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Abstract: Generalized progressively Type-II hybrid strategy has been suggested to save both the
duration and cost of a life test when the experimenter aims to score a fixed number of failed units.
In this paper, using this mechanism, the maximum likelihood and Bayes inferential problems for
unknown model parameters, in addition to both reliability, and hazard functions of the inverted
exponentiated Rayleigh model, are acquired. Applying the observed Fisher data and delta method,
the normality characteristic of the classical estimates is taken into account to derive confidence
intervals for unknown parameters and several indice functions. In Bayes’ viewpoint, through
independent gamma priors against both symmetrical and asymmetrical loss functions, the Bayes
estimators of the unknown quantities are developed. Because the Bayes estimators are acquired in
complicated forms, a hybrid Monte-Carlo Markov-chain technique is offered to carry out the Bayes
estimates as well as to create the related highest posterior density interval estimates. The precise
behavior of the suggested estimation approaches is assessed using wide Monte Carlo simulation
experiments. Two actual applications based on actual data sets from the mechanical and chemical
domains are examined to show how the offered methodologies may be used in real current events.

Keywords: inverted exponentiated Rayleigh model; reliability; Bayes inference; Metropolis–Hastings;
likelihood inference; Type-II generalized progressive hybrid censoring

MSC: 62F10; 62F15; 62N01; 62N02; 62N05

1. Introduction

In reliability experiments or clinical trials, the failure times of experimental objects
are frequently unavailable. Censoring strategies are commonly used to save money while
also limiting the amount of time spent on experiments. The two most popular censorship
mechanisms, called; Type-I (or time) and Type-II (or failure) censoring strategies. These
plans have been studied in detail by Bain and Engelhardt [1]. Two mixtures of Type-I
and Type-II techniques, called hybrid Type-I hybrid (T1H) and Type-II hybrid (T2H), are
introduced by Epstein [2] and Childs et al. [3], respectively. Although a vast amount
of literature is available on the given schemes, they do not allow for the withdrawal
of live test items at other times than when the test ends. So, these plans do not have
the flexibility to allow subjects to be removed, and they will not be beneficial to use.
Therefore, to overcome this drawback, Type-I and Type-II progressive as well as Type-I
progressive hybrid (T1PH) and Type-II progressive hybrid (T2PH) censored mechanisms are
discussed in detail by an excellent monograph presented by Balakrishnan and Cramer [4].
Unfortunately, although T2PH has become very common in reliability tests, it can take
a long duration to stop the test, and thus inference procedures may be unworkable or
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ineffective. To address the disadvantages, Ng et al. [5] proposed adaptive-T2PH to benefit
from reducing the total test duration and enhancing grading efficiency.

Despite both T2PH and adaptive-T2PH censoring strategies ensure a certain amount
of failures, their disadvantage is that it may take quite some time to detect the required m
failures and end the test. As a result, Lee et al. [6] proposed a generalized-T2PH technique
in which the study is certain to stop at a fixed time. They stated that the study carried out
based on the generalized-T2PH plan could save overall time on testing and cost. We briefly
explain this strategy as: Suppose n subjects are put on an experiment at time 0, the size of
censored sample m(< n), the progressive design R = (R1, . . . , Rm) and Ti, i = 1, 2, (where
0 < T1 < T2 < ∞) must be prefixed. Let (d1, d2) be the length of the observed failures
before (T1, T2). However, as soon as the first failure (say y1:m:n) occurs, R1 (of n− 1) are
randomly drawn from the experiment; next when second failure (say y2:m:n) occurs, R2 (of
n− 1− R1) are randomly drawn, and so on. Then, at time T • = max{T1, min{Ym:m:n, T2}},
the testing stopped. Clearly, T2 represents the greatest time for which the researcher is
ready to continue the examination.

The main feature of this process is that it might occur when the participant has planned
to use the testing facility for two time limitations by changing the values of some of the
progressive units during the experiment. However, if Ym:m:n < T1, end the test at T1
(Case-I); If T1 < Ym:m:n < T2, end the test at Ym:m:n (Case-II); otherwise, stop the test at T2
(Case-III). Practically, the experimenter collects one of the following data groups:

{Y, R} =


{(Y1:m:n, R1), . . . , (Ym−1:m:n, Rm−1), (Ym:m:n, 0), . . . , (Yd1 :n, 0)}; Case-I,

{(Y1:m:n, R1), . . . , (Yd1 :n, Rd1), . . . , (Ym−1:m:n, Rm−1), (Ym:m:n, Rm)}; Case-II,

{(Y1:m:n, R1), . . . , (Yd1 :n, Rd1), . . . , (Yd2−1:n, Rd2−1), (Yd2 :n, Rd2)}; Case-III.

Let {Y, R} represent order statistics collected from a generalized-T2PH censoring,
which come from a continuous population with probability density function (PDF) (sym-
bolized by f (·)) and cumulative distribution function (CDF) (symbolized by F(·)). Then,
the joint PDF of {Y, R} can be expressed as

Lξ(ω|Y) = GξΨξ(Tτ ; ω)∏Dξ

i=1 f (yi:m:n; ω)[1− F(yi:m:n; ω)]Ri , ξ = 1, 2, 3, τ = 1, 2, (1)

where ω is a vector of interested parameters. Table 1 provides the notations ξ, Gξ , Dξ ,
Ψξ(Tτ ; ω) and R∗dτ+1 of the generalized-T2PH censoring. Further, from (1), various censor-
ing techniques are reported in Table 2. Several research investigations have been conducted
on the statistical estimate of unknown parameter(s) and/or reliability indices in various
lifespan models using generalized-T2PH data; e.g., see Ashour and Elshahhat [7], Ateya
and Mohammed [8], Seo [9], Cho and Lee [10], Nagy et al. [11], Wang et al. [12], Elshah-
hat et al. [13], later Alotaibi et al. [14], among others.

