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Abstract: On a descriptive level, this paper presents a number of logical fragments which require the
Boolean algebra B5, i.e., bitstrings of length five, for their semantic analysis. Two categories from
the realm of natural language quantification are considered, namely, proportional quantification
with fractions and percentages—as in two thirds/66 percent of the children are asleep—and normative
quantification—as in not enough/too many children are asleep. On a more theoretical level, we study
two distinct Aristotelian subdiagrams in B5, which are the result of moving from B5 to B4 either by
collapsing bit positions or by deleting bit positions. These two operations are also argued to shed a
new light on earlier results from Logical Geometry, in which the collapsing or deletion of bit positions
triggers a shift from B4 to B3.
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1. Introduction

In recent work on Logical Geometry, two topics have been studied in great detail,
namely, logic sensitivity and Boolean subfamilies of Aristotelian families. In both cases the
toolkit of bitstring semantics plays a crucial role in the analysis. A classical Aristotelian
square can be captured by bitstrings of length three, whereas a degenerate square requires
bitstrings of length four [1]. Similarly, a strong Jacoby–Sesmat–Blanché hexagon can
be encoded with bitstrings of length three, whereas its weak counterpart requires length
four [1–6]. On the level of octagons, the Aristotelian family of Buridan octagons has Boolean
subtypes of bitstring lengths four, five and six [7–11], whereas the Aristotelian family of
Keynes–Johnson octagons has Boolean subtypes of bitstring lengths six and seven [12–14].
Finally, logic sensitivity and existential import also distinguish the two octagons studied in
the present Special Issue Volume for the interaction between the quantifiers all and most:
the logical system without existential import requires bitstrings of length six, whereas the
one with existential import requires bitstings of length five.

The aim of the present paper—in which bitstrings play a central role as well—is
twofold. First of all, on a more DESCRIPTIVE level, we want to present a number of logical
fragments from the realm of natural language quantification whose semantic analysis
requires bitstrings of length five. Secondly, on a more THEORETICAL level, we want to study
the notion of Aristotelian subdiagrams in terms of two types of general transformations on
bitstrings. The paper is structured as follows. In Section 2, we introduce the basic concepts:
bitstrings, the Boolean algebras B3, B4 and B5 and Aristotelian relations within these
algebras. In Section 3, we present logical fragments with expressions from two domains of
natural language quantification which is given a semantic analysis in terms of B5, namely,
proportional quantification with fractions and percentages—as in two thirds/66 percent of
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the children are asleep—and normative quantification—as in not enough/too many children are
asleep. In Section 4, we present two distinct Aristotelian subdiagrams in B5 which are the
result of moving from B5 to B4 either by collapsing bit positions or by deleting bit positions.
In Section 5, we show how these two operations also shed a new light on earlier results
from Logical Geometry, in which the collapsing or deletion of bit positions from B4 to B3
yields different subdiagrams for B4. In Section 6, we draw conclusions and point to some
prospects for further research.

2. Bitstrings, Boolean Algebras and Aristotelian Relations

In Logical Geometry, a BITSTRING is defined as a string of bit values, i.e., a sequence of
values 0 or 1, such as 100, 1001 or 11011. In the present paper, we focus on sets of bitstrings
BSn for 3 ≤ n ≤ 5, i.e., bitstrings consisting of three, four or five positions:

BS3 := {0, 1}3 = {000, 001, . . . , 110, 111}
BS4 := {0, 1}4 = {0000, 0001, . . . 1110, 1111}
BS5 := {0, 1}5 = {00000, 00001, . . . , 11110, 11111}

A set BSn contains 2n logically possible combinations: i.e., |BS3| = 23 = 8,
|BS4| = 24 = 16 and |BS5| = 25 = 32. Furthermore, the standard BOOLEAN OPERA-
TIONS of complementation (¬), conjunction (∧) and disjunction (∨) can straightforwardly
be defined on bitstrings, as illustrated for some elements of BS5:

¬ ∧ ∨
11100 11000

11000 00111 00011
= = =

00111 00100 11011

Complementation takes a bitstring and returns its complement bitstring with opposite
values in all bit positions, whereas conjunction and disjunction take two bitstrings as input
and compute the result bit position by bit position in the way the propositional connectives
do in truth tables. The BOOLEAN ALGEBRA Bn can then be defined as follows:

Bn := 〈BSn,¬,∧,∨,>n,⊥n〉

i.e., as a mathematical structure consisting of six components: (1) the set of bitstrings BSn,
the Boolean operations of (2) complementation ¬, (3) conjunction ∧ and (4) disjunction ∨,
and the two special elements (5) top >n and (6) bottom ⊥n. The latter two are the bitstrings
exclusively consisting of values 1 and those exclusively consisting values 0, respectively:

>3 := 111 >4 := 1111 >5 := 11111
⊥3 := 000 ⊥4 := 0000 ⊥5 := 00000

In the framework of Logical Geometry [1,15], a central object of investigation is the so-
called ‘Aristotelian square’ or ‘square of opposition’, visualising ARISTOTELIAN RELATIONS,
i.e., logical relations of opposition and implication. Informally, two propositions α and β
are said to be

contradictory CD(α,β) iff α and β cannot be true together and
α and β cannot be false together,

contrary CR(α,β) iff α and β cannot be true together but
α and β can be false together,

subcontrary SCR(α,β) iff α and β can be true together but
α and β cannot be false together,

in subalternation SA(α,β) iff α entails β but β does not entail α.

These Aristotelian relations—as defined between formulas—can be straightforwardly
‘reformulated’ in terms of Boolean operations on bitstrings. The bitstrings b1 and b2 ∈ BSn
are said to be
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n-contradictory iff b1 ∧ b2 = ⊥n and b1 ∨ b2 = >n,
n-contrary iff b1 ∧ b2 = ⊥n and b1 ∨ b2 6= >n,
n-subcontrary iff b1 ∧ b2 6= ⊥n and b1 ∨ b2 = >n,
in n-subalternation iff b1 ∧ b2 = b1 and b1 ∨ b2 6= b1.

