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Abstract: Comparative lifetime tests are extremely significant when the experimenters study the
reliability of the comparative advantages of two products in competition. Considering joint type-
II censoring, we deal with the inference when two product lines conform to two Gumbel type-II
distributions. The maximum likelihood estimations of Gumbel type-II population parameters were
obtained in the current research. An approximate confidence interval and a simultaneous confidence
interval based on a Fisher information matrix were also constructed and compared with two bootstrap
confidence intervals. Moreover, to evaluate the influence of the prior information, based on the
concept of importance sampling, we calculated the Bayesian estimator together with their posterior
risks in the case of gamma and non-informative priors under different loss functions. To compare the
performances of the overall parameters’ estimator, a Monte Carlo simulation was performed using
numerical and graphical methods. Finally, a real data analysis was conducted to verify the accuracy
of all the models and methods mentioned.

Keywords: joint type-II censoring scheme; Gumbel type-II distribution; maximum likelihood
estimator; bootstrap; Bayesian estimator; Monte Carlo Markov chain method

1. Introduction

The lifespan test of sample components is of great significance for theoretical research
and industrial practical applications, and studying the life distribution of components is
an indispensable link. In lifespan experiments, sometimes processing the entire sample is
inappropriate or unacceptable. Therefore, to decrease experimental costs and promote the
experimental implementation, the samples are censored. Possible reasons for censoring in
reality include, among others, the following: (1) when the research deadline is reached, the
endpoint event still does not occur, and the research subject is still alive; (2) the study subject
loses contact and is unable to clearly observe whether an endpoint event has occurred, as
well as the specific time of occurrence or the inability of the study subject to cooperate or
withdraw midway, resulting in the inability to continue follow-up observation. Therefore,
it is reasonable to perform censoring in the experiment. Many censoring schemes have been
extensively used in the research literature. For a type-I censoring scheme, the experimenter
will set a time point in advance to terminate the experiment. However, when the time
point is too early or the test sample failure time is too late, it may be that the experiment
has been terminated but no faults were observed during this process, which will lead to
unsatisfactory results. Therefore, in order to ensure that a definitive number of failures will
be detected in the experiment, a type-II censoring scheme was introduced. For this scheme,
the censoring ratio is already set in advance, and the experiment will be followed up until a
sufficient number of endpoint events occur, at which point the study will stop. The type-II
censoring scheme has improved the type-I censoring scheme, but this is still a life test
conducted under one sample line. When the experimenter decides to conduct comparative
life testing on the unit, the type-II censoring scheme is no longer applicable, and a joint
type-II censoring scheme for the comparative life testing of the same product is needed.
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The joint type-II censoring scheme has practical significance in conducting comparative
life tests on products from different factories within the same facility. Assuming that the
product is produced by two production lines in the same factory, and further assuming
that two product samples with dimensions m and n are selected from these two lines, and
life testing experiments are started at the same time. Then, when the sum of the number
of faults sent by the two sample lines reaches the pre-set value, the test stops. In this
case, the testing time and cost are saved, while people may be interested in the point or
interval estimation of the product unit life. The exact results of product unit testing on
these two production lines will help achieve this. An extensive amount of work concerning
inferential approaches under the joint type-II censoring scheme has been performed by
some scholars. Balakrishnan & Rasouli [1] studied the two exponential populations on
account of joint type-II censored sample. Furthermore, Shafay et al. [2] worked on the Bayes
estimation of two joint type-II censoring exponential samples. Abdel-Aty [3] discussed
the likelihood inference for two joint type-II censored samples from a two-parameter
exponential distribution. Bayesian estimators under gamma and non-informative priors of
the parameters from Lindley distribution when using the joint type-II censoring scheme
were computed by [4]. For the differences between the proposed method and the one in [4],
we refer the reader to À. In addition to conducting the asymptotic confidence interval, we
also discussed the simultaneous confidence interval Á. For model comparison, this paper
not only uses AIC and BIC methods, but the K-S distance method is also performed.

The Gumbel type-II distribution was first introduced in 1958 by Emil Gumbel (1891–
1966), a German mathematician, and he observed that its performance in simulating the
expected lifespan of products is impressive in comparative lifetime tests. Meanwhile,
it contributes to predicting the probabilities of some natural hazard and meteorological
phenomena. More recently, many scholars have made contributions to the statistical
inferences of the Gumbel type-II distribution. For instance, Corsini et al. [5] focused on
the parameters of the Gumbel distribution and worked on their maximum likelihood
estimation and algorithms simulation. To analyze the Bayes estimates, Mousa et al. [6]
studied some simulations under designated values about the parameters of the Gumbel
distribution. Analogously, Bayes’ estimation of the Gumbel distribution under k-th lower
value was derived by [7]. Nadarajah & Kotz [8] improved a beta Gumbel distribution
and discussed its maximum likelihood algorithms. Miladinovic & Tsokos [9] used the
square error loss function to analyze the sensitivity of the Bayesian reliability estimation
of modified Gumbel failure model. For Gumbel type-II distribution, Feroze & Aslam [10]
worked on Bayes estimation under doubly censoring samples in the case of different
loss functions. Moreover, a number of scholars have researched Bayesian estimation of
Gumbel type-II distribution. Abbas et al. [11] considered the inference of Gumbel type-II
distribution including Bayesian estimation. The Bayesian estimation of two competing
units of Gumbel type-II distribution were derived by [12]. Reyad & Ahmed [13] also
estimated the unknown shape parameters in joint type-II censored products on Bayesian
and E-Bayesian. Assuming different informative and non-informative priors on account
of left type-II censored samples, Sindhu et al. [14] derived the Bayesian estimators and
their risks of the unknown parameters from a Gumbel type-II distribution. Furthermore,
by considering Lindley’s approximation, Abbas et al. [15] worked on the Bayes estimators
on account of the type-II censored data under the non-informative prior and various loss
functions. In summary, the statistical inference of Gumbel type-II distribution under the
type-I and type-II censoring scheme, such as maximum likelihood estimation and Bayesian
estimation, has been well developed by scholars. However, no work has been performed
related to statistical inference for Gumbel type-II distribution under joint type-II censoring.
The Gumbel type-II distribution has important practical significance for the life distribution
test of product components, and its fitting degree for some real datasets may be higher
than the existing distribution models. Thus, we pay attention to a consideration of the
parameters of Gumbel type-II distribution estimated using the joint type-II censored dataset.
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Following this introduction section, the specific arrangements for the remaining parts
of the paper are as follows: considering the concept of sampling importance, the maximum
likelihood estimation of the unknown parameters is derived in Section 2. In Section 3,
we focus on the asymptotic normality confidence interval and simultaneous confidence
interval on account of Fisher’s information matrix. Section 4 provides bootstrap CIs con-
taining bootstrap percentile interval procedure and Studentized-t interval procedure based
on MLEs. In Section 5, Bayes estimation on account of different loss functions using
non-informative and gamma priors is performed. A Monte Carlo simulation study is
performed to verify the model in Section 6. Meanwhile, the conclusions and recommenda-
tions are also presented. Finally, one real data analysis is conducted for illustrating all the
developed approaches.

2. The Model and MLEs
2.1. Model Description

We take m random samples from one population, denoted as product A, and then take
n random samples from another population, denoted as product B. Let N = m + n and we
define w1, · · · , wN to represent the joint sequence of two populations in ascending order.
In brief, the joint type-II censoring scheme for the two product lines can be simplified as
follows: first, we use N units for the life test and continuously record the time of sample
failure and the corresponding product type from which the faulty units come. Then, we
set r(1 ≤ r ≤ N) to represent the number of sample failures which is fixed in advance.
Therefore, w1–wr is the failure time that occurs during the experimental process, and when
a failure occurs, the corresponding sample is removed. Let Zi indicate that the censored
samples from w1 to wr come from populations X or Y, as shown in Function (1).