The Rayleigh model is a particular kind of the Weibull lifetime model, which was
initially suggested by Rayleigh while researching acoustics difficulties. Because it just has
one parameter, its practical uses are restricted and un-flexible. Therefore, Ghitany et al. [15]
proposed a novel general group of inverse exponentiated distributions in which the two-
parameter inverted exponentiated Rayleigh (IER) distribution is a particular member and
its failure rate is non-monotonic if the failure rates of testing elements are not monotonous
and show a pattern of change. However, suppose Y is a nonnegative random variable of a
test item that follows the IER distribution, denoted by IER(ω), where ω = (δ, µ)T, δ > 0 is
the shape and µ > 0 is the scale parameters, respectively. Thus, its PDF, CDF, and hazard
rate function (HRF), (symbolized by h(·)), are given respectively by

f (y; ω) = 2δµy−3e−µy−2
(

1− e−µy−2
)δ−1

, y > 0; (2)

F(y; ω) = 1−
(

1− e−µy−2
)δ

, y > 0; (3)
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h(t; ω) = 2δµt−3e−µt−2
(

1− e−µt−2
)−1

, t > 0; (4)

and its reliability (or survival) function (RF) given by R(·) = 1− F(·).
In literature, using different sampling scenarios, several authors have done signifi-

cant work on the theories and applications of the IER model, for example, Rastogi and
Tripathi [16] analyzed hybrid Type-I; independently, Kayal et al. [17] as well as Mau-
rya et al. [18] analyzed progressive Type-II; independently, Gao and Gui [19] as well as
Maurya et al. [20] analyzed progressive first-failure; Gao and Gui [21] discussed the piv-
otal inference from progressive Type-II; Panahi and Moradi [22] analyzed an adaptive
Type II progressive hybrid; recently Fan and Gui [23] analyzed joint progressively Type-II
censoring mechanisms.

Table 1. Notations of the generalized-T2PH censoring.

ξ Gξ Dξ Ψξ(Tτ ; ω) R∗dτ+1

1 Πd1
i=1 ∑m

r=i (Rr + 1) d1 [1− F(T1)]
R∗d1+1 n−∑m−1

r=1 Rrr − d1

2 Πm
i=1 ∑m

r=i (Rr + 1) m 1 0
3 Πd2

i=1 ∑m
r=i (Rr + 1) d2 [1− F(T2)]

R∗d2+1 n−∑d2
r=1 Rr − d2

Table 2. Six special cases from generalized-T2PH censoring.

Plan Author(s) Setting

T1PH Kundu and Joarder [24] T1 → 0
T2PH Childs et al. [25] T2 → ∞
T1H Epstein [2] T1 → 0, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
T2H Childs et al. [3] T2 → ∞, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
Type-I Bain and Engelhardt [1] T1 = 0, m = n, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m
Type-II Bain and Engelhardt [1] T1 = 0, T2 → ∞, Ri = 0, i = 1, 2, . . . , m− 1, and Rm = n−m

Although a great deal of work has been done on the IER lifetime model, to the best of
our experience, no effort has been achieved to discuss the IER’s model parameters and(or)
reliability time features when the sample is a generalized-T2PH censored strategy. To fill up
this issue, using the proposed censoring plan, the main contribution of the present study
is three-fold:

• Maximum likelihood estimators (MLEs) along with their approximate confidence
intervals (ACIs) of δ, µ, R(t) and h(t) are obtained.

• Bayes’ estimators under independent gamma assumptions of δ, µ, R(t) and h(t) are
created relative to the squared-error (SE) and general-entropy (GE) losses.

• Bayes estimators cannot be estimated in explicit form, so Markov-chain Monte-Carlo
(MCMC) approximation techniques are recommended to compute the acquired Bayes
MCMC estimates and the associated highest posterior density (HPD) intervals.

• Numerical solutions for the offered estimators of δ, µ, R(t) and h(t) are done by installing
two useful packages, namely: ‘coda’ (proposed by Plummer et al. [26]) and ‘maxLik’
(proposed by Henningsen and Toomet [27]) on the R 4.2.2 programming platform.

• Extensive Monte Carlo comparisons, on the basis of four accuracy criteria, namely:
(i) root mean squared-errors; (ii) mean relative absolute-biases; (iii) average confidence
lengths; and (iv) coverage percentages, the behavior of the acquired estimators of δ, µ,
R(t) and h(t) is discussed.

• To benefit from the practicality and flexibility of the IER model in data analysis,
from the engineering and chemistry areas, we analyzed different real data sets that
reflect failure times of mechanical components and cumin essential oil.

The rest of the work is classified as follows: Section 2 investigates both maximum
likelihood and Bayesian inferences. Monte Carlo simulations are reported in Section 3.
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In Section 4, two real applications are explored. Lastly, Section 5 provides some concluding
remarks and recommendations of the study.

2. Inferences

In this section, based on generalized-T2PH censored data, we have obtained the
maximum likelihood and Bayes’ estimators as well as their ACI/HPD interval estimators
of δ, µ, R(t) and h(t).

2.1. Likelihood Estimation

Let y = {yi:m:n, Ri} be a generalized-T2PH censored data of size d2 obtained from the
IER(δ, µ) population with PDF and CDF in (2) and (3), respectively. Using (2), (3) and (1),
such yi is a simplicity notation of yi:m:n, we can express (1) up to proportional as

Lξ(ω|y) ∝ Ψξ(Tτ ; ω)(δµ)Dξ e−µ ∑
Dξ
i=1 y−2

i

Dξ

∏
i=1

(
1− e−µy−2

i

)δ(Ri+1)−1
, (5)

where

Ψ1(T1; ω) =
(

1− e−µT−2
1

)δR∗d1+1 , Ψ2(Tτ ; ω) = 1 and Ψ3(T2; ω) =
(

1− e−µT−2
2

)δR∗d2+1 .
Correspondingly, the log-likelihood function, `ξ(·) ∝ logLξ(·), becomes

`(ω|y) ∝ Υξ(Tτ ; ω) + Dξ log(δµ)− µ

Dξ

∑
i=1

y−2
i +

Dξ

∑
i=1

(δ(Ri + 1)− 1) log
(

1− e−µy−2
i

)
, (6)

where Υξ(Tτ ; ω) = log Ψξ(Tτ ; ω) for ξ = 1, 2, 3, and τ = 1, 2.
Differentiating (6) with regard to δ and µ, to obtain the MLEs δ̂ and µ̂, respectively,

we get

∂`

∂δ
= Υ◦ξ (Tτ ; ω) + Dξδ−1 +

Dξ

∑
i=1

(Ri + 1) log
(

1− e−µy−2
i

)
, (7)

and

∂`

∂µ
= Υ•ξ (Tτ ; ω) + Dξµ−1 +

Dξ

∑
i=1

(δ(Ri + 1)− 1)y−2
i e−µy−2

i

(
1− e−µy−2

i

)−1
, (8)

where
Υ◦ξ (Tτ ; ω) = R∗dτ+1 log

(
1− e−µT−2

τ

)
and Υ•ξ (Tτ ; ω) = δR∗dτ+1T−2

τ e−µT−2
τ

(
1− e−µT−2

τ

)−1
.