As demonstrated below, the two bitstrings 11000, 00111 ∈ BS5 are 5-contradictory since
their conjunction equals ⊥5—there is no ‘overlap’ in any bit position—and their disjunction
equals >5—there is no ‘gap’ in any bit position either. The bitstrings 11000, 00011 ∈ BS5,
by contrast, are 5-contrary since their conjunction again equals ⊥5—there is no ‘overlap’—
but their disjunction does not equal >5—there is indeed a ‘gap’ in the third bit position:

contradiction contrariety
∧ ∨ ∧ ∨

11000 11000 11000 11000
00111 00111 00011 00011

00000 11111 00000 11011

3. Fragments for the Boolean Algebra B5

In Logical Geometry, bitstrings—in particular (but not only) those from the Boolean
algebras B3, B4 and B5 introduced in Section 2—have been used as compact representations
of the denotations of logical formulas and various fragments of natural language expres-
sions. Thus, the B3 structure underlies, among others, the classical Aristotelian square and
its extension to the (strong) Jacoby–Sesmat–Blanché hexagon [1,6]. The B4 structure under-
lies, among others, the propositional connectives and the modal logic S5 [16,17], and the B5
structure underlies, among others, the negative un-prefixation with scalar adjectives, as in
not (un)wise [18]. In the present section, we will present a number of logical fragments with
expressions from two domains of natural language quantification that are also analysable in
terms of B5, namely, that of proportional quantification (Section 3.1) and that of normative
quantification (Section 3.2).

3.1. Proportional Quantification in B5

Two standard ways to express the notion of proportional quantification in natural
language are by means of fractions (such as more than one third/at least three quarters) or
percentages (such as exactly seventy five percent). On its standard reading in Generalized
Quantifier Theory [19–21], the sentence at least 3

4 of the A’s are B is true iff the number of
A’s that are B is greater than or equal to 3

4 of the number of A’s. Starting from this basic
formula at least 3

4 (A,B), we can then negate either the complete formula, or the predicate B,
or both. This yields a first fragment for the system of PROPORTIONAL QUANTIFICATION

(PQ), i.e., F1, which is listed here, together with the formulas’ denotations in the standard
set-theoretical notation format of Generalized Quantifier Theory (GQT):

F1 := { at least 3
4 (A,B), |A ∩ B| ≥ 3

4 |A|
less than 3

4 (A,B), |A ∩ B| < 3
4 |A|

at least 3
4 (A,¬B), |A \ B| ≥ 3

4 |A|
less than 3

4 (A,¬B) } |A \ B| < 3
4 |A|

Now one crucial property of proportional quantifiers is the relation of COMPLEMEN-
TARITY between a given fraction 3

4 or percentage 75% and its complement fraction 1
4 or

percentage 25%, i.e., what you need to add to the original fraction or percentage to obtain
4
4 = 1 or 100%, respectively. We will henceforth informally refer to the original fraction
3
4 as the ‘large’ fraction, and to its complement 1

4 as the ‘small’ fraction. From the logical
equivalence between the proposition at least 3

4 of the students passed the test and at most 1
4 of

the students failed the test, we can now infer the particular interaction between the quantifiers,
the complementarity of the fractions, and the predicate negation. In particular, at least
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3
4 (A,B) ≡ at most 1

4 (A,¬B). This allows us to (1) reformulate the fragment F1 above as the
first four formulas of the fragment F1′ below, and to (2) expand the original fragment
by adding two formulas which crucially involve Boolean combinations of the large and
small fractions:

F1′ := { at least 3
4 (A,B), |A ∩ B| ≥ 3

4 |A|
less than 3

4 (A,B), |A ∩ B| < 3
4 |A|

at most 1
4 (A,B), |A ∩ B| ≤ 1

4 |A|
more than 1

4 (A,B), |A ∩ B| > 1
4 |A|

between 1
4 and 3

4 (A,B), 3
4 |A| ≥ |A ∩ B| ≥ 1

4 |A|
more than 3

4 or less than 1
4 (A,B) } |A ∩ B| > 3

4 |A| ∨ |A ∩ B| < 1
4 |A|

Let us now turn to the partition ΠPQ induced by this fragment F1′ , consisting of five
ANCHOR FORMULAS αn (the technical procedure to generate this type of partition on the
basis of a particular logical fragment is described in full detail in [1]):

ΠPQ(F1′) = { α1: more than 3
4 (A,B), |A ∩ B| > 3

4 |A|
α2: exactly 3

4 (A,B), |A ∩ B| = 3
4 |A|

α3: less than 3
4 but more than 1

4 (A,B), 3
4 |A| > |A ∩ B| > 1

4 |A|
α4: exactly 1

4 (A,B), |A ∩ B| = 1
4 |A|

α5: less than 1
4 (A,B) } |A ∩ B| < 1

4 |A|

In a second step, the bitstring semantics is defined, not just for the fragment F1′ itself,
but rather for its entire BOOLEAN CLOSURE in PQ, denoted BPQ(F1′) and defined as the
smallest set C ⊆ LPQ such that (i) F1′ ⊆ C and (ii) C is closed under the Boolean operations
(up to logical equivalence), i.e., for all ϕ, ψ ∈ C, there exist α, β ∈ C such that α ≡PQ ϕ ∧ ψ
and β ≡PQ ¬ϕ. The bitstring semantics βPQ maps every formula ϕ ∈ BPQ(F1′) onto its
bitstring representation βPQ(ϕ), which is a sequence of bits that will have the value 1 in
its ith bit position iff |=PQ αi → ϕ. Given that |ΠPQ(F1′)| = 5, the BITSTRING SEMANTICS

βPQ for BPQ(F1′) is defined in terms of the Boolean algebra B5, i.e., bitstrings of length
five. In particular, the resulting bitstrings for the formulas of F1′ are

βPQ(at least 3
4 (A,B)) = 11000 |A ∩ B| ≥ 3

4 |A|
βPQ(less than 3

4 (A,B)) = 00111 |A ∩ B| < 3
4 |A|

βPQ(at most 1
4 (A,B)) = 00011 |A ∩ B| ≤ 1

4 |A|
βPQ(more than 1

4 (A,B)) = 11100 |A ∩ B| > 1
4 |A|

βPQ(between 1
4 and 3

4 (A,B)) = 01110 3
4 |A| ≥ |A ∩ B| ≥ 1

4 |A|
βPQ(more than 3

4 or less than 1
4 (A,B)) = 10001 |A ∩ B| > 3

4 |A| ∨ |A ∩ B| < 1
4 |A|

Since the bitstring 11000 assigned to at least 3
4 contains two values 1, it is referred to as

a LEVEL-2 bitstring. It corresponds to the disjunction of the first two anchor formulas in the
partition ΠPQ(F1′), i.e., α1 ∨ α2, and thus reflects the disjunctive semantics of at least 3

4 as
exactly or more than 3

4 . Completely analogously, the 00011 bitstring for at most 1
4 expresses

the disjunction α4 ∨ α5, i.e., exactly or less than 1
4 . Similarly, the level-3 bitstring 01110 for

between 1
4 and 3

4 captures the disjunction of the middle three anchor formulas α2 ∨ α3 ∨ α4,
namely, (exactly 3

4 ) or (less than 3
4 but more than 1

4 ) or (exactly 1
4 ).