Zi =

{
1; wi f rom X f ailure,

0; wi f rom Y f ailure.
(1)

Based on wi from X or Y failure (i = 1, · · · , r), Zi(i = 1, 2, · · · , r) can be determined
as value 1 or value 0, respectively. Meanwhile, among w1, · · · , wj, we let mj = ∑

j
i=1 Zi

denote the sum of the number of failures from X and, similarly, nj = ∑
j
i=1(1− Zi) denotes

the sum of the number of failures from Y where 1 ≤ j ≤ N. Therefore, mr = ∑r
i=1 Zi

indicates the number of failures in sample X before the experiment stopped and simi-
larly, nr = ∑r

i=1(1− Zi) indicates the number of failures in sample Y before the experi-
ment stopped.

When the r-th failure occurs, all remaining surviving units are withdrawn and the
experiment is terminated, as shown in Figures 1 and 2.

Figure 1. Joint Type-II censoring scheme when the r-th failure comes from product A.

We abbreviate the Gumbel type-II distribution as Gu(α, β) along with the parameter
α and β. It is assumed that the lifespan of m units of product A, X1, · · · , Xm comes from
Gu(α1, β), containing independently and identically distributed random variables with a
cumulative distribution function (CDF) defined as:

F(x) = e−βx−α1 , x > 0, α1, β > 0
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and the corresponding probability density function (PDF) can be written as

f (x) = α1βx−(α1+1)e−βx−α1 (2)

Similarly, the lifespan of n units of product B, Y1, · · · , Yn comes from Gu(α2, β).

G(y) = e−βy−α2 , y > 0, α2, β > 0

and the corresponding PDF is given by

g(y) = α2βy−(α2+1)e−βy−α2 (3)

Figure 2. Joint Type-II censoring scheme when r-th failure comes from product B.

2.2. The Maximum Likelihood Estimation

Based on the joint censoring scheme, the likelihood function of α1, α2 and β can be
written as:

L(α1, α2, β|W, Z)) = c(
r

∏
i=1

f (wi)
zi g(wi)

1−zi )F(wr)
m−mr G(wr)

n−nr (4)

with the survival function F = 1− F, G = 1− G, the constant c = m!n!
(m−mr)!(n−nr)!

, and
W = (w1, · · · , wr) and Z = (Z1, · · · , Zr).

Bring Functions (2) and (3) to Function (4), and the likelihood function is shown as

L(α1, α2, β|W, Z) = cαmr
1 αnr

2 βrU−(α1+1)
1 U−(α2+1)

2 exp(−β(
r

∑
i=1

w−α1
i zi +

r

∑
i=1

w−α2
i (1− zi)))

×(1− e−βw−α1
r )m−mr (1− e−βw−α2

r ))n−nr (5)

where U1 =
r

∏
i=1

wzi
i , U2 =

r
∏
i=1

w1−zi
i , mr =

r
∑

i=1
zi and nr =

r
∑

i=1
(1− zi).

Taking the logarithm of Function (5) on both sides.

ln L = ln c + mr ln α1 + nr ln α2 + r ln β− (α1 + 1) ln U1 − (α2 + 1) ln U2 − β(
r

∑
i=1

w−α1
i zi

+
r

∑
i=1

w−α2
i (1− zi)) + (m−mr) ln (1− e−βw−α1

r ) + (n− nr) ln (1− e−βw−α2
r ). (6)

Thus, to acquire the MLEs of α1, α2 and β, we first calculate the first derivative of the
logarithmic likelihood Function (6) of α1, α2 and β. Then, by making these three functions
equal zero, the three following equations can be obtained:

∂ ln L
∂α1

=
mr

α1
− ln U1 + β

r

∑
i=1

w−α1
i zi ln wi + (m−mr)

−βw−α1
r e−βw

−α1
r ln wr

1− e−βw
−α1
r

= 0, (7)
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∂ ln L
∂α2

=
nr

α2
− ln U2 + β

r

∑
i=1

w−α2
i (1− zi) ln wi + (n− nr)

−βw−α2
r e−βw−α2

r ln wr

1− e−βw−α2
r

= 0, (8)

and

∂ ln L
∂β

=
r
β
− (

r

∑
i=1

w−α1
i zi +

r

∑
i=1

w−α2
i (1− zi)) + (m−mr)

w−α1
r e−βw

−α1
r

1− e−βw
−α1
r

+ (n− nr)
w−α2

r e−βw−α2
r

1− e−βw−α2
r

= 0. (9)

These equations contain more than one parameter and are nonlinear, so the equations
cannot be directly solved. For this reason, a method of computer iteration (Newton
Raphson) to calculate the MLEs of α1, α2 and β is used. By solving these equations, we
obtain the following MLEs of α1, α2 and β.

Lemma 1. The existence and uniqueness of MLEs. Let ξ1(α1) = ∂ ln L
∂α1

, ξ2(α2) = ∂ ln L
∂α2

, and

ξ3(β) = ∂ ln L
∂β . The functions ξ(αj) and ξ(β) as defined in Equations (7)–(9) attain unique MLEs

at αj ∈ (0,+∞) and β ∈ (0,+∞); j = 1, 2. Where α̂j and β̂ are the solution of ξ1(α1) = 0,
ξ2(α2) = 0, and ξ3(β) = 0, and unique if mr < m < 2mr and nr < n < 2nr. The specific proof
above can be found in Appendix A.

Remark 1. It is worth considering that, for the existence of the MLE of α1, α2 and β, mr should
be greater than zero and less than r. If mr = 0, the Equation (7) does not provide information
about unknown parameters. Likewise, if mr = r, then nr = 0 and the Equation (8) will provide no
information. Thus, the associated MLE does not exist in these cases.

2.3. Fisher’s Information Matrix

We first computed the second-order derivatives of the logarithm likelihood function of
αj and β for j = 1, 2 and then obtained its negative elements. Thus, based on the definition
of approximate asymptotic variance–covariance matrix, the Fisher information matrix is
defined as

I−1(α1, α2, β)=



− ∂2 ln L
∂α2

1
0 − ∂2 ln L

∂α1∂β

0 − ∂2 ln L
∂α2

2
− ∂2 ln L

∂α2∂β

− ∂2 ln L
∂β∂α1

− ∂2 ln L
∂β∂α2

− ∂2 ln L
∂β2


where

−∂2 ln L
∂α2

1
= −mr

α2
1
− β

r

∑
i=1

w−α1
i zi(ln wi)

2 + (m−mr)[
−(βw−α1

r ln wr)exp(−βw−α1
r )

(1− exp(−βw−α1
r ))2

,

− ∂2 ln L
∂α2

2
= −nr

α2
2
− β

r

∑
i=1

w−α2
i (1− zi)(ln wi)

2 + (n− nr)[
−(βw−α2

r ln wr)exp(−βw−α2
r )

(1− exp(−βw−α2
r ))2

,

− ∂2 ln L
∂β2 = − r

β2 − (m−mr)w
−2α1
r

exp(−βw−α1
r )

(1− exp(−βw−α1
r ))2

− (n− nr)w
−2α1
r

exp(−βw−α2
r )

(1− exp(−βw−α2
r ))2

,
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− ∂2 ln L
∂α1β

=
r

∑
i=1

w−α1
i zi ln wi + (m−mr)w

−α1
r ln wr[1−

1

1− exp(−βw−α1
r )

+
βw−α1

r exp(−βw−α1
r )

(1− exp(−βw−α1
r ))2

],

and

−∂2 ln L
∂α2β

=
r

∑
i=1

w−α2
i (1− zi) ln wi + (n− nr)w

−α2
r ln wr[1−

1
1− exp(−βw−α2

r )
+

βw−α2
r exp(−βw−α2

r )

(1− exp(−βw−α2
r ))2

].