It is obvious, from (7) and (8), that the MLEs δ̂ and µ̂ of δ and µ, respectively, are
expressed in nonlinear formulas. So, we recommend to utilize the Newton-Raphson
technique by ‘maxLik’ (suggested by Henningsen and Toomet [27]) to acquire the desired
estimators δ̂ and µ̂.

To prove the existence and uniqueness of δ̂ and µ̂, using one simulated generalized-
T2PH censored sample when (δ, µ) = (0.5, 1), (T1, T2) = (0.5, 1.5), (n, m) = (80, 40) and
Ri = 1, i = 1, . . . , m, the profile log-likelihood plots of δ and µ are shown in Figure 1.
In this situation, the MLE values of δ and µ are 0.61525 and 1.52502, respectively. Figure 1
provides evidence that the acquired MLEs δ̂ and µ̂ of δ and µ existed and were unique.

Once the estimates of δ̂ and µ̂ evaluated, the MLEs R̂(t) and ĥ(t) of R(t) and h(t), are
given (for t > 0) respectively by

R̂(t) =
(

1− e−µ̂t−2
)δ̂

and ĥ(t) = 2δ̂µ̂t−3e−µ̂t−2
(

1− e−µ̂t−2
)−1

.

Now, using the asymptotic normality of δ̂ and µ̂, the associated ACI of δ, µ, R(t) or
h(t) is constructed, see Lawless [28]. It is clear, according to the theory of large-sample, that
the asymptotic distribution of δ̂ and µ̂ (say ω̂ = (δ̂, µ̂)>) is normal distribution with mean
ω and variance I−1(ω).



Axioms 2023, 12, 565 5 of 22

0 1 2 3 4

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

δ

P
ro

fi
le

 l
o
g
−

lik
e
lih

o
o
d

0 2 4 6 8

−
1
5
0

−
1
0
0

−
5
0

µ

P
ro

fi
le

 l
o
g
−

lik
e
lih

o
o
d

Figure 1. The log-likelihood functions of δ and µ from generalized-T2PH censored data.

Through inverting the observed Fisher’s information matrix, the estimated asymptotic
variance–covariance I−1(ω) matrix can be offered via replacing (δ, µ) with (δ̂, µ̂) as

I−1(ω̂) ∼=
[
−L11 −L12
−L21 −L22

]−1

=

[
σ̂11 σ̂12
σ̂21 σ̂22

]
, (9)

where

L11 = Υ◦◦ξ (Tτ ; ω)− Dξδ−2,

L22 = Υ••ξ (Tτ ; ω)− Dξµ−2

−∑Dξ

i=1 (δ(Ri + 1)− 1)y−4
i e−µy−2

i

(
1− e−µy−2

i

)−1
[

1 + e−µy−2
i

(
1− e−µy−2

i

)−1
]

,

and

L12 = Υ◦•ξ (Tτ ; ω) + ∑Dξ

i=1 (Ri + 1)y−2
i e−µy−2

i

(
1− e−µy−2

i

)−1
,

with
Υ◦◦ξ (Tτ ; ω) = 0,

Υ••ξ (Tτ ; ω) = −δR∗dτ+1T−4
τ e−µT−2

τ

(
1− e−µT−2

τ

)−1
[

1 + e−µT−2
τ

(
1− e−µT−2

τ

)−1
]

,

and
Υ◦•ξ (Tτ ; ω) = R∗dτ+1T−2

τ e−µT−2
τ

(
1− e−µT−2

τ

)−1
.

Thus, the 100(1− q)% ACI bounds for δ and µ are given by

δ̂∓ zq/2
√

σ̂11 and µ̂∓ zq/2
√

σ̂22,

respectively, where zq/2 is the (q/2)th standard normal variate.
Furthermore, to build the ACI of R(t) or h(t), the delta method is considered to

approximate the estimated variance associated with the MLEs R̂(t) or ĥ(t), denoted by σ̂R
and σ̂h, as

σ̂R = AT
R I−1(ϑ) AR

∣∣∣
(δ̂,µ̂)

and σ̂h = AT
h I−1(ϑ) Ah

∣∣∣
(δ̂,µ̂)

respectively, where AT
R = [ ∂R(t)

∂δ
∂R(t)

∂µ ] and AT
h = [ ∂h(t)

∂δ
∂h(t)

∂µ ].
So, the 100(1− q)% ACI bounds of R(t) and h(t) are(

R̂(t) ∓ zq/2
√

σ̂R

)
and

(
ĥ(t) ∓ zq/2

√
σ̂h

)
,

respectively.
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2.2. Bayes Estimation

This subsection considers the Bayes approach to estimate the parameters δ and µ,
reliability R(t) and hazard h(t) functions of the IER model when a data set from the
generalized-T2PH censored collected. To establish this objective, the gamma G(·) density
priors are utilized to adapt support of IER parameters. So, both δ and µ are considered to
be independent stochastically with gamma priors distributed such as δ ∼ G(a1, b1) and
µ ∼ G(a2, b2). Then, for ai, bi > 0, i = 1, 2, the joint prior PDF (say φ(·)) of δ and µ is

φ(δ, µ) ∝ δa1−1µa2−1e−(b1δ+b2µ), δ, µ > 0, (10)

where ai and bi are supposed to be known.
Combining (5) with (10), the joint posterior PDF (say Σ(·)) of δ and µ becomes

Σξ(ω|y) ∝ Ψξ(Tτ ; ω)δDξ+a1−1µDξ+a2−1e
−
(

δb1+µ

(
b2+∑

Dξ
i=1 y−2

i

))
Dξ

∏
i=1

(
1− e−µy−2

i

)δ(Ri+1)−1
, (11)

where its normalized term (sayH) is given byH =
∫ ∞

0

∫ ∞
0 Σξ(ω|y)dδdµ.