It can now easily be demonstrated that the first four formulas in F1′ constitute a
classical Aristotelian square: at least 3

4 (11000) and less than 3
4 (00111) are contradictory,

and so are at most 1
4 (00011) and more than 1

4 (11100). In addition, at least 3
4 (11000) and

at most 1
4 (00011) are contrary, whereas less than 3

4 (00111) and more than 1
4 (11100) are

subcontrary. Notice that these same four formulas/bitstrings can also be shown to yield
a so-called DUALITY SQUARE—in terms of logical relations of external, internal and dual
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negation—but, as was argued in full detail in [22], it is crucial to keep in mind the logical
independence of Aristotelian and duality notions.

The scalar structure underlying the pentapartition of ΠPQ(F1′) is visualised in Figure 1a,
where the two precise indications of the large fraction for α2 and its complementary small
fraction for α4 are represented as two points on the scale, whereas the other three parts of
logical space—i.e., α1, α3 and α5—are represented as intervals on the scale.

Figure 1. (a) Scalar structure for proportional quantifiers in B5 (b) moving complementary fractions
outwards (c) moving complementary fractions inwards (d) collapsing into tripartition for standard
quantifiers in B3 (e) collapsing into tripartition for numerical quantifiers in B3.

Starting from this basic constellation in Figure 1a, there are two general strategies
for changing the location of the two ‘points’ on the scale, both of which of course have to
respect the property of complementarity, i.e., the large fraction and the small fraction will
always have to be moved in opposite directions. On the first strategy—visually represented
in Figure 1b—the complementary fractions are moving OUTWARD: the large fraction moves
to the left in the direction of 4

4 , whereas the small fraction moves to the right in the direction
of 0

4 , resulting in the new fragment F2:

F2 := { at least 4
4 (A,B), |A ∩ B| ≥ 4

4 |A|
less than 4

4 (A,B), |A ∩ B| < 4
4 |A|

at most 0
4 (A,B), |A ∩ B| ≤ 0

4 |A|
more than 0

4 (A,B), |A ∩ B| > 0
4 |A|

between 0
4 and 4

4 (A,B), 4
4 |A| ≥ |A ∩ B| ≥ 0

4 |A|
more than 4

4 or less than 0
4 (A,B) } |A ∩ B| > 3

4 |A| ∨ |A ∩ B| < 1
4 |A|

In a first step, we can now generate the partition ΠPQ(F2) induced by this new fragment,
as a simple modification of the original pentapartition:

ΠPQ(F2) = { α∗1 : more than 4
4 (A,B), |A ∩ B| > 4

4 |A|
α∗2 : exactly 4

4 (A,B), |A ∩ B| = 4
4 |A|

α∗3 : less than 4
4 but more than 0

4 (A,B), 0
4 |A| < |A ∩ B| < 4

4 |A|
α∗4 : exactly 0

4 (A,B), |A ∩ B| = 0
4 |A|

α∗5 : less than 0
4 (A,B) } |A ∩ B| < 0

4 |A|

In theory, this partition would again give rise to a new bitstring semantics in terms of B5,
i.e., bitstrings of length five. However, no value can be assigned to α∗1 and α∗5 since both
more than 4

4 (A,B) and less than 0
4 (A,B) are contradictory formulas:



Axioms 2023, 12, 604 6 of 16

βPQ(at least 4
4 (A,B)) = -100- |A ∩ B| ≥ 4

4 |A|
βPQ(less than 4

4 (A,B)) = -011- |A ∩ B| < 4
4 |A|

βPQ(at most 0
4 (A,B)) = -001- |A ∩ B| ≤ 0

4 |A|
βPQ(more than 0

4 (A,B)) = -110- |A ∩ B| > 0
4 |A|

βPQ(between 0
4 and 4

4 (A,B)) = -111- 4
4 |A| ≥ |A ∩ B| ≥ 0

4 |A|
βPQ(more than 4

4 or less than 0
4 (A,B)) = -000- |A ∩ B| > 3

4 |A| ∨ |A ∩ B| < 1
4 |A|

Notice that the last two formulas—with their Boolean combinations of a large and a small
fraction—have become non-contingent: between 0

4 and 4
4 (A,B) is always true, whereas more

than 4
4 or less than 0

4 (A,B) is always false. In this respect, the fragment F2 violates the second
of the two standard assumptions for fragments in Logical Geometry, namely, (1) that they
be closed under negation (which is still the case) and (2) that they only contain contingent
formulas. As illustrated in the transition from Figure 1b to Figure 1d above, the collapsing
of the bit positions for α1 and α2 at the extreme left end of the scalar structure, and of those
for α4 and α5 at the extreme right end, yield a tripartition. This tripartition can now easily
be shown to underly the quantifiers of the logical system for SYLLOGISTICS (SYL), i.e., the
standard quantifiers of predicate logic with existential import [1]. After the elimination of
the two non-contingent formulas, the fragment F2 can thus be reformulated as the four
formula fragment F2′ :

F2′ := { all(A,B), |A ∩ B| = |A|
not all(A,B), |A ∩ B| < |A|

no(A,B), |A ∩ B| = 0

some(A,B) } |A ∩ B| > 0

This fragment induces the partition ΠSYL(F2′)—visually represented as the scalar structure
in Figure 1d—which underlies the bitstring semantics βSYL in terms of B3, i.e., bitstrings of
length three:

ΠSYL(F2′) = { α′2: all(A,B), |A ∩ B| = |A|
α′3: some but not all(A,B), 0 < |A ∩ B| < |A|
α′4: no(A,B) } |A ∩ B| = 0

βSYL(all(A,B)) = 100 |A ∩ B| = |A|
βSYL(not all(A,B)) = 011 |A ∩ B| < |A|
βSYL(no(A,B)) = 001 |A ∩ B| = 0

βSYL(some(A,B)) = 110 |A ∩ B| > 0

Starting from the basic constellation in Figure 1a, the second strategy for changing the
location of the two ‘points’ on the scale—visually represented in Figure 1c—moves the
complementary fractions INWARD. This again respects the property of complementarity,
according to which the large and small fractions have to be moved in opposite directions:
the large fraction moves to the right and the small one to the left, in order for them to
coincide in the ‘exactly half’ fraction in the center of the structure. This results in the new
fragment F3:

F3 := { at least 2
4 (A,B), |A ∩ B| ≥ 2

4 |A|
less than 2

4 (A,B), |A ∩ B| < 2
4 |A|

at most 2
4 (A,B), |A ∩ B| ≤ 2

4 |A|
more than 2

4 (A,B), |A ∩ B| > 2
4 |A|

between 2
4 and 2

4 (A,B), 2
4 |A| ≥ |A ∩ B| ≥ 2

4 |A|
more than 2

4 or less than 2
4 (A,B) } |A ∩ B| > 2

4 |A| ∨ |A ∩ B| < 2
4 |A|
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The bit positions for α2, α3 and α4 in the original pentapartition ΠPQ(F1′) above collapse
into a single bit position in the centre of the scalar structure. The resulting tripartition—
ΠPQ(F3)—underlies the bitstring semantics β′PQ in terms ofB3, i.e., bitstrings of length three:

ΠPQ(F3) = { α”1: more than 2
4 (A,B), |A ∩ B| > 2

4 |A|
α”3: exactly 2

4 (A,B), |A ∩ B| = 2
4 |A|

α”5: less than 2
4 (A,B) } |A ∩ B| < 2

4 |A|

β′PQ(at least 2
4 (A,B)) = 110 |A ∩ B| ≥ 2

4 |A|
β′PQ(less than 2

4 (A,B)) = 001 |A ∩ B| < 2
4 |A|

β′PQ(at most 2
4 (A,B)) = 011 |A ∩ B| ≤ 2

4 |A|
β′PQ(more than 2

4 (A,B)) = 100 |A ∩ B| > 2
4 |A|

β′PQ(between 2
4 and 2

4 (A,B)) = 010 2
4 |A| ≥ |A ∩ B| ≥ 2

4 |A|
β′PQ(more than 2

4 or less than 2
4 (A,B)) = 101 |A ∩ B| > 2

4 |A| ∨ |A ∩ B| < 2
4 |A|

Observe, first of all, that—in contrast to the last two formulas in the fragment F2 above—
the last two formulas in F3 have not become non-contingent: between 2

4 and 2
4 (A,B) ≡ exactly

half(A,B) and more than 2
4 or less than 2

4 (A,B) ≡ not exactly half(A,B). Secondly, this analysis
of the six formulas in F3 is isomorphic to that for the six formulas that standardly show
up in the realm of numerical (but non-proportional) quantification, namely, more/less than
2(A,B), at least/most 2(A,B) or (not) exactly 2(A,B), the scalar structure of which is visualised
in Figure 1e. Thirdly, the tripartition ΠPQ(F3) also plays a crucial role in the construction
of the two octagons studied in the present Special Issue Volume for the interaction between
the quantifiers all and most [23].

3.2. Normative Quantification in B5

We now turn to a second domain of natural language quantification, namely, that
of normative expressions such as (not) enough and too many/few. Both conceptually and
technically, the analysis of these normative quantifiers turns out to be very closely related
to that of the proportional quantifiers in Section 3.1 in terms of the pentapartition of B5.
Furthermore, these quantifiers allow us to establish the precise connection that this Special
Issue is dedicated to, namely, that between Modal Logic and Logical Geometry. In particular,
the semantics of the quantifiers (not) enough and (not) too many crucially involves the deontic
modal notions of ‘(minimal) amount required’ and ‘(maximal) amount allowed’. Suppose
we want to go on a sailing trip and we need at least four people to sail the boat, but the boat
can carry at most eight people. In this context, the proposition Not enough people showed up
for the sailing trip is true if the number of people that actually showed up is smaller than the
minimal number required for the sailing. Similarly, the proposition Too many people showed
up for the sailing trip is true if the number of people that actually showed up is greater than
the maximal number allowed for the sailing.

In order to capture this ‘deontic quantification’, we first of all expand the standard
GQT toolkit with two deontic operators taking scope over one-place predicates. Thus,
in addition to |A ∩ B| for the number of A’s that are actually B, we define |A ∩�(B)| as the
number of A’s that are required to be B and |A∩�(B)| as the number of A’s that are allowed
to be B. Secondly, in addition to |A| for the actual number of A’s, we add the operators
min|A| and max|A| for the minimal and maximal number of A’s, respectively. Thirdly,
in the realm of normative quantification, the numerical operators min/max and the deontic
operators �/� interact in a very specific way, in the sense that the notion of the lower
boundary combines min with the � of obligation, whereas that of the upper boundary
combines max with the � of permission. This allows us to define a new fragment for the
system of NORMATIVE QUANTIFICATION (NQ), i.e., F4, which is listed here, together with
the formulas’ denotations in the ‘extended’ set-theoretical notation format of GQT:
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F4 := { too many(A,B), |A ∩ B| > max|A ∩�(B)|
not too many(A,B), |A ∩ B| ≤ max|A ∩�(B)|

not enough(A,B), |A ∩ B| < min|A ∩�(B)|
enough(A,B), |A ∩ B| ≥ min|A ∩�(B)|

enough but not too many(A,B), max|A ∩�(B)| ≥ |A ∩ B|
≥ min|A ∩�(B)|

too many or too few(A,B) } |A ∩ B| > max|A ∩�(B)|
∨|A ∩ B| < min|A ∩�(B)|

Conceptually speaking, there is a clear similarity between the two ‘points’ α2 and α4 on
the proportional scale—for the large and small proportion respectively—on the one hand,
and the normative contrast between an upper boundary α′2 for ‘(exactly) maximally admis-
sible’ and a lower boundary α′4 for ‘(exactly) minimally required’. Hence, the normative
pentapartition ΠNQ for the fragment F4 appears as follows:

ΠNQ(F4) = { α′1: too many(A,B), |A ∩ B| > max|A ∩�(B)|
α′2: just not too many(A,B), |A ∩ B| = max|A ∩�(B)|
α′3: not just not too many max|A ∩�(B)| > |A ∩ B|

but not just enough(A,B), > min|A ∩�(B)|
α′4: just enough(A,B), |A ∩ B| = min|A ∩�(B)|
α′5: not enough(A,B) } |A ∩ B| < min|A ∩�(B)|

Given this pentapartition, the bitstring semantics βNQ for the Boolean closure of the
fragment—BNQ(F4)—is defined in terms of B5, i.e., bitstrings of length five. For the
actual formulas of F4, the resulting bitstrings are the following:

βNQ(too many(A,B)) = 10000 |A ∩ B| > max|A ∩�(B)|
βNQ(not too many(A,B)) = 01111 |A ∩ B| ≤ max|A ∩�(B)|
βNQ(not enough(A,B)) = 00001 |A ∩ B| < min|A ∩�(B)|
βNQ(enough(A,B)) = 11110 |A ∩ B| ≥ min|A ∩�(B)|
βNQ(enough but not too many(A,B)) = 01110 max|A ∩�(B)| ≥ |A ∩ B|

≥ min|A ∩�(B)|
βNQ(too many or too few(A,B)) = 10001 |A ∩ B| > max|A ∩�(B)|

∨|A ∩ B| < min|A ∩�(B)|

In Section 3.1, we describe two strategies which yielded a reduction or collapse from the
pentapartition of B5 to the tripartition of B3 in the realm of proportional quantification.
On the one hand, the two proportional points on the scale could be moved ‘outward’—away
from one another—so as to ultimately reach the trivial proportions n

n and 0
n at the highest

and lowest extreme ends of the scalar structure, as visualised in Figure 1b or Figure 1d.
On the other hand, the two complementary proportional points could be moved ‘inward’—
towards one another—so as to ultimately coincide at the ‘halfway’ proportion n

2n in the
center of the scale, as visualised in Figure 1c or Figure 1e.

Although both strategies are also available in principle for the B5 structure underlying
the realm of normative quantification, there is one crucial difference between the two types
of quantification. With the proportional quantifiers, the large and small proportions are by
necessity connected to one another through their relationship of complementarity. With the
normative quantifiers, by contrast, the upper and lower boundary are independent in
principle, or at least do not stand in the very strong relationship of complementarity.

As for the strategy of moving the normative boundary points outward, it is thus
perfectly possible to move one of the boundaries outward without moving the other. As a
consequence, the possible collapse of the α′1 interval beyond the α′2 upper boundary is
logically independent of the collapse of the α′5 interval beyond the α′4 lower boundary.
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One could argue, for instance, that with a proposition such as Too many people care for the
planet the α′1 interval should be eliminated, since everybody should care for the planet,
i.e., it should not be possible to surpass any maximal number of people allowed to care for
the planet. Unlike with the proportional quantifiers, however, this elimination of the α′1
interval does not automatically trigger that of the α′5 interval beyond the α′4 lower boundary,
since—sadly enough, indeed—Not enough people care for the planet. Conversely, with the
proposition Not enough people ignore the global water shortage, the desired elimination of the
α′5 interval—i.e., the impossibility to go below any minimal number of people required
to ignore—does not automatically trigger that of the α′1 interval beyond the α′2 upper
boundary, since—sadly enough again—Too many people do indeed ignore the global water
shortage. What these two examples reveal is that in the case of normative quantification,
the reduction is not automatically from B5 to B3, but can also be to B4, when only α′1 or
only α′5 is eliminated. Precisely such reductions from B5 to B4 will play a crucial role in
Section 4—albeit on a somewhat more abstract level.

As for the second reduction strategy—namely, that of moving the normative boundary
points inwards in order for the upper and lower boundaries to coincide in the middle of
the scalar structure—the situation turns out to be basically identical to that with the propor-
tional quantifiers in Section 3.1. With coinciding upper and lower boundaries, the three
central components of the pentapartition ΠNQ(F4)—i.e., the two points α′2 and α′4 and the
α′3 interval in between—collapse into one central component, and the reduction is again
from B5 to B3. This situation arises when one and the same exact number simultaneously
counts as not too few (i.e., ‘required as minimum’) and not too many (i.e., ‘allowed as maxi-
mum’). A standard case in point would be the exact number of players that is both allowed
and required to be on the field with each team in a sports competition.

4. Aristotelian Subdiagrams for B5

In the present section, we move from the more descriptive level of characterising
logical fragments and their bitstring semantics in B5 (for various categories of natural
language quantifier expressions) to a more theoretical analysis. Two general operations on
bitstrings from B5 will be compared, namely, that of COLLAPSING bit positions (Section 4.1)
and that of DELETING bit positions (Section 4.2) [1]. In both cases, the resulting move from
B5 to B4 is characterised in terms of SUBDIAGRAMS of B5.

This notion of subdiagram obviously relates to the strong concern in Logical Geometry
with the visualisation of the logical relations in Aristotelian diagrams. So, before turning
to the two operations on B5 bitstrings, let us first briefly consider this visualisation aspect.
An important contrast made in Logical Geometry is that between Hasse diagrams and
Aristotelian or logical diagrams [17]. With Hasse diagrams—which constitute a standard
visualisation of Boolean algebras [24]—the focus is primarily on implication relations,
and the top and bottom elements occupy prominent positions at the extreme (top and
bottom) ends of the diagram. With logical diagrams, by contrast, the focus is primarily on
opposition relations, and the top and bottom elements are considered as ‘trivial’ elements
(tautology and contradiction). Strictly speaking, these top and bottom elements coincide in
the center of the diagram, but they are hardly ever visually represented. As a consequence,
the number of vertices represented in the logical diagram for a given Boolean Algebra is
lower than that in its Hasse counterpart:

diagram # vertices B2 B3 B4 B5

Hasse 2n 22 = 4 23 = 8 24 = 16 25 = 32
logical 2n − 2 22 − 2 = 2 23 − 2 = 6 24 − 2 = 14 25 − 2 = 30

For B3, the contrast is between the 8 vertices of a ‘cubic’ Hasse diagram and the 6 vertices
of a hexagonal logical diagram [1]. For B4, the contrast is between the 16 vertices of a
‘hypercubic’ Hasse diagram and the 14 vertices of the rhombic dodecahedron (RDH), a 3D
logical diagram that has been studied intensively in Logical Geometry [17]. Recently, a 3D
visualisation has been (re)discovered as the logical diagram for the 30 non-trivial vertices
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of B5, in the form of the rhombic icosahedron (RIH) [25,26]. As argued in [27], 22 of these
vertices are located on the convex hull of the RIH, and the remaining 8 are located on the
inside of the RIH. In the following two subsections, various subdiagrams of this RIH for B5
will be considered in more detail.

