields data points.

6.2. Wind Speed

Wind speed (or wind-flow speed) is a primary atmospheric phenomenon created by
air flowing from high-pressure regions to low pressure, often due to temperature variations.
The daily average speed of the wind under unpredictability is crucial for forecasting the
weather, aircraft and shipping construction, and building engineering. This application
analyzes a meteorological data set reflecting the daily average wind speed (AWS) data
from 1 January to 10 April 2009, in Cairo, Egypt. This data set was originally taken from
Ghazal and Hasaballah [41] and later reanalyzed by Cheema et al. [42]. For calculation
convenience, each point in the AWS data is divided by ten. The new transformed sample
points for AWS data are shown in Table 6. Using the complete AWS data, the MLE (with its
St.Er) of σ is 0.3867(0.0316) and also the K-S (with its p-value) is 0.0775(0.585). This result is
evidence that the AWS data set comes from the MB lifetime model.

Table 6. New transformed AWS data points.

0.27 0.31 0.32 0.32 0.33 0.35 0.35 0.38 0.38 0.38
0.42 0.42 0.43 0.43 0.43 0.44 0.45 0.47 0.47 0.48
0.49 0.49 0.49 0.49 0.50 0.50 0.51 0.52 0.52 0.53
0.54 0.54 0.54 0.54 0.55 0.55 0.56 0.56 0.56 0.57
0.57 0.57 0.58 0.58 0.60 0.61 0.63 0.64 0.66 0.67
0.67 0.68 0.68 0.68 0.68 0.69 0.71 0.73 0.73 0.73
0.74 0.75 0.76 0.76 0.77 0.78 0.79 0.80 0.80 0.82
0.82 0.86 0.87 0.88 0.89 0.93 0.93 0.94 0.94 0.94
0.95 0.96 0.98 0.98 0.99 1.00 1.01 1.03 1.06 1.07
1.11 1.13 1.20 1.22 1.24 1.25 1.33 1.38 1.44 1.47

Just like the scenarios examined in Section 6.1, to evaluate our acquired Bayesian and
non-Bayesian estimators of σ, R(t), and h(t), different T2GPHC samples from the AWS
data are created and provided in Table 7. From Table 7, the offered estimates of δ, θ, R(t),
and h(t) (at t = 0.5) obtained via maximum likelihood and Bayes estimation methodologies
are evaluated, see Table 8. It shows that acquired point and interval estimates derived
from the Bayes’ paradigm are quite close to those derived from the maximum-likelihood
approach. Interval estimates exhibit similar behavior as well. This is a foregone conclusion
owing to a lack of further historical data that could be employed, which resulted in no
substantial difference between the proposed frequentist and Bayesian estimations.
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Table 7. Artificial T2GPHC samples from AWS data.

Sample T1(d1) T2(d2) R∗ T∗ SArtificial Data

S1 1.6(51) 1.9(51) 1 1.8 0.27, 0.32, 0.32, 0.33, 0.35, 0.38, 0.38, 0.43, 0.43, 0.43, 0.44, 0.50, 0.51, 0.52, 0.53,
0.54, 0.54, 0.56, 0.56, 0.58, 0.60, 0.61, 0.63, 0.67, 0.67, 0.68, 0.68, 0.68, 0.69, 0.73,
0.73, 0.76, 0.76, 0.80, 0.82, 0.82, 0.86, 0.89, 0.93, 0.94, 0.95, 0.96, 0.98, 0.99, 1.06,
1.07, 1.20, 1.24, 1.33, 1.44, 1.47

S2 0.9(35) 1.5(50) 0 1.33 0.27, 0.32, 0.32, 0.35, 0.35, 0.38, 0.44, 0.45, 0.48, 0.49, 0.51, 0.52, 0.52, 0.53, 0.54,
0.54, 0.56, 0.56, 0.56, 0.57, 0.58, 0.58, 0.60, 0.61, 0.63, 0.67, 0.68, 0.73, 0.79, 0.80,
0.80, 0.82, 0.87, 0.88, 0.89, 0.93, 0.93, 0.94, 0.94, 0.94, 0.95, 0.96, 1.06, 1.07, 1.11,
1.20, 1.22, 1.24, 1.25, 1.33