In Bayes’ methodology, a loss function is important in Bayesian estimation because
it may detect overestimating and underestimating in the research. Here, two commonly
employed symmetric and asymmetric loss functions, namely: SE (symmetric) and GE
(asymmetric) loss functions, are considered. However, under the SE loss, the Bayes estima-
tor is provided simply by the posterior mean, where overestimation and underestimation
are addressed equally. In practice, however, this may not make sense. Keeping this in mind,
a variety of asymmetric loss functions are proposed in the statistical literature. So, we shall
use the GE loss function, which provides varying degrees of relevance for overestimation
and underestimation, for additional details, see Calabria and Pulcini [29]. Now, let ζ(δ, µ)
be an unknown parametric function of δ and µ, then the desired Bayes estimators against
the SE (say ζ̃S(·)) and GE (ζ̃G(·)) loss are given by

ζ̃S(δ, µ) =
∫ ∞

0

∫ ∞

0
ζ(δ, µ) g(δ, µ|y)dδ d, (12)

and

ζ̃G(δ, µ) =

[∫ ∞

0

∫ ∞

0
[ζ(δ, µ)]−ν g(δ, µ|y)dδ dµ

]− 1
ν

, (13)

respectively, when ν→ −1, the Bayes estimate derived from SE loss will be the same as the
Bayes estimate derived from GE loss. It is preferable to note that other types of loss from
symmetric or asymmetric families can be easily incorporated.

Clearly, using (12) and (13), the Bayes estimators ζ̃S(δ, µ) and ζ̃G(δ, µ) cannot be
derived analytically. As a result, we suggest performing the MCMC techniques to evaluate
the offered Bayes estimates of δ, µ, R(t) and h(t).

Before going to build the MCMC steps, the full distributions of δ and µ must first be
derived as

K1( δ|y, µ) ∝ δDξ+a1−1e−δϑ(ω|y), (14)

and

K2(µ|y, δ) ∝ µDξ+a2−1e
−µ

(
b2−Υξ (Tτ ;ω)+∑

Dξ
i=1 y−2

i

)
Dξ

∏
i=1

(
1− e−µy−2

i

)δ(Ri+1)−1
, (15)

respectively, where ϑ(ω|y) = b1 − δ−1Υξ(Tτ ; ω)−∑
Dξ

i=1 (Ri + 1) log
(

1− e−µy−2
i

)
.
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It is noted, from (14) and (15), that the shape parameter δ follows the gamma distribu-
tion with shape parameter (Dξ + a1) and scale parameter ϑ(ω|y), therefore any gamma-
generating operator can be easily utilized to simulate samples of δ. On the other hand, it is
impossible to reduce the conditional distribution (15) of µ to any known statistical model.
So, we employ the Metropolis–Hasting (to update µ) within the Gibbs sampler (to update δ)
to adopt the MCMC samples of δ and µ. In practice, it can be difficult to find starting
points near the posterior mode, and due to the fact that the initial values do not affect the
parameter estimates, given a sufficiently long chain, we recommend the MLEs as good
starting points for running the proposed MCMC algorithm, see Van Ravenzwaaij et al. [30].
However, to acquire the Bayes’ estimates and to create their HPD interval bounds of δ, µ,
R(t) and h(t), do:

Step 1: Set the initial guesses (δ(0), µ(0)) = (δ̂, µ̂).
Step 2: Set ε = 1.
Step 3: Generate δ() from G

(
Dξ + a1, ϑ(ω|y)

)
.

Step 4: Generate µ∗ from N(µ̂, σ̂22) via the M-H sampler as:

(a) Obtain Q =
K2( µ∗ |y,δ(ε))

K2( µ(ε−1)|y,δ(ε))
.

(b) Obtain Q∗ = min{1,Q}.
(c) Obtain u ∼ U(0, 1) from uniform distribution.
(d) If u 6 Q∗, set µ(ε) = µ∗ else set µ(ε) = µ(ε−1).

Step 5: Obtain R(ε)(t) and h(ε)(t) for t > 0, respectively, as

R(ε)(t) =
(

1− e−µ(ε)t−2
)δ(ε)

,

and
h(ε)(t) = 2δ(ε)µ(ε)t−3e−µ(ε)t−2

(
1− e−µ(ε)t−2

)−1
.

Step 6: Set ε = ε + 1.
Step 7: Redo Steps 3–6 S times and disregard the first S? times (burn-in) of δ, µ, R(t) and

h(t) (say ζ) as

ζ(ε) =
(

δ(ε), µ(ε), R(ε)(t), h(ε)(t)
)

, ε = S? + 1,S? + 2, . . . ,S .

Step 8: Draw the Bayes’ point estimates of ζ from (12) and (13), respectively, as

ζ̃S =
1
S̄

S
∑

ε=S?+1
ζ(ε),

and

ζ̃G =

[
1
S̄

S
∑

ε=S?+1

(
ζ(ε)

)−ν
]− 1

ν

, ν 6= 0,

where S̄ = S − S?.
Step 9: Construct the (1− q)100% HPD interval of ζ via arrange its MCMC variates as ζ(ε)

for ε = S? + 1, . . . ,S as (
ζ(ε∗), ζ(ε∗+(1−q)S̄)

)
,

where ε∗ = S? + 1, . . . ,S is specified such that

ζ(ε∗+[(1−q)S̄ ]) − ζ(ε∗) = min
16ε6qS̄

(
ζ(ε+[(1−q)S̄ ]) − ζ(ε)

)
,

for more details see Chen and Shao [31].
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To highlight whether the simulation MCMC chains have converged, three diagnostics
are considered, namely:

(1) Trace: It depicts the evolution of a parameter value across the chain’s iterations.
(2) Brooks-Gelman-Rubin (BGR): It metrics the convergence of a chain by measuring the

difference among the variances within and between chains.
(3) Autocorrelation: It evaluates the relationship between an iteration’s current value and

its past values.