Assume that parameter vector δ̂ is the MLE of δ = (α1, α2, β) and Iδ and φ = lim
n→+∞

nI−1
δ

represent the Fisher information matrix with respect to δ. In particular, let (Ŝα̂j)
2 = φ̂(j,j)/n,

j = 1, 2 where φ̂(j,j) denotes the (j, j) elements in the matrix φ̂ = nÎ−1
δ and z1−α/2 repre-

sents the upper (1− α/2)% point of the standard normal distribution. Thus, asymptotic
normality confidence intervals (ACIs) of δj, j = 1, 2, with the confidence level 100(1− α)%,
are defined as

α̂j ± z1−α/2Ŝα̂j and β̂± z1−α/2Ŝβ̂, j = 1, 2. (10)

Moreover, the Bonferroni confidence interval is a method to compute and control
individual and simultaneous confidence levels. Here, the approximate 100(1− α)% simul-
taneous confidence interval (SCI) for (α1, α2, β) under this method is given by

α̂j ± z(3+
√

1−α)/4Ŝα̂j and β̂± z(3+
√

1−α)/4Ŝβ̂, j = 1, 2. (11)

3. Bootstrap Methods

The asymptotic confidence interval method uses the asymptotic nature of normal
distribution to construct the intervals to estimate parameters if the sample size is large
enough. However, in many practical cases, the sample size tends to be not large. Therefore,
these methods have limitations in terms of small sample sizes. Here, we suggest some
bootstrap methods for constructing the confidence intervals of αj and β for j = 1, 2. The
percentile intervals (Boot-p) and the Studentized-t intervals (Boot-t) are detailed in [16].

The bootstrap percentile method uses the 100α/2th of the empirical bootstrap distri-
bution of α̂∗j and β̂∗, j = 1, 2 to define the lower limits of the confidence interval and the
100(1− α/2)th to define the upper limits of the confidence interval. Based on this, we
introduce Algorithm 1 for obtaining Boot-p CIs.

Algorithm 1: Generation process of Boot-p CIs

Step 1. Calculate the MLE (α̂1, α̂2, β̂) of (α1, α̂2, β) based on two Gumbel Type-II
distributions using joint Type-II censoring sample (W, Z).

Step 2. Use (α̂1, α̂2, β̂) to generate a bootstrap joint type-II censored sample (w∗, z∗) and
calculate the bootstrap estimation of (α1, α2, β) based on the Boot-p sample,
namely (α̂∗1 , α̂∗2 , β̂∗).

Step 3. Repeat Step 2 B times and obtain α̂∗j1, α̂∗j2, · · · , α̂∗jB and β̂∗1, β̂∗2, · · · , β̂∗B and arrange

in ascending order as α̂∗(j1), α̂∗(j2), · · · , α̂∗(jB) and β̂∗(1), β̂∗(2), · · · , β̂∗(B), j = 1, 2.

Step 4. The calculated Boot-p CIs are as follows:

(α̂∗1[B(α/2)], α̂∗1[B(1−α/2)]), (α̂
∗
2[B(α/2)], α̂∗2[B(1−α/2)]) and (β̂∗[B(α/2)], β̂∗[B(1−α/2)]), (12)
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Similarly, Algorithm 2 for computing Boot-t CI estimators is illustrated according to
the following steps.

Algorithm 2: Generation process of Boot-t CIs

Step 1. Steps 1–2 are the same as in the Boot-p method.
Step 3. Compute the Boot-t statistics:

Tα̂∗1
=

α̂∗1 − α̂1

Ŝα̂∗1

, Tα̂∗2
=

α̂∗2 − α̂2

Ŝα̂∗2

and Tβ̂∗ =
β̂∗ − β̂

Ŝβ̂∗
, (13)

where Ŝα̂∗j
, j = 1, 2 and Ŝβ̂∗ are the Boot-p versions.

Step 4. Repeat Steps 2–3 B times and obtain Tα̂∗j1
, Tα̂∗j2

, · · · , Tα̂∗jn
and Tβ̂∗1

, Tβ̂∗2
, · · · , Tβ̂∗n

and
arrange in ascending order as Tα̂∗

(j1)
, Tα̂∗

(j2)
, · · · , Tα̂∗

(jn)
and Tβ̂∗

(1)
, Tβ̂∗

(2)
, · · · , Tβ̂∗

(n)
,

j = 1, 2.
Step 5. The calculated Boot-t CIs are as follows:

(α̂j + Tα̂∗j[B(α/2)]
, α̂j + Tα̂∗j[B(1−α/2)]

) and (β̂ + Tβ̂∗
[B(α/2)]

, β̂ + Tβ̂∗
[B(1−α/2)]

), j = 1, 2. (14)

4. Bayesian Estimation

Here, different loss functions regarding Bayesian estimation are considered, such
as the general entropy loss function (GELF). One can assume that the parameters α1, α2
and β from Gumbel type-II distribution conform to independent gamma priors along
with hyperparameters a1, b1; a2, b2; and c, d. Thus, their joint prior distribution can be
written as:

π(α1, α2, β) ∝ αa1−1
1 e−b1α1 αa2−1

2 e−b2α2 βc−1e−dβ. (15)

Furthermore, their posterior distribution can be written as:

π(α1, α2, β|w, z) ∝ αmr+a1−1
1 e−(ln U1+b1)α1 αnr+a2−1

2 e−(ln U2+b2)α2 βr+c−1e−dβexp(−β(
r

∑
i=1

w−α1
i zi

+
r

∑
i=1

w−α2
i (1− zi)))(1− e−βw

−α1
r )m−mr (1− e−βw−α2

r )n−nr , (16)

or
π(α1, α2, β|w, z) ∝ π(α1|w, z)π(α2|w, z)π(β|w, z)h(α1, α2, β).

here
π(α1|w, z) ∼ gamma(mr + a1, ln U1 + b1),

π(α2|w, z) ∼ gamma(nr + a2, ln U2 + b2),

π(β|w, z) ∼ gamma(r + c, d),

h(α1, α2, β) = exp(−β(
r

∑
i=1

w−α1
i zi +

r

∑
i=1

w−α2
i (1− zi)))(1− e−βw

−α1
r )m−mr (1− e−βw−α2

r )n−nr .

where U1 =
r

∏
i=1

wzi
i , U2 =

r
∏
i=1

w1−zi
i , mr =

r
∑

i=1
zi, nr =

r
∑

i=1
(1− zi) and gamma(a, b) denotes

the gamma distribution with shape parameter a and scale parameter b.
Then, here the Bayesian estimation and its posterior risks are discussed under GELF.