S3 0.6(31) 1.1(48) 6 1.1 0.27, 0.31, 0.32, 0.32, 0.33, 0.35, 0.35, 0.38, 0.38, 0.38, 0.42, 0.42, 0.43, 0.43, 0.43,
0.44, 0.45, 0.47, 0.47, 0.48, 0.49, 0.49, 0.49, 0.49, 0.50, 0.50, 0.52, 0.54, 0.55, 0.55,
0.57, 0.61, 0.66, 0.67, 0.68, 0.71, 0.73, 0.76, 0.80, 0.82, 0.86, 0.87, 0.88, 0.89, 0.93,
0.93, 0.94, 0.96

Table 8. Estimates of σ, R(t) and h(t) from AWS data.

Sample Par. MLE MCMC ACI-NA BCI
ACI-NL HPD

Est. SE Est. SE Lower Upper Width Lower Upper Width

S1 σ 0.6995 0.0768 0.7045 0.0685 0.5490 0.8501 0.3011 0.5806 0.8478 0.2671
0.5641 0.8675 0.3034 0.5772 0.8434 0.2663

R(0.5) 0.8697 0.0185 0.8692 0.0164 0.8334 0.9060 0.0726 0.8348 0.8988 0.0640
0.8342 0.9068 0.0726 0.8372 0.9005 0.0633

h(0.5) 0.7756 0.0808 0.7793 0.1009 0.6172 0.9339 0.3167 0.5988 0.9930 0.3942
0.6323 0.9512 0.3189 0.5883 0.9779 0.3896

S2 σ 0.5045 0.0566 0.5076 0.0520 0.3936 0.6154 0.2219 0.4149 0.6180 0.2031
0.4049 0.6286 0.2237 0.4111 0.6120 0.2009

R(0.5) 0.8034 0.0269 0.8024 0.0244 0.7507 0.8561 0.1055 0.7518 0.8473 0.0955
0.7524 0.8579 0.1055 0.7528 0.8480 0.0951

h(0.5) 1.1939 0.0946 1.2024 0.1594 1.0086 1.3793 0.3707 0.9146 1.5374 0.6228
1.0223 1.3945 0.3722 0.8984 1.5174 0.6191

S3 σ 0.5889 0.0656 0.5941 0.0606 0.4603 0.7174 0.2571 0.4863 0.7215 0.2352
0.4734 0.7326 0.2592 0.4845 0.7174 0.2329

R(0.5) 0.8377 0.0227 0.8373 0.0207 0.7931 0.8823 0.0891 0.7944 0.8748 0.0804
0.7943 0.8835 0.0892 0.7955 0.8755 0.0801

h(0.5) 0.9748 0.0903 0.9783 0.1306 0.7978 1.1518 0.3540 0.7441 1.2522 0.5081
0.8129 1.1689 0.3559 0.7398 1.2456 0.5057

To highlight the existence and uniqueness of σ̂, Figure 12 displays the log-likelihood
function using samples Si, i = 1, 2, 3 from AWS data. It supports the same findings reported
in Table 8 and shows that the acquired MLE of σ exists and is unique. Again, using the
same characteristics investigated in Table 9, the vital statistics of σ, R(t) and h(t) are also
calculated from AWS data and presented in Table 9. Moreover, to examine the converge
status of the proposed MCMC process, both density and trace plots of σ, R(t) and h(t)
based on samples Si, i = 1, 2, 3 are shown in Figure 13. It shows that the MCMC approach
efficiently converges and that the simulated posterior variates of σ and h(t) are positively
skewed, while those associated with R(t) are negatively skewed. Using sample S1 (as an
example) in Table 7, Figure 14 demonstrates that eliminating the first 10,000 iterations as
burn-in is sufficient to remove the effect of initial estimate values. It also supports the same
conclusion drawn from Figure 13. Using each Si for i = 1, 2, 3, Figure 15 displays the two
bounds of all acquired interval estimates at significance level 5%. It is evidence that the
BCI and HPD interval limits are very close to the asymptotic interval limits obtained by the
NA and NL procedures.
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Table 9. Properties for 40,000 MCMC iterations of σ, R(t) and h(t) from AWS data.