Using the proposed hybrid MCMC algorithm, based on S = 12,000 and S? = 2000 it-
erations, when (δ, µ) = (1.5, 1), (T1, T2) = (0.5, 1.5), (n, m) = (80, 40) and Ri = 1 for
i = 1, . . . , m, Figure 2 displays the autocorrelations for the simulated Markov chains with-
out burn-in of all unknown parameters. It shows, as the lag value increases, that the
autocorrelation values are close to zero. Thus, it is evidence that the acquired MCMC draws
are uncorrelated. Moreover, to obtain an uncorrelated Markov chain, we take every fifth
observation for thinning (subsampling) procedure. So, for acquired MCMC draws with
burn-in of δ and µ, Figure 3 displays both trace (with Gaussian kernel) and BGR diagnostics.
It demonstrates that the sampling process’s accuracy may be improved by running many
chains, removing the beginning of each chain as burn-in, and thinning the chains to reduce
autocorrelation. Thus, the offered MCMC draws of δ, µ, R(t) or h(t) are quite mixed, and so
the derived estimations are acceptable.
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Figure 2. Autocorrelation plots of δ, µ, R(t) and h(t) (after burn-in) from generalized-T2PH cen-
sored data.
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Figure 3. Evaluating plots for 12,000 MCMC draws of δ and µ from generalized-T2PH censored data.

3. Monte Carlo Simulations

To know the associated performance of the offered estimators, investigated in the
proceeding sections, of δ, µ, R(t) and h(t), several comparisons via Monte Carlo simulations
are performed. So, for specified choices of Ti, i = 1, 2 (threshold time points), n (number of
experimental subjects), m (effective sample items) and R (removal design), we replicated
generalized-T2PH 1000 times from IER(1.5, 1) using the following steps:

Step 1. Set the actual values of δ and µ.
Step 2. For given values of n, m, T1, T2 and R, following Balakrishnan and Cramer [4],

generate a traditional progressive Type-II sample with size m units.
Step 3. Obtain the values of di, i = 1, 2 at Ti, i = 1, 2.
Step 4. Determine the generalized-T2PH case as:

a. Case-I: If Ym < T1, set Ri = 0, for i = m, m + 1, . . . , D1 end the experiment at
T1. Then, replace Yi, i = m, . . . , d1 by those items collected from a truncated
distribution f (y)[1− F(ym)]−1 with size n−m−∑m−1

i=1 Ri.
b. Case-II: If T1 < Ym < T2, end the experiment at Ym.
c. Case-III: If T1 < T2 < Ym, end the experiment at T2.

Taking t = 0.75, the true values of R(t) and h(t) are 0.9305 and 0.5310, respectively.
Several failure percentages (FPs) (of each n) such as m

n (=50, 80)% are considered. Further,
for each group of (n, m), three progressive mechanisms R are also used namely:

Scheme 1 : R = (n−m, 0∗(m− 1)),

Scheme 2 : R =
(

0∗
(m

2
− 1
)

, n−m, 0∗
(m

2

))
,

Scheme 3 : R = (0∗(m− 1), n−m),

where 0∗(m− 1) means that 0 is repeated m− 1 times.
When the desired generalized-T2PH samples obtained, via R 4.2.2 software, the MLEs

along their 95% ACIs of δ, µ, R(t) and h(t) are estimated via ‘maxLik’ package. By running
the MCMC sampler 12,000 times, when S? = 2000 , the Bayes’ inferences are obtained
through the ‘coda’ package introduced by Plummer et al. [26]. To see how the gamma priors
behave in Bayesian analysis, two informative sets called Prior-I and -II of (a1, a2, b1, b2) are
used as (7.5, 5, 5, 5) and (15, 10, 10, 10), respectively.

In our calculations, for $ = 1, 2, 3, 4, the average estimates (Av.Es) of δ, µ, R(t) or h(t)
(say ζ) are given by

ζ̌$ =
1

1000

1000

∑
i=1

ζ̌
(i)
$ ,
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where ζ̌(i) is the estimate of ζ at ith sample, ζ1 = δ, ζ2 = µ, ζ3 = R(t) and ζ4 = h(t).
The comparison of the acquired point estimates of ζ is made based on the follow-

ing metrics:

(i) Root mean squared-errors (RMSE):

RMSE(ζ̌$) =

√√√√ 1
1000

1000

∑
i=1

(
ζ̌
(i)
$ − ζ$

)2
.

(ii) Mean absolute biases (MAB):

MAB(ζ̌$) =
1

1000

1000

∑
i=1

∣∣∣ζ̌(i)$ − ζ$

∣∣∣.
On the other hand, the comparison of the acquired interval estimates of ζ is made

based on the following metrics:

(i) Average confidence length (ACL):

ACL(1−q)%(ζ) =
1

1000

1000

∑
i=1

(
U

ζ̌
(i)
$
−L

ζ̌
(i)
$

)
,

where (L(·),U (·)) denotes (lower-limit,upper-limit) of (1− q)% ACI/HPD intervals
of ζ$.

(ii) Mean absolute biases (MAB):

CP(1−q)%(ζ) =
1

1000

1000

∑
i=1
=(
L

ζ̌
(i)
$

;U
ζ̌
(i)
$

)(ζ),

where =1(·) denotes the indicator function.

One of the best data visualization tools in R 4.2.2 software is known as a heat-map.
Therefore, in this study, the simulated RMSEs, MABs, ACLs and CPs of δ, µ, R(t) and h(t)
are plotted with heat-map and shown in Figures 4–7, respectively. Also, the numerical
results of δ, µ, R(t) and h(t) are also available in a Supplementary File. Some abbreviations
of the proposed methods, for Prior-I (say P1) as an example, have been used such as: “SE-P1”
refers to the Bayes estimates under SE loss; “GE1-P1” refers to the Bayes estimates under
GE loss (for ν = −2); “GE2-P1” refers to the Bayes estimates under GE loss (for ν = +2)
and “HPD-P1” refers to the HPD intervals.

From Figures 4–7, in terms of the smallest RMSE, MAB and ACL values as well as the
highest CP values, the following notes are drawn:

• A general observation in this study is that the acquired estimates of δ, µ, R(t) or h(t)
have good behavior.

• Due to gamma informations, the Bayes point estimates (or their HPD credible interval
estimates) of δ, µ, R(t) or h(t) behave satisfactory compared to the frequentist estimates.

• Comparing the variance values associated with priors I and II, it can be seen that the
variance of Prior-II is lower than the other, thus the Bayes calculations from this prior
provide good estimates.