4.1. From B5 to B4 by Collapsing Bit Positions

A first operation that allows us to establish a systematic connection between the
bitstrings of length 5 in B5 and those of length 4 in B4 is based on redundancy: in those
cases where two bit positions systematically have the same value, these two positions can
be COLLAPSED into one. For bitstrings of length 5, there are 10 different ways (C5

2) in which
2 out of the 5 bit positions bn for 1 ≤ n ≤ 5 can have identical values, namely,

b1 = b2 b1 = b3 b1 = b4 b1 = b5
— b2 = b3 b2 = b4 b2 = b5
— — b3 = b4 b3 = b5
— — — b4 = b5

In Table 1, the particular case is illustrated where b3 = b5. Since we only consider the
30 non-trivial bitstrings of B5, there are (only) 7 bitstrings in the second column for which
b3 = b5 = 1—the trivial bitstring 11111 is missing from the bottom row—and similarly, (only)
7 bitstrings in the fifth column for which b3 = b5 = 0—the trivial bitstring 00000 is missing
from the top row. The 16 bitstrings of length 5 that do not show up in Table 1 are of course
those 16 for which b3 6= b5.

Table 1. From B5 to B4 by collapsing bit positions 3 and 5.

B4 B5 B4 B4 B5 B4
Collapse to b3 b3 = b5 = 1 Collapse to b5 Collapse to b3 b3 = b5 = 0 Collapse to b5

0010 00101 0001 — — —
0011 00111 0011 0001 00010 0010
0110 01101 0101 0100 01000 0100
0111 01111 0111 0101 01010 0110
1010 10101 1001 1000 10000 1000
1011 10111 1011 1001 10010 1010
1110 11101 1101 1100 11000 1100

— — — 1101 11010 1110

Now the collapse from B5 to B4 can take place in two directions: in columns one
and four of Table 1, the two identical values collapse to the left position of b3 while b5
‘disappears’, whereas in columns three and six, they collapse to the right position of b5 while
b3 ‘disappears’. Both directions of collapsing—columns 1/4 versus columns 3/6—yield
the same set of 14 non-trivial bitstrings of length 4, corresponding to the 14 vertices of the
RDH. In other words, this type of collapsing operation does not lead to the reappearance of
the trivial top and bottom elements 1111 and 0000 of B4.

Visually speaking, this operation yields a collapse from the 30 vertices of the rhom-
bic icosahedron (RIH) to the 14 vertices of an embedded rhombic dodecahedron (RDH).
Figure 2—which has been built by means of the open source virtual reality modelling
language X3D (Extensible 3D) and rendered by means of the Octaga Player tool—illustrates
the particular case described in Table 1, i.e., for b3 = b5. The seven vertices on the (yellow)
top left ‘shell’ of the RIH in Figure 2 are precisely decorated by the seven bitstrings from the
second column of Table 1 for which b3 = b5 = 1. By way of mirror image, the seven vertices
on the (yellow) bottom right ‘shell’ of the RIH are decorated by the seven bitstrings from
the fifth column of Table 1 for which b3 = b5 = 0. In other words, this collapsing operation
eliminates the 16 vertices which are located on the 2 ‘cubic’ structures in the middle of the
RIH, namely, the 8 vertices on the left hand (green) cube—for which b3 = 1 6= 0 = b5—and
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the 8 vertices on the right hand (red) cube—for which b3 = 0 6= 1 = b5. Fitting together the
2× 7 vertices of the 2 yellow shells in Figure 2 yields the 14 vertices of an embedded RDH.

Figure 2. RDH inside RIH by collapsing bit position 3 and 5.

4.2. From B5 to B4 by Deleting Bit Positions

The second operation that allows us to establish a systematic connection between the
bitstrings of length 5 in B5 and those of length 4 in B4 is simpler and more direct than the
first one. It does not concern constraints on values for different bit positions, but instead
simply DELETES a bit position. Obviously, for bitstrings of length five, there are exactly five
ways to delete a bit position bn for 1 ≤ n ≤ 5 in order to go from B5 to B4:

delete b1 delete b2 delete b3 delete b4 delete b5
B5 10101 10101 10101 10101 10101
B4 0101 1101 1001 1011 1010

In Table 2, the particular case is illustrated where b1 is deleted. Again, we only
consider the 30 non-trivial bitstrings of B5: the trivial bitstring 00000 is missing from the
third column in the top row and the trivial bitstring 11111 is missing from the fourth
column in the bottom row. The general idea is that, on any given row, the B5 bitstrings in
columns one and three, as well as the ones in columns four and six, only differ from one
another with respect to their first bit position—in particular b1 = 1 and b1 = 0, respectively.
By deleting precisely this first bit position, these B5 bitstrings thus pairwise collapse into
the single B4 bitstring that is located in between them in columns two and five. In contrast
to the situation depicted for the collapsing operation in Table 1, however, this deletion
operation in Table 2 does result in the reappearance of the trivial top and bottom elements
1111 and 0000 of B4.

Visually speaking, this deletion operation yields a collapse from the 30 vertices of
the rhombic icosahedron (RIH) to the 16 vertices of an embedded hypercube. Figure 3
illustrates the particular case described in Table 2, i.e., for the deletion of b1. The eight
vertices on the (green) right hand ‘cubic’ substructure of the RIH in Figure 3 are precisely
decorated by the eight bitstrings from the first column of Table 2, for which b1 = 1. By way
of mirror image, the eight vertices on the (red) left hand ‘cubic’ substructure are decorated
by the eight bitstrings from the sixth column of Table 2, for which b1 = 0. In other words,
this deletion operation eliminates the 14 vertices which are located on the ‘flattened’ RDH
structure in the middle of the RIH. Fitting together the 2× 8 vertices of these red and green
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cubic substructures—as is indicated by means of the extra thick (magenta) edges through
the center in Figure 3—yields the 16 vertices of an embedded hypercube.

Table 2. From B5 to B4 by deleting bit position 1.

B5 B4 B5 B5 B4 B5
b1 = 1 Delete b1 b1 = 0 b1 = 1 Delete b1 b1 = 0

10000 0000 — 10001 0001 00001
10010 0010 00010 10011 0011 00011
10100 0100 00100 10101 0101 00101
10110 0110 00110 10111 0111 00111
11000 1000 01000 11001 1001 01001
11010 1010 01010 11011 1011 01011
11100 1100 01100 11101 1101 01101
11110 1110 01110 — 1111 01111

Figure 3. Hypercube inside RIH by deleting bit position 1.

5. Aristotelian Subdiagrams For B4

In this section, we briefly want to demonstrate how the distinction between the two
transformations from B5 to B4—namely, that of COLLAPSING bit positions (Section 4.1)
and that of DELETING bit positions (Section 4.2)—sheds an interesting new light upon the
relationship between B4 and B3 as well.