Calabria and Pulcini (1996) introduced the GELF, which is given by:

L(θ1, θ∗1 ) = γ[(
θ∗

θ
)k − k ln (

θ∗

θ
)− 1], i = 1, 2, 3 (17)
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let θ1 = α1, θ2 = α2 and θ3 = β.
Here, γ is a constant, and without losing in common quality, it can be assumed to

have a value of 1. k is a shape parameter that represents the departure from symmetry. For
k > 0, the impact of a high estimate is more severe than a low estimate and for k < 0, the
impact of a low estimate is more severe than a high estimate when in equal magnitude. θ∗i
expresses the Bayes estimation of θi. The Bayesian estimation of θ1, θ2 and θ3 under GELF
along with the posterior risk (PR) are given by:

θ∗i = [E[θ−k
i |data]]−1/k = [

∫
θi

θ−k
i π(θi|data)dθi]

−1/k; i = 1, 2, 3 (18)

PR(θ∗i ) = [E[ln(θk
i |data) + ln(E[(θ−k

i |data))]]

= [
∫

θi

ln(θk
i )π(θi|data)dθi − (ln(θ∗i )

k)]; i = 1, 2, 3 (19)

GELF contains these specific cases as follows:

(1) When k = ˘1, it expresses the Bayesian estimation under the square error loss func-
tion (BSELF).

(2) When k = ˘2, it expresses the Bayesian estimation under the precautionary loss
function (BPLF).

(3) When k = 1, it expresses the Bayesian estimation under the entropy loss func-
tion (BELF).

Let a1 = a2 = c = 0 in Function (15), and then derive the Bayesian estimation in the
case of the non-informative prior. Namely,

π(α1|w, z) ∼ gamma(mr, ln U1 + b1),

π(α2|w, z) ∼ gamma(nr, ln U2 + b2),

π(β|w, z) ∼ gamma(r, d). (20)

It can be found from the derivation above that the Bayes estimate takes the form of
the ratio of two multiple integrals. Obtaining a definitive solution can be tricky in terms
of analysis. Here, it is not possible to solve Functions (18) and (19) in closed form. Thus,
by using the concept of importance sampling, we calculate the Bayesian estimation of the
parameters and the posterior risks. The merit of this method is that it does not require the
calculation of normalization constants. Meanwhile, introducing the posterior distributions
into Functions (19) and (20) yields a more intuitive formula for calculating the Bayesian
estimates of parameters. We develop Algorithm 3 for obtaining Bayesian estimation by
importance sampling.

The Bayesian estimates under the non-informative priors are derived similarly.
A method being used to construct the highest probability density (HPD) credible

intervals for parameters was introduced by Chen and Shao (1999), who considered how to
approximate and estimate Bayesian intervals using a simple Monte Carlo method. They
developed the approach by using the sample from the importance sampling distribution.

To calculate the (1− α)100% symmetric HPD credible interval for α1, α2 and β, first
obtain MCMC samples αj1, αj2, · · · , αjM and β1, β2, · · · , βM and then arrange them in as-
cending order α(j1), · · · , α(jM) and β(1), · · · , β(M). The HPD credible intervals for αj and β
are defined as:

(αj[M(α/2)], αj[M(1−α/2)]) and (β[M(α/2)], β[M(1−α/2)]), j = 1, 2 (21)
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Algorithm 3: Importance sampling

Step 1. Get α11, α12, · · · , α1M from π(α1|w, z).
Step 2. Get α21, α22, · · · , α2M from π(α2|w, z).
Step 3. Get β1, β2, · · · , βM from π(β|w, z).
Step 4. Compute h(α1i, α2i, βi), i = 1, 2, · · · , M.
Step 5. The Bayesian estimation under GELF is shown as:

α∗j = [

M
∑

i=1
α−k

ji hi(α1i , α2i , βi)

M
∑

i=1
hi(α1i , α2i , βi)

]−1/k , j = 1, 2 and β∗ = [

M
∑

i=1
β−k

i hi(α1i , α2i , βi)

M
∑

i=1
hi(α1i , α2i , βi)

]−1/k (22)

and the relevant posterior risks are:

PR(α∗j ) = [

M
∑

i=1
log(αk

ji)hi(α1i, α2i, βi)

M
∑

i=1
hi(α1i, α2i, βi)

− log(α∗j )
−k], j = 1, 2

PR(β∗) = [

M
∑

i=1
log(βk

i )hi(α1i, α2i, βi)

M
∑

i=1
hi(α1i, α2i, βi)

− log(β∗)−k] (23)

5. Simulation Study

Here, simulation experiments are conducted to evaluate the performance of different
mentioned estimation methods. This simulation study involves the following steps:

(1) Select two products of different numbers (m, n) = (15, 15), (15, 20), (25, 25) and ac-
cordingly, different choices for r are as 18, 22, 25, 28, 32, 42, 45, 48.

(2) In order to improve the Bayesian estimation, the values of hyperparameters a1 = 11,
b1 = 25, a2 = 12, b2 = 31, c = 10.5, d = 71 are considered when α1 = 1.35, α2 = 1.24
and β = 0.90 in the case of gamma informative priors. Under non-informative priors,
we let (a1, a2, b1, b2, c, d) = (0, 25, 0, 31, 0, 71).

(3) For all of the above situations, we calculate the MLEs and Bayesian estimates as well
as the lengths of the ACIs, the lengths of the SCIs, the lengths of bootstrap CIs, and
the lengths of the HPD CIs.

(4) Repeat steps 1–3 M = 5000 times through the entire process, and then compute the
average value. In the meanwhile, mean square errors (MSEs) along with coverage
probabilities (CPs) can be calculated.

The whole calculations are implemented on statistical software R. Tables 1–9 show the
major running consequences of the algorithm process, as shown below. Tables 1–3 show
the MLEs and the MSEs for the schemes based on 5000 repetitions. Meanwhile, the Bayes
estimation and the corresponding posterior risk in the case of an informative prior under
loss functions repeating 5000 times are presented. Similarly, Tables 4–6 show the MLEs
and the MSEs for the schemes based on 5000 repetitions. Meanwhile, the Bayes estimation
and their PRs in the case of gamma prior under loss functions repeating 5000 times are
presented. Tables 7–9 present the ACI, SCI, Boot-p CI, Boot-t CI, and HPD in the case of
gamma and non-informative priors. The coverage probabilities of the intervals computed
after 5000 repetitions are shown in parentheses.
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Table 1. MLEs and Bayesian estimations of parameters supposing informative priors a1 = 11, b1 = 25,
a2 = 12, b2 = 31, c = 10.5, d = 71, and α1 = 1.35.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 15)
18 1.4102 (0.0615) 1.2613 (0.0217) 1.2517 (0.0500) 1.2329 (0.0173)
22 1.3821 (0.0481) 1.2954 (0.0178) 1.2716 (0.0604) 1.2636 (0.0153)
25 1.3617 (0.0767) 1.3395 (0.0146) 1.3363 (0.0615) 1.3231 (0.0149)

(15, 20)
25 1.4037 (0.0587) 1.2701 (0.0216) 1.2507 (0.0479) 1.2588 (0.0174)
28 1.3737 (0.0488) 1.3105 (0.0152) 1.3001 (0.0614) 1.2922 (0.0146)
32 1.3570 (0.0589) 1.3404 (0.0142) 1.3399 (0.0563) 1.3352 (0.0144)

(25, 25)
42 1.3821 (0.1010) 1.3076 (0.0167) 1.2991 (0.0662) 1.2967 (0.0169)
45 1.3637 (0.0451) 1.3382 (0.0159) 1.3284 (0.0634) 1.3275 (0.0163)
48 1.3507 (0.0292) 1.3461 (0.0145) 1.3445 (0.0574) 1.3393 (0.0147)