• As n(or m) increases, both point and interval estimates of all unknown quantities
perform sufficiently. A similar note is also obtained at ∑m

i=1 Ri decreases.
• As Ti, i = 1, 2 increase, the RMSEs, MABs and ACLs of δ, µ, R(t) and h(t) decrease

except for those associated with R(t) in the case of MCMC estimates. Opposite
behavior of δ, µ, R(t) and h(t) is also reached in the case of estimated CP values.

• Comparing the proposed censoring mechanisms, all calculated point/interval esti-
mates of δ, µ, R(t) or h(t) are more efficient using Scheme 3 than others.
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• As a summary, to estimate the IER parameters δ, µ, R(t) or h(t) in presence of data
generated from Type-II generalized progressively hybrid censored sampling, the Bayes’
paradigm via M-H algorithm is recommended.
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Figure 4. Heat-maps for the estimation outputs of δ.
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Figure 5. Heat-maps for the estimation outputs of µ.
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Figure 6. Heat-maps for the estimation outputs of R(t).
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Figure 7. Heat-maps for the estimation outputs of h(t).

4. Real-Life Applications

To explain the usefulness of the suggested inferential methodologies and to illustrate
the study findings’ relevance to actual phenomena, this section examines two real appli-
cations by evaluating real data sets collected from the engineering and chemistry areas.
These applications stated that the suggested inferential methodologies, under the proposed
censoring, perform adequately when utilized on real-life data.

4.1. Mechanical Components

This application analyzes an engineering data set representing the failure times of
twenty mechanical components. This data was taken from Murthy et al. [32] and recently
discussed by Alotaibi et al. [33] and Elshahhat et al. [34]. For convenience, each data point is
multiplied by ten. The new transformed data are sorted an ascending order and presented
in Table 3. To examine whether fitting IER distribution to the data is appropriate or not,
the Kolmogorov–Smirnov (K–S) test statistic and its p-value are computed.
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First, from Table 3, the calculated MLEs of δ and µ with their standard errors (St.Errs)
are 2.3896(0.7868) and 1.4970(0.3406), respectively, as well as the K–S (p-value) is 0.126(0.908).
This result represents the fact that the IER model fits the mechanical components data
adequately. Graphically, Figure 8 displays (i) the estimated and empirical reliability lines,
and (ii) contour of the fitted log-likelihood function. As expected, Figure 8 supports our
fitting findings and shows that the likelihood estimates δ̂ ≡ 2.3896 and µ̂ ≡ 1.4970 exist
and unique.

Table 3. Failure data of 20 mechanical components.
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Figure 8. Empirical/Fitted reliability parameter (left-side); Contour (right-side) plots from mechani-
cal components data.

Now, to explain the acquired estimates from the mechanical components data, based
on m = 10, R = (1∗10) and different choices of Ti, i = 1, 2, three artificial generalized-
T2PH samples are generated and reported in Table 4. From Table 4, the offered point
estimates (along their St.Errs) of δ, µ, R(t) and h(t) (at t = 1) are reported in Table 5. Using
noninformative priors, where S = 50,000 and S? = 10,000, the MCMC estimates of δ, µ,
R(t) and h(t) based on SE and GE (for ν(= −3,−0.03,+3)) losses are also obtained, see
Table 5. Also, in Table 6, the 95% ACI as well as 95% HPD interval estimates (along their
interval lengths (ILs)) are obtained. Tables 5 and 6 stated that the acquired estimates of δ, µ,
R(t) and h(t) developed by frequentist (or Bayes) approach are very close to each other.

Table 4. Different generalized-T2PH samples from mechanical components data.

Sample T1(d1) T2(d2) Censored Data R∗ T∗

1 4.95(11) 5.00(11) 0.67, 0.76, 0.84, 0.85, 0.89, 0.98, 1.14, 1.21, 1.31, 1.60, 4.85 0 4.95
2 1.25(8) 1.65(10) 0.67, 0.76, 0.84, 0.85, 0.89, 0.98, 1.14, 1.21, 1.31, 1.60 0 1.60
3 1.00(6) 1.55(9) 0.67, 0.76, 0.84, 0.85, 0.89, 0.98, 1.14, 1.21, 1.31 2 1.55

Some properties for 40,000 remaining MCMC draws of δ, µ, R(t) and h(t) namely:
mean, mode, first quartile Q1, median, third quartile Q3, standard-deviation (St.D) and
skewness are computed, see Table 7. One of the most difficult difficulties in Bayesian
MCMC computations is determining the level of convergence of the computed Markovian
chain. Therefore, both the density as well as the trace plots of δ, µ, R(t) and h(t) are plotted,
see Figure 9. Clearly; the sample mean is shown by a solid-line while the HPD interval
bounds are depicted by dashed-lines.

Figure 9 shows that the simulated chains converge adequately and S? sample has
adequate size to eliminate the influence of the starting points. It also indicates that the
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distribution of estimates of δ and µ is fairly-symmetrical while that associated with R(t)
and h(t) are negative- and positive-skewed, respectively.

Table 5. Point estimates of δ, µ, R(t) and h(t) from mechanical components data.

Sample Par. MLE SE GE

ν→ −3 −0.03 +3

Est. St.Err Est. St.Err Est. St.Err Est. St.Err Est. St.Err

1 δ 1.4654 0.6467 1.3402 0.1931 1.3535 0.1119 1.3312 0.1342 1.3074 0.1580
µ 1.5668 0.4623 1.4556 0.1754 1.4661 0.1007 1.4476 0.1192 1.4284 0.1384

R(1) 0.7096 0.0879 0.6991 0.0453 0.7015 0.0081 0.6975 0.0121 0.6931 0.0165
h(1) 1.2112 0.3673 1.1887 0.1543 1.2074 0.0038 1.1796 0.0316 1.1512 0.0599

2 δ 2.7224 1.6018 2.5983 0.1950 2.6066 0.1159 2.5939 0.1286 2.5808 0.1417
µ 2.0465 0.6121 1.9445 0.1695 1.9479 0.0987 1.9332 0.1134 1.9176 0.1289

R(1) 0.6862 0.0917 0.6679 0.0453 0.6686 0.0176 0.6646 0.0216 0.6604 0.0258
h(1) 1.6530 0.5449 1.6918 0.1777 1.7167 0.0636 1.6902 0.0372 1.6630 0.0100

3 δ 2.1542 1.3272 2.0273 0.1947 2.0380 0.1163 2.0220 0.1322 2.0055 0.1487
µ 1.8663 0.6036 1.7621 0.1692 1.7721 0.0942 1.7572 0.1091 1.7417 0.1246

R(1) 0.6963 0.0911 0.6810 0.0443 0.6835 0.0128 0.6797 0.0165 0.6757 0.0206
h(1) 1.4715 0.5254 1.4846 0.1613 1.5020 0.0305 1.4762 0.0047 1.4501 0.0215

Table 6. Interval estimates of δ, µ, R(t) and h(t) from mechanical components data.