5.1. From B4 to B3 by Collapsing Bit Positions

Remember from Section 4.1 that—when two bit positions systematically have the same
value—a situation of redundancy arises, and these two positions can be COLLAPSED into
one. For bitstrings of length four, there are six different ways (C4

2) in which two out of the
four bit positions bn for 1 ≤ n ≤ 4 can have identical values, namely:

b1 = b2 b1 = b3 b1 = b4
— b2 = b3 b2 = b4
— — b3 = b4
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Table 3. From B4 to B3 by collapsing bit positions 1 and 4.

B3 B4 B3 B3 B4 B3
Collapse to b1 b1 = b4 = 1 Collapse to b4 Collapse to b1 b1 = b4 = 0 Collapse to b4

100 1001 001 — — —
101 1011 011 001 0010 010
110 1101 101 010 0100 100
— — — 011 0110 110

In Table 3, the particular case is illustrated where b1 = b4. Since we only consider the
14 non-trivial bitstrings of B4, there are (only) 3 bitstrings in the second column for which
b1 = b4 = 1—the trivial bitstring 1111 is missing from the bottom row—and similarly, (only)
3 bitstrings in the fifth column for which b1 = b4 = 0—the trivial bitstring 0000 is missing
from the top row. The 8 bitstrings of length 4 that do not show up in Table 3 are of course
those 8 for which b1 6= b4.

Now the collapsing from B4 to B3 can take place in two directions: in columns one
and four of Table 3, the two identical values collapse to the left position of b1 while b4
‘disappears’, whereas in columns three and six, they collapse to the right position of b4
while b1 ‘disappears’. Both directions of collapsing—columns one/four versus columns
three/six—yield the same set of six non-trivial bitstrings of length three, corresponding to
the six vertices of a (strong) Jacoby–Sesmat–Blanché hexagon. In other words, this type
of collapsing operation does not lead to the reappearance of the trivial top and bottom
elements 111 and 000 of B3.

Visually speaking, the six different ways to collapse two bit positions in B4 correspond
to the well-known embedding of six Jacoby–Sesmat–Blanché (JSB) hexagons inside the
RDH [1]. Furthermore, the complements of these six hexagons are polyhedra with eight
vertices, which are called RHOMBICUBES and which—from an Aristotelian perspective—are
Buridan octagons [11]. The diagram in the middle of Figure 4 illustrates this relationship
of complementarity between the JSB hexagon on the left and the Buridan rhombicube on
the right.

Figure 4. JSB hexagon and rhombicube inside RDH.

5.2. From B4 to B3 by Deleting Bit Positions

As was the case in Section 4.2, the second operation does not concern constraints on
values for different bit positions, but instead simply DELETES a bit position. Obviously,
for bitstrings of length four, there are exactly four ways to delete a bit position bn for
1 ≤ n ≤ 4 in order to go from B4 to B3:

delete b1 delete b2 delete b3 delete b4
B4 1010 1010 1010 1010
B3 010 110 100 101

In Table 4, the particular case is illustrated where b1 is deleted. Again, we only consider the
14 non-trivial bitstrings of B4: the trivial bitstring 0000 is missing from the third column in
the top row and the trivial bitstring 1111 is missing from the fourth column in the bottom
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row. On any given row, the B4 bitstrings in columns one and three, as well as the ones in
columns four and six, only differ from one another with respect to their first bit position—in
particular b1 = 1 and b1 = 0, respectively. By deleting precisely this first bit position, these B4
bitstrings thus pairwise collapse into the single B3 bitstring that is located in between them
in columns two and five. In contrast to the situation depicted for the collapsing operation
in Table 3, however, this deletion operation in Table 4 does result in the reappearance of the
trivial top and bottom elements 111 and 000 of B3.

Table 4. From B4 to B3 by deleting bit position 1.

B4 B3 B4 B4 B3 B4
b1 = 1 Delete b1 b1 = 0 b1 = 1 Delete b1 b1 = 0

1000 000 — 1100 100 0100
1001 001 0001 1101 101 0101
1010 010 0010 1110 110 0110
1011 011 0011 — 111 0111

Visually speaking, this type of deletion operation yields the hithertho unnoticed
embedding of a new type of polyhedron inside an RDH, as illustrated in Figure 5. We will
refer to this subdiagram of an RDH as a RHOMBIC HEXAHEDRON, since it has eight vertices
and six rhombic faces. It looks like a ‘squeezed cube’, and in this respect closely resembles
the (more familiar) rhombicube at the right in Figure 4.

Figure 5. Rhombic hexahedron inside the rhombic dodecahedron.

6. Conclusions

The Boolean algebra B5—with its bitstrings of length five—has played the central role
in this paper. On a more descriptive level, B5 was shown to underlie the semantic analysis
of both proportional quantification with fractions and percentages—as in two thirds/66
percent of the children are asleep—and normative quantification—as in not enough/too many
children are asleep. Furthermore, with both types of quantification, the pentapartite scalar
structure could be modified by having bit positions collapse either at the extreme ends of
the scale or in the very center of the scale, triggering reductions to B4 and B3, respectively.

On a more theoretical level, we have studied two distinct Aristotelian subdiagrams
in B5. The operation of collapsing 2 bit positions with identical values allowed us to
shift from the 30 vertices of the rhombic icosahedron RIH for B5 to the 14 vertices of an
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embedded rhombic dodecahedron RDH for B4. The operation of deleting a bit position,
by contrast, allowed us to shift from the 30 B5 vertices of the RIH to the 16 B4 vertices of an
embedded hypercube.

With the corresponding collapsing operation for shifting from B4 to B3, the 14 B4 ver-
tices of an RDH collapsed into the 6 B3 vertices of a strong Jacoby–Sesmat–Blanché hexagon.
This is a well-studied phenomenon in Logical Geometry, including its complementarity
with the Buridan octagons of the rhombicube. Going back up to B5 again, however, one
question for further research concerns the precise Aristotelian properties of the so-called
hypercube that serves as the complement of an RDH inside an RIH at the bottom right
corner in Table 5.

Table 5. Complementarities in B4 and B5.

6 JSB hexagons in RDH complementarity 6 rhombicubes in RDH
with 6 vertices in B4 with 8 vertices

10 RDHs in RIH complementarity 10 ‘hypercubes’ in RIH
with 14 vertices in B5 with 16 vertices

With the deletion operation for shifting from B4 to B3, the 14 B4 vertices of an RDH
collapsed into the 8 B3 vertices of a hithertho unnoticed type of polyhedron inside an RDH,
which we have dubbed a RHOMBIC HEXAHEDRON, and which is illustrated in Figure 5.
The operation of deleting a bit position (both from B4 and B5) can be straightforwardly
related to constellations in which a given bit position—in addition to its standard values
0 and 1—may also be left un(der)specified. In Logical Geometry, the notion of a PROTO-
BITSTRING has on occasion been put forward for this phenomenon. In the light of the
discussion in the present paper, we strongly plead for this topic of proto-bitstrings to be
investigated more thoroughly in future work.