Table 2. MLEs and Bayesian estimations of parameters supposing informative priors a1 = 11, b1 = 25,
a2 = 12, b2 = 31, c = 10.5, d = 71, and α2 = 1.24.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 15)
18 1.2919 (0.0653) 1.1791 (0.0182) 1.1663 (0.0521) 1.1492 (0.0823)
22 1.2653 (0.0481) 1.2089 (0.0016) 1.1953 (0.0634) 1.1855 (0.0164)
25 1.2421 (0.0432) 1.2378 (0.0154) 1.2345 (0.0677) 1.2246 (0.0144)

(15, 20)
25 1.2882 (0.0557) 1.1946 (0.0153) 1.1878 (0.0639) 1.1789 (0.0163)
28 1.2672 (0.0388) 1.2114 (0.0143) 1.2025 (0.0470) 1.2000 (0.0145)
32 1.2416 (0.0426) 1.2391 (0.0134) 1.2360 (0.0533) 1.2359 (0.0136)

(25, 25)
42 1.2886 (0.0226) 1.2066 (0.0159) 1.1943 (0.0634) 1.1904 (0.0162)
45 1.2682 (0.0388) 1.2242 (0.0152) 1.2119 (0.0606) 1.2083 (0.0154)
48 1.2412 (0.0357) 1.2391 (0.0137) 1,2387 (0.0546) 1.2307 (0.0139)

Table 3. MLEs and Bayesian estimations of parameters supposing informative priors a1 = 11, b1 = 25,
a2 = 12, b2 = 31, c = 10.5, d = 71, and β = 0.90.

(m, n) r BMLE (MSE) BSELF (PR) BPLF (PR) ELF (PR)

(15, 15)
18 0.9275 (0.0506) 0.8234 (0.0089) 0.8082 (0.0354) 0.8051 (0.0091)
22 0.9182 (0.0459) 0.8681 (0.0086) 0.8349 (0.0345) 0.8243 (0.0087)
25 0.9002 (0.0328) 0.8733 (0.0084) 0.8602 (0.0334) 0.8495 (0.0085)

(15, 20)
25 0.9211 (0.0432) 0.8684 (0.0081) 0.8643 (0.0320) 0.8436 (0.0091)
28 0.9197 (0.0445) 0.8905 (0.0078) 0.8923 (0.0031) 0.8766 (0.0078)
32 0.9017 (0.0442) 0.9069 (0.0076) 0.9038 (0.0305) 0.8938 (0.0077)

(25, 25)
42 0.9174 (0.0557) 0.8964 (0.0077) 0.8933 (0.0304) 0.8828 (0.0082)
45 0.9077 (0.0445) 0.9039 (0.0075) 0.9011 (0.0301) 0.8996 (0.0076)
48 0.8987 (0.0442) 0.9064 (0.0072) 0.9081 (0.0291) 0.9000 (0.0077)

Table 4. MLEs and Bayesian estimations of parameters supposing non-informative priors a1 = 0,
b1 = 25, a2 = 0, b2 = 31, c = 0, d = 71, and α1 = 1.35.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 15)
18 1.3917 (0.0641) 1.2932 (0.0592) 1.2812 (0.0339) 1.2792 (0.0232)
22 1.3855 (0.0477) 1.3282 (0.0411) 1.3153 (0.0434) 1.2903 (0.0165)
25 1.3608 (0.0671) 1.3341 (0.0094) 1.3226 (0.0244) 1.3200 (0.0471)
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Table 4. Cont.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 20)
25 1.3821 (0.0423) 1.3199 (0.0489) 1.3067 (0.0522) 1.2930 (0.0254)
28 1.3744 (0.0379) 1.3204 (0.0611) 1.3221 (0.0401) 1.3129 (0.0055)
32 1.3519 (0.0412) 1.3389(0,0391) 1.3317 (0.0679) 1.3312 (0.0244)

(25, 25)
42 1.3721 (0.0330) 1.3121 (0.0420) 1.3082 (0.0319) 1.3026 (0.0169)
45 1.3671 (0.0251) 1.3334 (0.0392) 1.3297 (0.0080) 1.3231 (0.0266)
48 1.3501 (0.0092) 1.3498 (0.0201) 1.3447 (0.0223) 1.3442 (0.0206)

Table 5. MLEs and Bayesian estimations of parameters supposing non-informative priors a1 = 0,
b1 = 25, a2 = 0, b2 = 31, c = 0, d = 71, and α2 = 1.24.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 15)
18 1.2952 (0.0621) 1.1712 (0.0159) 1.1882 (0.0391) 1.1517 (0.0442)
22 1.2701 (0.0622) 1.2059 (0.0069) 1.1903 (0.0631) 1.1841 (0.0357)
25 1.2519 (0.0399) 1.2338 (0.0144) 1.2372 (0.0388) 1.2257 (0.0245)

(15, 20)
25 1.2711 (0.0557) 1.1989 (0.0136) 1.1911 (0.0357) 1.1897 (0.0442)
28 1.2592 (0.0418) 1.2204 (0.0162) 1.2153 (0.0498) 1.2194 (0.0077)
32 1.2436 (0.0506) 1.2355 (0.0119) 1.2380 (0.0217) 2.2272 (0.0301)

(25, 25)
42 1.2771 (0.0457) 1.2143 (0.0034) 1.2037 (0.0214) 1.2000 (0.0272)
52 1.2582 (0.0281) 1.2319 (0.0106) 1.2291 (0.0127) 1.2214 (0.0154)
56 1.2417 (0.0451) 1.2385 (0.0146) 1.2356 (0.0800) 1.2349 (0.0206)

Table 6. MLEs and Bayesian estimations of parameters supposing non-informative priors a1 = 0,
b1 = 25, a2 = 0, b2 = 31, c = 0, d = 71, and β = 0.90.

(m, n) r MLE (MSE) BSELF (PR) BPLF (PR) BELF (PR)

(15, 15)
18 0.9231 (0.0421) 0.8219 (0.0125) 0.8062 (0.0354) 0.7921 (0.0074)
22 0.9169 (0.0372) 0.8413 (0.0079) 0.8385 (0.0345) 0.8155 (0.0077)
25 0.9102 (0.0316) 0.8590 (0.0065) 0.8510 (0.0334) 0.8415 (0.0069)

(15, 20)
25 0.9233 (0.0352) 0.8566 (0.0061) 0.8635 (0.0320) 0.8491 (0.0082)
28 0.9187 (0.0412) 0.8915 (0.0075) 0.8971 (0.0031) 0.8763 (0.0068)
32 0.9053 (0.0209) 0.8983 (0.0086) 0.9023 (0.0305) 0.8942 (0.0074)

(25, 25)
42 0.9141 (0.0374) 0.8973 (0.0069) 0.8842 (0.0304) 0.8828 (0.0082)
45 0.9051 (0.0189) 0.9039 (0.0075) 0.8925 (0.0431) 0.8906 (0.0065)
48 0.9004 (0.0365) 0.9010 (0.0081) 0.9039 (0.0255) 0.8979 (0.0059)

Table 7. Lengths of ACI, SCI, boot-p CI, boot-t CI, and HPD for α1 = 1.35 together with their CPs
in brackets.