Sample Par. ACI HPD

Lower Upper IL Lower Upper IL

1 δ 0.1980 2.7328 2.5349 1.0520 1.6329 0.5809
µ 0.6607 2.4730 1.8123 1.1967 1.7221 0.5254

R(1) 0.5374 0.8819 0.3445 0.6131 0.7834 0.1702
h(1) 0.4913 1.9310 1.4398 0.9049 1.4935 0.5886

2 δ 0.4171 5.8619 5.4448 2.3134 2.8952 0.5818
µ 0.8469 3.2462 2.3992 1.6652 2.1975 0.5323

R(1) 0.5065 0.8659 0.3594 0.5858 0.7472 0.1614
h(1) 0.5851 2.7210 2.1358 1.3687 2.0411 0.6724

3 δ 0.4471 4.7555 4.3084 1.7375 2.3032 0.5657
µ 0.6832 3.0494 2.3662 1.4869 2.0105 0.5236

R(1) 0.5177 0.8748 0.3571 0.5986 0.7587 0.1602
h(1) 0.4418 2.5012 2.0593 1.1731 1.7922 0.6191

Table 7. Statistics for MCMC iterations of δ, µ, R(t) and h(t) from mechanical components data.

Sample Par. Mean Mode Q1 Median Q3 St.D Skewness

1 δ 1.34023 0.95281 1.24522 1.34228 1.43862 0.14705 −0.12406
µ 1.45557 1.22232 1.36275 1.45175 1.54657 0.13566 0.10664

R(1) 0.69911 0.71716 0.67074 0.70130 0.72989 0.04411 −0.30217
h(1) 1.18868 0.97254 1.08139 1.18309 1.29140 0.15269 0.20700

2 δ 2.59829 2.24704 2.49609 2.59927 2.70160 0.15033 0.00921
µ 1.94451 1.66521 1.85161 1.94356 2.03607 0.13535 0.05411

R(1) 0.66789 0.62429 0.64126 0.66906 0.69711 0.04138 −0.25408
h(1) 1.69184 1.74574 1.57329 1.68643 1.80312 0.17337 0.23730

3 δ 2.02727 1.76272 1.92738 2.02779 2.12651 0.14760 0.04591
µ 1.76208 1.45968 1.67071 1.75966 1.85209 0.13325 0.07618

R(1) 0.68098 0.62750 0.65406 0.68274 0.71047 0.04154 −0.27335
h(1) 1.48463 1.55724 1.37154 1.47701 1.58965 0.16077 0.26114
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(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 9. Density (left) and Trace (right) plots of δ, µ, R(t) and h(t) from mechanical components data.
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4.2. Cumin Essential Oil

Cumin essential oil (CEO) is a super spicy oil that needs to be handled with care. It is
extracted through steam distillation and is clear in color. Cuminaldehyde is the bioactive
component in CEO and is obtained using an experimental distillation plant. Following
Panahi [35], we shall present the analysis of the CEO data set to clarify the study goal.
In Table 8, the cuminaldehyde data measured on a Pye Unicam/Philips PU 4500 gas
chromatograph is reported. To verify whether the IER distribution fits the cuminaldehyde
data, the K–S statistic (with its p-value) and MLEs (with their St.Errs) of δ and µ based on
the cuminaldehyde data are computed. However, using Table 8, the MLEs (St.Errs) of δ
and µ are 8.5785(3.7247) and 64.883(12.260), respectively. Furthermore, the K–S (p-value) is
0.125(0.805). It implies that the IER lifetime model fits the cuminaldehyde data significantly.
Additionally, Figure 10 confirmed that our fitted results and demonstrated that the estimates
δ̂ and µ̂ are exist and unique. For benefit, we propose using these estimates δ̂ ≡ 8.5785 and
µ̂ ≡ 64.883 to carried out any upcoming calculations.

Table 8. Cuminaldehyde data from the CEO.
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Figure 10. Empirical/Fitted reliability parameter (left-side); Contour (right-side) plots from cumi-
naldehyde data.

Now different generalized-T2PH samples (when m = 12, R = (1∗12) and several
points of Ti, i = 1, 2) are generated from cuminaldehyde data and listed in Table 9.
From Table 9, the derived estimators of δ, µ, R(t) and h(t) (at t = 5) are evaluated ob-
tained via likelihood and Bayesian approaches are presented in Tables 10 and 11. Improper
gamma priors to illustrate the Bayes estimates are considered here also. It is noted, from
Tables 10 and 11, that the offered estimates of δ, µ, R(t) or h(t) exhibit the same pattern
since they seem to be close to each other. Interval estimates of the same unknown parame-
ters have a similar pattern of behavior. As a result, there is no significant difference between
the suggested estimates, which is also an expected finding owing to the absence of further
historical data that may be used.

Table 9. Different generalized-T2PH samples from cuminaldehyde data.

Sample T1(d1) T2(d2) Censored Data R∗ T∗

1 7.2(13) 7.5(13) 3.386, 3.789, 3.960, 4.354, 4.523, 4.867, 5.054, 5.398, 5.787, 6.498, 6.676, 6.845, 7.089 7.2 0
2 6.5(11) 7.2(12) 3.386, 3.789, 3.960, 4.354, 4.523, 4.867, 5.054, 5.398, 5.787, 6.498, 6.676, 6.845 6.845 0
3 6.2(9) 6.8(11) 3.386, 3.789, 3.960, 4.354, 4.523, 4.867, 5.054, 5.398, 5.787, 6.498, 6.676 6.8 2
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Table 10. Point estimates of δ, µ, R(t) and h(t) from cuminaldehyde data.