Author Contributions: Conceptualization, K.R. and H.S.; Formal analysis, K.R. and H.S.; Investi-
gation, K.R. and H.S.; Writing—original draft, H.S.; Visualization, H.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the research project ‘BITSHARE: Bitstring Semantics for
Human and Artificial Reasoning’ (IDN-19-009, Internal Funds KU Leuven).

Data Availability Statement: Not applicable.

Acknowledgments: A previous version of this paper was presented at the Seventh World Conference
on the Square of Opposition (KU Leuven, 2022). In addition to the audience of this talk, the authors
would like to thank Lorenz Demey for his detailed comments and suggestions, as well as the three
anonymous reviewers for their valuable feedback.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Demey, L.; Smessaert, H. Combinatorial Bitstring Semantics for Arbitrary Logical Fragments. J. Philos. Log. 2018, 47, 325–363.

[CrossRef]
2. Jacoby, P. A Triangle of Opposites for Types of Propositions in Aristotelian Logic. New Scholast. 1950, 24, 32–56. [CrossRef]
3. Sesmat, A. Logique II. Les Raisonnements. La Syllogistique; Hermann: Paris, France, 1951.
4. Blanché, R. Sur l’opposition des concepts. Theoria 1953, 19, 89–130. [CrossRef]
5. Blanché, R. Structures Intellectuelles. Essai sur L’organisation Systématique des Concepts; Librairie Philosophique J. Vrin: Paris,

France, 1966.
6. Pellissier, R. Setting n-Opposition. Log. Universalis 2008, 2, 235–263. [CrossRef]
7. Klima, G. John Buridan, Summulae de Dialectica; Yale University Press: New Haven, CT, USA, 2001.
8. Klima, G. John Buridan; Oxford University Press: Oxford, UK, 2009.
9. Johnston, S. A Formal Reconstruction of Buridan’s Modal Syllogism. Hist. Philos. Log. 2014, 36, 2–17. [CrossRef]
10. Read, S. John Buridan: Treatise on Consequences; Fordham University Press: New York, NY, USA, 2015.

http://doi.org/10.1007/s10992-017-9430-5
http://dx.doi.org/10.5840/newscholas19502413
http://dx.doi.org/10.1111/j.1755-2567.1953.tb01013.x
http://dx.doi.org/10.1007/s11787-008-0038-y
http://dx.doi.org/10.1080/01445340.2014.934090


Axioms 2023, 12, 604 16 of 16

11. Demey, L. Boolean considerations on John Buridan’s octagons of opposition. Hist. Philos. Log. 2019, 40, 116–134. [CrossRef]
12. Keynes, J.N. Studies and Exercises in Formal Logic; MacMillan: London, UK, 1884.
13. Johnson, W. Logic. Part I; Cambridge University Press: Cambridge, UK, 1921.
14. Moktefi, A.; Schang, F. Another Side of Categorical Propositions: The Keynes–Johnson Octagon of Oppositions. Hist. Philos. Log.

2023, 44, 1–17. [CrossRef]
15. Smessaert, H.; Demey, L. Logical Geometries and Information in the Square of Opposition. J. Logic. Lang. Inf. 2014, 23, 527–565.

[CrossRef]
16. Zellweger, S. Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In Studies in the Logic of Charles

Peirce; Houser, N., Roberts, D.D., Van Evra, J., Eds.; Indiana University Press: Bloomington, IN, USA, 1997; pp. 334–386.
17. Smessaert, H. On the 3D Visualisation of Logical Relations. Log. Universalis 2009, 3, 303–332. [CrossRef]
18. Roelandt, K. Most or the Art of Compositionality: Dutch de/het meeste at the Syntax-Semantics Interface; LOT Publications: Utrecht,

The Netherlands, 2016.
19. Barwise, J.; Cooper, R. Generalized Quantifiers and Natural Language. Linguist. Philos. 1981, 4, 159–219. [CrossRef]
20. Keenan, E.L. The Semantics of Determiners. In The Handbook of Contemporary Semantic Theory; Lappin, S., Ed.; Blackwell: Oxford,

UK, 1996; pp. 41–64.
21. Peters, S.; Westerståhl, D. Quantifiers in Language and Logic; Oxford University Press: Oxford, UK, 2006.
22. Demey, L.; Smessaert, H. Duality in Logic and Language. In Internet Encyclopedia of Philosophy; Fieser, J., Dowden, B., Eds.;

University of Tennessee: Martin, MO, USA, 2016.
23. Peterson, P.L. On the logic of “few”, “many”, and “most”. Notre Dame J. Form. Log. 1979, 20, 155–179. [CrossRef]
24. Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002.
25. Grünbaum, B. The Bilinski Dodecahedron and Assorted Parallelohedra, Zonohedra, Monohedra, Isozonohedra, and Otherhedra.

Math. Intell. 2010, 32, 5–15. [CrossRef]
26. Kabai, S.; Bérczi, S. Rhombic Structures: Geometry and Modeling from Crystals to Space Stations; Uniconstant: Püsspökladány,

Hungary, 2015.
27. Roelandt, K.; Smessaert, H. On the role of central symmetry in the 3D visualisation of the Boolean Algebra B5. Symmetry Art Sci.

2019, 2019, 238–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01445340.2018.1531481
http://dx.doi.org/10.1080/01445340.2022.2143711
http://dx.doi.org/10.1007/s10849-014-9207-y
http://dx.doi.org/10.1007/s11787-009-0010-5
http://dx.doi.org/10.1007/BF00350139
http://dx.doi.org/10.1305/ndjfl/1093882414
http://dx.doi.org/10.1007/s00283-010-9138-7

	Introduction
	Bitstrings, Boolean Algebras and Aristotelian Relations
	Fragments for the Boolean Algebra  B5
	Proportional Quantification in  B5
	Normative Quantification in  B5

	Aristotelian Subdiagrams for  B5
	From  B5 to  B4 by Collapsing Bit Positions
	From  B5 to  B4 by Deleting Bit Positions

	Aristotelian Subdiagrams For B4
	From B4 to B3 by Collapsing Bit Positions
	From  B4 to  B3 by Deleting Bit Positions

	Conclusions
	References