(m, n) r CI SCI HPD (Gamma) HPD (Non-Inf) Boot-t Boot-p

(15, 15)
18 0.8688 (0.9598) 1.1052 (0.9821) 0.8379 (0.9987) 1.0230 (0.9993) 0.9705 (0.9879) 1.0314 (0.9872)
22 0.8319 (0.9677) 1.0583 (0.9878) 0.8596 (0.9997) 1.0891 (0.9995) 0.9301 (0.9971) 0.9857 (0.9875)
25 0.8279 (0.9814) 1.0238 (0.9885) 0.8754 (0.9993) 1.1113 (0.9998) 0.9197 (0.9987) 0.9692 (0.9875)

(15, 20)
25 0.8047 (0.9585) 1.0205 (0.9858) 0.8780 (0.9995) 1.1201 (0.9993) 0,8999 (0.9937) 0,9518 (0.9918)
28 0.8412 (0.9793) 1.0701 (0.9788) 0.9024 (0.9991) 1.1298 (0.9995) 0.8783 (0.9966) 0,9397 (0.9924)
32 0.7364 (0.9830) 0.9367 (0.9814) 0.9126 (0.9995) 1.1886 (0.9992) 0.8572 (0.9995) 0,9123 (0.9967)

(25, 25)
42 0.7642 (0.9613) 0.9721 (0.9836) 0.8908 (0.9994) 1.2230 (0.9999) 0.8433 (0.9966) 0,8800 (0.9943)
45 0.6304 (0.9745) 0.8019 (0.9891) 0.9033 (0.9998) 1.2630 (0.9999) 0.8126 (0.9988) 0,8679 (0.9979)
48 0.5551 (0.9844) 0.7061 (0.9950) 0.9281 (0.9993) 1.2952 (0.9995) 0.7801 (0.9998) 0,8324 (0.9981)
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Table 8. Lengths of ACI, SCI, boot-p CI, boot-t CI, and HPD for α2 = 1.24 together with their CPs
in brackets.

(m, n) r CI SCI HPD (Gamma) HPD (Non-Inf) Boot-t Boot-p

(15, 15)
18 0.8096 (0.9530) 1.0298 (0.9781) 0.7509 (0.9992) 0.9808 (0.9996) 0.9066 (0.9947) 0.9564 (0.9878)
22 0.7753 (0.9648) 0.9862 (0.9908) 0.7570 (0.9994) 0.9921 (0.9998) 0.8595 (0.9973) 0.8960 (0.9896)
25 0.7744 (0.9658) 0.9851 (0.9795) 0.7760 (0.9999) 1.0392 (0.9994) 0.8502 (0.9998) 0.8933 (0.9937)

(15, 20)
25 0.7474 (0.9732) 0.9537 (0.9885) 0.7725 (0.9997) 1.0537 (0.9993) 0.8429 (0.9986) 0.8851 (0.9947)
28 0.7795 (0.9713) 0.9915 (0.9835) 0.7967 (0.9991) 1.0599 (0.9994) 0.8211 (0.9998) 0.8542 (0.9964)
32 0.6829 (0.9831) 0.8687 (0.9835) 0.8078 (0.9999) 1.0808 (0.9995) 0.7999 (0.9993) 0.8214 (0.9977)

(25, 25)
42 0.7004 (0.9607) 0.8909 (0.9719) 0.7849 (0.9991) 1.0992 (0.9994) 0.7741 (0.9978) 0.8020 (0.9944)
45 0.5841 (0.9737) 0.7430 (0.9826) 0.7961 (0.9992) 1.1142 (0.9995) 0.7563 (0.9996) 0.7822 (0.9984)
48 0.5147 (0.9738) 0.6547 (0.9542) 0.8281 (0.9992) 1.1369 (0.9995) 0.7239 (0.9996) 0.7551 (0.9958)

Table 9. Lengths of ACI, SCI, boot-p CI, boot-t CI, and HPD for β1 = 0.90 together with their CPs
in brackets.

(m, n) r CI SCI HPD (Gamma) HPD (Noinf) Boot-t Boot-p

(15, 15)
18 0.5426 (0.9494) 0.6756 (0.9603) 0.4452 (0.9988) 0.5980 (0.9996) 0.7981 (0.9877) 0.8626 (0.9895)
22 0.5573 (0.9549) 0.7060 (0.9788) 0.4038 (0.9995) 0.5607 (0.9996) 0.8518 (0.9985) 0.8553 (0.9998)
25 0.5526 (0.9644) 0.8071 (0.9817) 0.4236 (0.9997) 0.5812 (0.9998) 0.8512 (0.9998) 0.8507 (0.9998)

(15, 20)
25 0.5267 (0.9412) 0.7001 (0.9507) 0.4363 (0.9987) 0.5681 (0.9991) 0.8241 (0.9972) 0.8083 (0.9992)
28 0.5321 (0.9501) 0.6769 (0.9606) 0.4277 (0.9991) 0.5980 (0.9996) 0.7899 (0.9987) 0.7868 (0.9998)
32 0.5167 (0.9679) 0.6572 (0.9899) 0.4343 (0.9999) 0.6050 (0.9997) 0.7583 (0.9999) 0.7642 (0.9995)

(25, 25)
43 0.4622 (0.9482) 0.5879 (0.9697) 0.4208 (0.9993) 0.6174 (0.9996) 0.7330 (0.9969) 0.7401 (0.9993)
45 0.4097 (0.9525) 0.5212 (0.9568) 0.4281 (0.9991) 0.6221 (0.9992) 0.7090 (0.9985) 0.7189 (0.9993)
48 0.3947 (0.9623) 0.5021 (0.9756) 0.4411 (0.9998) 0.6378 (0.9999) 0.6821 (0.9997) 0.6903 (0.9999)

Figures 3–5 show the MLE of three parameters and Bayesian estimation under a priori
gamma distribution information; Figures 6–8 show the MLEs and Bayes estimates for three
parameters without prior information; Figures 9–11 show the coverage probabilities of
three parameters within different confidence intervals. Figures 12–20 show the Bayesian
estimation of three parameters under three loss functions under the conditions of having
prior gamma information.
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Figure 19. BPLFs (gamma) of β.
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Figure 20. BELFs (gamma) of β.

Based on the above data and charts, some conclusions are derived as follows.

(1) From Tables 1, 4, 10, and 11, it can be found that the MLE and Bayesian estimates for
the three parameters are almost unbiased, and the MSEs are very small. At the same
time, in most cases, the Bayes estimates perform better than the maximum likelihood
estimates, regardless of whether they are a gamma prior or a non-informative prior.

(2) Tables 1–7, 10, and 11 show that, as the r value increases, that is, the number of failures,
the deviation relative to the point estimation value becomes so small that it can be
ignored, and the coverage probabilities of the estimated intervals are also improved.

(3) For all interval estimates, the coverage probabilities of the parameters reach a stan-
dard level, and basically, all coverage rates are greater than 95%. Meanwhile, the
HPD CIs give a superior coverage probability than other approaches in most cases.
Based on the calculated interval coverage values, we can rank the five interval
estimation methods mentioned in the following order from best to worst: HPD
CIs > Boot-t > Boot-p > Asymptotic SCI > ACI.

(4) From Tables 6 and 7, it can be found that the HPD CIs have the minimum average
length of the intervals. Given the average length of CIs, we can rank the five inter-
val estimation methods mentioned in the following order from best to worst: HPD
CIs > Boot-t > Boot-p > ACI > Asymptotic SCI.
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(5) Usually, regardless of the number of two samples and the value of r, the Bayesian
estimation based on non-informative priors is inferior to the gamma priors, along
with smaller deviations in the meantime.

(6) We can find that Bayesian estimation performs quite satisfactorily in the posterior
risk values under the three loss functions. Further discovery indicates that the Bayes
estimation of BSELF is superior to the Bayes estimators of BELF and BPLF, while the
Bayesian estimation under BELF is superior to BSELF and BPLF in terms of posterior
risk. In the BSELF and BPLF, the estimated value is higher than the set value, while in
the BELF, the estimated value is lower than the set value.