Sample Par. MLE SE GE

ν→ −3 −0.03 +3

Est. St.Err Est. St.Err Est. St.Err Est. St.Err Est. St.Err

1 δ 5.0778 2.5010 4.9248 0.2297 4.9307 0.1471 4.9219 0.1559 4.9128 0.1650
µ 66.290 12.124 66.138 0.2321 66.139 0.1507 66.138 0.1514 66.137 0.1521

R(4) 0.9220 0.0339 0.9235 0.0031 0.9235 0.0016 0.9235 0.0016 0.9235 0.0015
h(4) 0.1697 0.0563 0.1658 0.0071 0.1660 0.0037 0.1657 0.0040 0.1653 0.0043

2 δ 4.0875 2.0227 3.9287 0.2343 3.9363 0.1512 3.9251 0.1625 3.9135 0.1740
µ 61.594 12.920 61.436 0.2359 61.436 0.1584 61.435 0.1592 61.435 0.1599

R(4) 0.9158 0.0406 0.9182 0.0042 0.9182 0.0024 0.9182 0.0023 0.9181 0.0023
h(4) 0.1711 0.0612 0.1657 0.0091 0.1661 0.0051 0.1656 0.0056 0.1651 0.0061

3 δ 3.1790 1.4369 3.0201 0.2339 3.0298 0.1492 3.0153 0.1637 3.0003 0.1787
µ 56.471 10.278 56.312 0.2361 56.312 0.1585 56.311 0.1593 56.311 0.1601

R(4) 0.9097 0.0375 0.9132 0.0059 0.9132 0.0035 0.9132 0.0035 0.9132 0.0034
h(4) 0.1695 0.0565 0.1622 0.0118 0.1627 0.0067 0.1619 0.0075 0.1611 0.0083

Table 11. Interval estimates of δ, µ, R(t) and h(t) from cuminaldehyde data.

Sample Par. ACI HPD

Lower Upper IL Lower Upper IL

1 δ 0.1759 9.9797 9.8037 4.5950 5.2730 0.6780
µ 42.527 90.052 47.525 65.797 66.484 0.6864

R(4) 0.8555 0.9885 0.1330 0.9183 0.9289 0.0106
h(4) 0.0593 0.2800 0.2206 0.1543 0.1778 0.0235

2 δ 0.1231 8.0519 7.9287 3.5875 4.2610 0.6735
µ 36.272 86.917 50.645 61.096 61.774 0.6780

R(4) 0.8363 0.9953 0.1590 0.9112 0.9251 0.0139
h(4) 0.0513 0.2910 0.2397 0.1512 0.1802 0.0290

3 δ 0.3628 5.9952 5.6324 2.6943 3.3658 0.6716
µ 36.326 76.615 40.289 55.972 56.649 0.6776

R(4) 0.8362 0.9833 0.1470 0.9039 0.9227 0.0188
h(4) 0.0588 0.2802 0.2214 0.1438 0.1802 0.0364

Using the same vital statistics described in Section 4.1, based on 40,000 MCMC variates,
several properties of δ, µ, R(t) and h(t) are calculated, see Table 12. In Figure 11, for each
sample in Table 9, the density as well as trace plots of MCMC iterations of δ, µ, R(t) and
h(t) are shown. It demonstrates that the Markovian iterations converge superiorly and
shows that the acquired estimates of δ, µ, R(t) or h(t) are distributed fairly symmetrically.

Table 12. Statistics for MCMC iterations of δ, µ, R(t) and h(t) from cuminaldehyde data.

Sample Par. Mean Mode Q1 Median Q3 St.D Skewness

1 δ 4.92477 4.78637 4.81165 4.92498 5.03747 0.17136 0.00749
µ 66.1384 65.8608 66.0193 66.1387 66.2583 0.17612 −0.00900

R(4) 0.92353 0.92433 0.92172 0.92350 0.92532 0.00269 0.00983
h(4) 0.16577 0.16328 0.16192 0.16579 0.16973 0.00596 −0.00406

2 δ 3.92874 3.65246 3.81278 3.93027 4.04089 0.17234 −0.01738
µ 61.4356 61.1458 61.3167 61.4362 61.5532 0.17435 0.00399

R(4) 0.91816 0.92233 0.91581 0.91818 0.92052 0.00353 0.03267
h(4) 0.16573 0.15621 0.16081 0.16576 0.17056 0.00737 −0.02234

3 δ 3.02009 2.74396 2.90488 3.02150 3.13214 0.17159 −0.02325
µ 56.3117 56.0220 56.1925 56.3125 56.4294 0.17444 0.00396

R(4) 0.91322 0.91941 0.91005 0.91320 0.91641 0.00478 0.04269
h(4) 0.16220 0.14937 0.15605 0.16227 0.16826 0.00928 −0.02747
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(a) Sample 1

(b) Sample 2

(c) Sample 3

Figure 11. Density (left) and Trace (right) plots of δ, µ, R(t) and h(t) from cuminaldehyde data.
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5. Conclusions

This article discusses the examination of a generalized progressive Type-II hybrid
censored test where the lifespans of the testing products have an inverted exponentiated
Rayleigh model. Besides the issue of estimating model parameters, the present study
has also taken into account the estimating issues of reliability and failure functions of
the proposed model. The likelihood approach has been used to get acquire both point
and asymptotic estimates of the objective parameters. From a Bayes’ point of view, both
symmetric and asymmetric Bayes estimates, based on asymmetric and symmetric loss
functions, of the unknown parameters have been developed using a hybrid Monte-Carlo
Markov-Chain algorithm. Also, two-sided highest posterior interval estimators of the same
parameters have also been cerated. Through valuable simulation experiments, the efficiency
of various estimating strategies has been established. Numerical evaluations show that
the acquired Bayes points and credible estimates behave satisfactorily. Two R packages,
namely ‘maxLik’ and ‘coda’, have been installed to evaluate the suggested theoretical results.
Two applications, based on real data sets from various fields, namely engineering and
chemistry, have been examined to demonstrate the utility of the suggested model in real-
world applications. As a summary, in the presence of a sample produced through the
proposed censoring, the Bayes framework is advised for estimating the model parameters
of life of the inverted exponentiated Rayleigh model. In the future, it would be interesting to
examine the inferential concerns of the same model utilized for other statistical challenges,
such as accelerating life tests, competing risks, etc.
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