Sample Par. Mean Mode Q1 Q2 Q3 St.Dv Skew.

S1 σ 0.70445 0.67695 0.65687 0.70079 0.74852 0.06836 0.32082
R(0.5) 0.86922 0.86409 0.85873 0.87003 0.88071 0.01637 −0.31549
h(0.5) 0.77927 0.81031 0.70833 0.77371 0.84346 0.10087 0.35387

S2 σ 0.50757 0.50121 0.47141 0.50375 0.54113 0.05196 0.37154
R(0.5) 0.80238 0.80184 0.78658 0.80305 0.81964 0.02442 −0.23096
h(0.5) 1.20241 1.18553 1.08945 1.19628 1.30397 0.15917 0.29797

S3 σ 0.59408 0.57701 0.55152 0.59051 0.63255 0.06037 0.34675
R(0.5) 0.83733 0.83350 0.82384 0.83826 0.85175 0.02065 −0.27257
h(0.5) 0.97825 1.00134 0.88679 0.97127 1.06262 0.13052 0.32378
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Figure 12. The log-likelihood of σ from AWS data.

(a) (b) (c)

Figure 13. Density (left) and Trace (right) plots of σ, R(t) and h(t) from AWS data. (a) Sample S1;
(b) Sample S2; (c) Sample S3.
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Figure 14. The BGR diagnostic for MCMC draws of σ from AWS data.

Ultimately, based on the proposed engineering and physical applications, we can
conclude that the examined methodologies give an appropriate interpretation of the
Maxwell–Boltzmann lifespan model when a sample is created by the generalized Type-II
progressive hybrid censored process.
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Figure 15. Interval limits of R(t) at all AWS data points.

7. Concluding Remarks

A new extended censoring strategy, which provides the longest duration that the exam-
iner endures to allow the study to run, called the generalized Type-II progressively hybrid
process, has been explored in the presence of data collected from the Maxwell–Boltzmann
population. Using this sampling strategy, this work takes into account the parametric
inference of the unknown model parameter, reliability, and hazard rate functions of the
Maxwell–Boltzmann lifetime model. The frequentist and Bayes estimates of the unknown
parameters have also been acquired. The asymptotic confidence intervals of the unknown
quantities using the asymptotic distribution of the likelihood and log-transformed likeli-
hood estimates have been obtained. Two R programming languages, namely: ‘maxLik’ and
‘coda’ packages, have been used to evaluate the offered maximum likelihood and Bayes
estimates, respectively. As we anticipated, because the joint likelihood function has been
constructed in complex form, the posterior density function has also been obtained in
nonlinear form. As a result, the Metropolis-Hastings approach has been recommended to
acquire the Bayesian estimates and accompanying Bayes credible and highest posterior
density intervals. Squared-error loss and inverted gamma prior information functions have
been considered to produce the Bayes point/interval estimates. To examine the behavior of
the provided estimates, several simulation experiments have been performed using various
combinations of total test units, observed failure data, thresholds, and progressive censor-
ing strategies. Two examples from the engineering and physics industries, to demonstrate
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the utility of the suggested estimating approaches and how the provided estimators may
be utilized in practice, have been explored. The Bayes’ Metropolis-Hastings paradigm
has been recommended for estimating the Maxwell–Boltzmann distribution’s parameters,
reliability, and hazard functions based on generalized Type-II progressive hybrid censored
data. As a future work, one can consider the inferential methodologies suggested in this
work for other extended Maxwell models, for example, power Maxwell, Maxwell-Weibull,
or alpha power Maxwell distributions, among others. We hope that the findings and
techniques given here will be valuable to reliability practitioners and data analysts.
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