(7) It can be observed that both MLEs and Bayesian estimators have good results for two
sample lines with the same or different population numbers, and their MSEs and PRs
follow the same pattern. This indicates that the model is suitable for both balanced
and unbalanced sample line situations.

Table 10. The reliability estimation when a1 = 6, a2 = 32, b1 = 7.5, b2 = 46.5, c = 5, d = 15.5.

RT HT

MLE SELF PLF ELF MLE SELF PLF ELF

t = 0.2
α1, β 0.8499 0.8552 0.8524 0.8609 0.8456 0.8101 0.8271 0.7763
α2, β 0.8653 0.8723 0.8698 0.8771 0.7529 0.7092 0.7234 0.6808

t = 0.8
α1, β 0.4896 0.5055 0.4985 0.5196 0.9882 0.9309 0.9490 0.8948
α2, β 0.5284 0.5495 0.5431 0.5625 0.8857 0.8215 0.8370 0.7908

t = 2
α1, β 0.1502 0.1521 0.1466 0.1635 1.0974 1.0561 1.0751 1.0179
α2, β 0.1813 0.1887 0.1829 0.2007 0.9928 0.9426 0.9588 0.9100

Table 11. The reliability estimation when a1 = 0, a2 = 22, b1 = 0, b2 = 36, c = 0, d = 13.

RT HT

MLE SELF PLF ELF MLE SELF PLF ELF

t = 0.2
α1, β 0.8499 0.827 0.8223 0.8365 0.8456 0.9808 1.0098 0.9226
α2, β 0.8653 0.8546 0.8505 0.8628 0.7529 0.8136 0.8384 0.7647

t = 0.8
α1, β 0.4896 0.4399 0.4297 0.4613 0.9882 1.1120 1.1427 1.0506
α2, β 0.5284 0.5044 0.4943 0.5251 0.8857 0.9344 0.9609 0.8819

t = 2
α1, β 0.1502 0.1059 0.0996 0.1198 1.0974 1.2457 1.2775 1.1818
α2, β 0.1813 0.1518 0.1439 0.1687 0.9928 1.0588 1.0867 1.0036

6. Real Data Analysis

We will analyze real data from [17] for illustration purposes, which recorded the
breakdown time of the current at different voltages. For the ease of explanation, the
breakdown times are selected at voltages of 32 and 34 KV. The following data are provided
in Table 12 for reference purposes.
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Table 12. Breakdown times at voltages of 32 and 34 KV.

Breakdown at 32 KV
0.27 0.40 0.69 0.79 2.75
3.91 9.88 13.95 15.93 27.80

53.24 82.85 89.29 100.60 215.10

Breakdown at 34 KV

0.19 0.78 0.96 1.31 2.78
3.16 4.15 4.67 4.85 6.50
7.35 8.01 8.27 12.06 31.75

32.53 33.91 36.71 72.89

Here, m = 15 and n = 19. We apply the models developed in this paper with the
observed sample with r = 28 under the censored population, and the censored data
obtained from two samples are shown in Table 13.

Table 13. The joint Type-II censoring data.

Censored Data

W

0.19 0.27 0.40 0.69 0.78 0.79 0.96
1.31 2.75 2.78 3.16 3.91 4.15 4.67
4.85 6.50 7.35 8.01 8.27 9.88 12.06
13.95 15.93 27.80 31.75 32.52 33.91 36.71

Z

1 0 0 0 1 0 1
1 0 1 1 0 1 1
1 1 1 1 1 0 1
0 0 0 1 1 1 1

A goodness-of-fit test based on Kolmogorov–Smirnov (K-S) statistics is conducted
in this part. According to the calculation, the KS value of the dataset is 0.1321, which
means that the Gumbel type-II model is very suitable for this dataset. We also conducted
hypothesis testing. Based on the likelihood ratio test, it is meaningful to study the null
hypothesis H0 : β1 = β2 versus the alternative hypothesis H1 : β1 6= β2. The test
statistic can be calculated as L/L0 and its p-value is computed as 0.9612. Therefore, the
assumption of the equality of the shape parameters cannot be rejected. Thus, we consider
that β = β1 = β2.

Subsequently, we also discussed the application of the Lindley distribution and the
Exponential distribution under the joint type-II censoring scheme on this dataset. Their
PDFs are written as:

f (x) =
θ2

1 + θ
e−θx(1 + x), x > 0, θ > 0, (24)

f (x) =
1
θ

e−
x
θ , x > 0, θ > 0. (25)

Compared with the Gumbel type-II distribution, we calculate the K-S distances and
p-values of the Lindley distribution and the exponential distribution in this model, which
are shown in Table 14. It can be observed that the p-value of the Lindley distribution
under the model is much smaller than the other two distributions, indicating poor fitting
performance. The K-S distance of the Gumbel type-II distribution is significantly shorter
than that of the Lindley distribution, which means that its performance is better.
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Table 14. The K-S distances and p-values for different distributions.

Distribution K-S Distances p-Value

Gumbel type-II distribution 0.1321 0.9612
Lindley distribution 0.3873 0.0346

Exponential distribution 0.1539 0.9491

In addition, under the Lindley distribution model, the exponential distribution model,
and the Gumbel Type-II distribution, we also calculate some essential measures of goodness-
of-fit under the real data, that is, AIC and BIC. Here, AIC refers to the Akaike information
criterion which was proposed by [18] and is defined as

AIC = 2k− 2 ln L. (26)

BIC refers to the Bayesian information criterion which was initiated by [19] and is
calculated by

BIC = k ln N − 2 ln L. (27)

In Formulas (26) and (27), k is the number of parameters, L is the likelihood function
of the model, and N is the number of observations. For any dataset, having the minimum
values of AIC and BIC is best. Table 15 shows the values of AICs and BICs under three
distributed models.

Table 15. The AICs and BICs for different distributions.

Distribution AICs BICs

Gumbel type-II distribution 29.3783 31.9012
Lindley distribution 46.8125 51.3321

Exponential distribution 91.9002 103.4182

From the calculation results, it can be seen that the AIC and BIC values of the Gumbel
Type-II distribution are significantly smaller than the other two distributions. According
to the judgment criteria, the Gumbel Type-II distribution is the best choice in a competi-
tive lifespan.

In summary, fitting the Gumbel Type-II distribution to this dataset has a good effect.
Based on this, we calculate MLEs, 95% exact CIs, SCIs, HPD intervals, and bootstrap

CIs. In Tables 16 and 17, the estimated values of α1, α2 and β by all approaches are shown.

Table 16. The estimation of parameter when a1 = 6, a2 = 32, b1 = 7.5, b2 = 46.5, c = 5, d = 15.5.

Bayes Estimates

MLE (var) CI SCI BSELF (PR) BPLF (PR) BELF (PR) HPD

α1 0.4168 (0.0102) (0.2183, 0.6152) (0.1643, 0.6692) 0.4881 (0.0342) 0.5041 (0.1132) 0.4548 (0.0365) (0.2867, 0.7513)
α2 0.6295 (0.0113) (0.4214, 0.8376) (0.3647, 0.8943) 0.6572 (0.0219) 0.7027 (0.0853) 0.6372 (0.0230) (0.3552, 0.7890)
β 1.8518 (0.1024) (1.2246, 2.4790) (1.0539, 2.6496) 1.9432 (0.0135) 1.9747 (0.0544) 1.8809 (0.0133) (1.5189, 2.9302)

Table 17. The estimation of parameter when a1 = 0, a2 = 22, b1 = 0, b2 = 36, c = 0, d = 13.

Bayes Estimates

MLE (var) CI SCI BSELF (PR) BPLF (PR) BELF (PR) HPD

α1 0.4168 (0.0102) (0.2183, 0.6152) ( 0.1643, 0.6692) 0.4892 (0.0521) 0.5128 (0.1021) 0.4671 (0.0537) (0.2458, 0.8562)
α2 0.6295 (0.0113) (0.4214, 0.8376) (0.3647, 0.8943) 0.6532 (0.0217) 0.6662 (0.0827) 0.6239 (0.0239) (0.3024, 0.7549)
β 1.8518 (0.1024) (1.2246, 2.4790) (1.0539, 2.6496) 1.9026 (0.0818) 1.8821 (0.0216) 1.8346 (0.0207) (1.4095, 2.9231)
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Figures 21 and 22 show PDF and CDF plotted using MLE and BSELF of (α1, β) and
Figures 23 and 24 show PDF and CDF plotted using MLE and BSELF of (α2, β), respectively.
The comparison shows that the effect of BSELF of (α1, β) is better than that of MLE, while
the effects of MLE and BSELF of (α2, β) have a small difference.
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Figure 21. PDF of (α1, β) in real datasets.
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Figure 22. CDF of (α1, β) in real datasets.
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Figure 23. PDF of (α2, β) in real datasets.
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Figure 24. CDF of (α2, β) in real datasets.

The reliability estimation process contains a method of assessing system reliability
throughout the entire product life cycle to determine whether the product meets specific
reliability requirements and has a specific statistical confidence level. For more specific
reliability analysis knowledge, please refer to [20–22]. In survival analysis, common
methods include the reliability function, which refers to the probability of a product
completing a specified function under specified conditions and within a specified time,
and the failure rate function, which refers to the probability of a product that has not
failed at time t to fail within a unit time after that time t. Thus, we estimate the reliability
characteristics of these two samples. For the Gumbel Type-II distribution, it is known that:

The reliability function (RT) = 1− F(t) = 1− e−βt−αj
, αj > 0, β > 0, j = 1, 2, t > 0, (28)

The failure rate function (HT) =
f (t)

1− F(t)
=

αβt−(α+1)e−βt−α

1− e−βt−α , αj > 0, β > 0, j = 1, 2, t > 0. (29)

Thus, by placing α̂j, j = 1, 2 and β̂ in the above expressions, obtaining MLEs for
the above reliability characteristics of two populations is easy. In addition, the Bayesian
estimation of the reliability characteristics of the two samples is computed in a similar way.
In Tables 10 and 11, the estimated reliability characteristics of α1, α2, and β are performed.

7. Conclusions

In this article, we considered the statistical inference for two populations with both
Gumbel type-II distributions, which have the same shape parameters and different scale
parameters under the joint type-II censoring scheme. Based on the assumption of life distri-
bution for two populations, we provided the maximum likelihood estimation of unknown
parameters and Bayesian estimation in gamma prior and non-information prior cases.
During this period, some intervals, such as bootstrap and HPD, were also constructed for
comparison and evaluation. The simulation algorithms for these processes were explained
above, and we implemented them and obtained corresponding conclusions. Finally, the
paper analyzed a set of real industrial data, with a K-S test, to calculate the AIC and
BIC methods and reliability characteristics, among others, and the displayed results are
quite satisfactory.

In this article, we assumed that the lifespan of these populations follows Gumbel
type-II distributions with the same scale parameters, but in practice, this may not always
be the case. In addition, there is also a situation where the two populations follow different
life distributions, which is worthy of further research. We are also exploring how the
statistical distribution of the lifespan for n populations can be inferred. Therefore, more
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work is needed in these directions to develop appropriate inference programs for the same
or different life distributions of multiple populations.
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Appendix A

Proof of Lemma 2.1. From Equations (7)–(9), for α1, we have

lim
α1→0

ξ1(α1) = lim
α1→0

(
mr

α1
− ln U1 + β

r

∑
i=1

w−α1
i zi ln wi + (m−mr)

−(βw−α1
r ln wr)e−βw

−α1
r

1− e(−βw
−α1
r )

)→ +∞,

lim
α1→+∞

ξ1(α1) = lim
α1→+∞

(
mr

α1
− ln U1 + β

r

∑
i=1

w−α1
i zi ln wi + (m−mr)

−(βw−α1
r ln wr)e−βw

−α1
r

1− e(−βw
−α1
r )

)

→ U(some negative quantity),

and

ξ ′j(α1) =
∂2 ln L

∂α2
1

= −mr

α2
1
− α1β

r

∑
i=1

w−α1−1
i zi ln wi − (m−mr)α1βw−α1−1

r ln wre−βw
−α1
r

1− βw−α1
r − e−βw

−α1
r

(1− e−βw
−α1
r )2

< 0.

For α2, we have

lim
α2→0

ξ2(α2) = lim
α2→0

(
nr

α2
− ln U2 + β

r

∑
i=1

w−α2
i zi ln wi + (n− nr)

−(βw−α2
r ln wr)e−βw−α2

r

1− e(−βw−α2
r )

)→ +∞,

lim
α2→+∞

ξ2(α2) = lim
α2→+∞

(
nr

α2
− ln U2 + β

r

∑
i=1

w−α2
i zi ln wi + (n− nr)

−(βw−α2
r ln wr)e−βw−α2

r

1− e(−βw−α2
r )

)

→ U(some negative quantity),

and

ξ ′j(α2) =
∂2 ln L

∂α2
2

= −nr

α2
2
− α2β

r

∑
i=1

w−α2−1
i zi ln wi − (n− nr)α2βw−α2−1

r ln wre−βw−α2
r

1− βw−α2
r − e−βw−α2

r

(1− e−βw−α2
r )2

< 0.

For β, we have
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lim
β→0

ξ3(β) = lim
β→0

r
β
− (

r

∑
i=1

w−α1
i zi +

r

∑
i=1

w−α2
i (1− zi)) + (m−mr)

w−α1
r e−βw

−α1
r

1− e−βw
−α1
r

+(n− nr)
w−α2

r e−βw−α2
r

1− e−βw−α2
r
→ +∞,

lim
β→+∞

ξ3(β) = lim
β→+∞

r
β
− (

r

∑
i=1

w−α1
i zi +

r

∑
i=1

w−α2
i (1− zi)) + (m−mr)

w−α1
r e−βw

−α1
r

1− e−βw
−α1
r

+(n− nr)
w−α2

r e−βw−α2
r

1− e−βw−α2
r
→ U(some negative quantity),

and

ξ ′j(β) =
∂2 ln L

∂β2 = − r
β2 − (m−mr)w

−2α1
r e−βw

−α1
r

1− e−βw
−α1
r + w−α1

r e−βw
−α1
r

(1− e−βw
−α1
r )2

−(n− nr)w
−2α2
r e−βw−α2

r
1− e−βw−α2

r + w−α2
r e−βw−α2

r

(1− e−βw−α2
r )2

< 0.

where U1 =
r

∏
i=1

wzi
i and U2 =

r
∏
i=1

w1−zi
i .

Thus, it can be seen that ξ1(α1), ξ2(α2) and ξ3(β) are the continuous functions on
(0,+∞), which decrease monotonically from +∞ to negative quantity (U).Therefore, the
MLEs of αj and β, j = 1, 2 exist and are the solution of ξ1(α1) = 0, ξ2(α2) = 0, and ξ3(β) = 0
and they are unique if mr < m < 2mr and nr < n < 2nr (see [23]).
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